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ABSTRACT

A numerical model designed for three-dimensional process studies of rotating, stratified flows is described.
The model is freely available, parallel, and portable across a range of computer architectures. The underlying
numerics are high quality, based on spectral expansions, and third-order time stepping. Optional submodels
include accurate calculation of Lagrangian trajectories. Special consideration has been taken to ensure ease of
use by geophysical, as distinguished from computational, scientists. The mathematical and computational methods
underlying the model are presented here as are several illustrative applications highlighting the model capabilities
and the types of flows amenable to simulation using the model. Sample applications include forced inertial
gravity waves, parametric subharmonic instability, shear-driven mixing layers, instability of a low Froude number
vortex street, and geostrophic adjustment of intermittent, isolated mixing patches.

1. Introduction

In this work, we describe the features and use of a
numerical model designed to provide approximate so-
lutions to the Navier–Stokes equations for density-
stratified fluids in a rotating reference frame. The code
is freely available and is intended for use as a tool for
process-oriented simulations of stratified fluid flow, in
particular for nonlinear interactions between internal
gravity waves and transitional processes and instabil-
ities resulting in disordered, three-dimensional mo-
tions. For our purposes here, we refer to this latter class
of flows as turbulent. The algorithm is designed to be
run on distributed memory multiprocessor computers
using a data-parallel programming paradigm. Within
the practical limits of memory and speed on the various
platforms, the model can be run on machines ranging
from Macintosh laptop computers, to workstation clus-
ters, to large-scale community resources such as the
Cray T3E.

The underlying numerical methods are based on spec-
tral (Fourier, cosine, and sine) expansions of the flow
variables and therefore rely heavily on fast Fourier
transforms (FFTs). Consequently, spatial resolution and
convergence characteristics greatly exceed those of
models based on finite differences for discrete spatial
differentiation. The trade-off, however, is that applica-
tion of the model is limited to problems that can be
formulated with simple boundary conditions. The model
presented here is designed to solve problems either in
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(a) triply periodic spatial domains or (b) horizontally
periodic domains with free-slip rigid lids at the top and
bottom.

The remainder of the paper is organized as follows.
The transformed equations of motion are derived in sec-
tion 2, followed by a discussion of the discrete numer-
ical algorithms in section 3. Parallel implementation is
discussed in section 4. Routine diagnostics, illustrative,
and validation simulations are presented in sections 5
and 6. Parallel performance benchmarks are provided
in section 7. A brief guide to the configuration of the
code for user-defined applications and the output files
is included in appendixes A and B.

2. Spectral form of the Boussinesq equations

Throughout this document, we will use the following
notation conventions:

u(x, y, z, t), scalar function of position and time; (1)

u(x, y, z, t), vector function of position and time; (2)

ũ(k, l, m, t),

wavenumber space transform of u(x, y, z, t); (3)

u(k, l, m, t),

vector form in transformed space; and (4)

x, y, z; k, l, m,

unit vectors in the x, y, z and k, l, m directions. (5)

The equations of motion for a density-stratified fluid
on an f plane are
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]u 1 ]p
25 2u · =u 1 f y 2 1 F 1 n¹ u, (6)1]t r ]x

]y 1 ]p
25 2u · =y 2 fu 2 1 F 1 n¹ y , (7)2]t r ]y

]w 1 ]p
25 2u · ¹w 2 1 F 1 n¹ w 2 g, (8)3]t r ]z

]r
25 2u · =r 1 F 1 k¹ r, and (9)4]t

= · u 5 0, (10)

where u, y, w, r, p are functions of the spatial coordi-
nates x, y, z (vertical, positive upward), and time t. In
addition, n, k are the molecular viscosity and scalar
diffusivity respectively; f 5 2V sin(f) is the Coriolis
parameter; V is the earth’s rotation frequency; f is the
latitude; and g is the gravitational acceleration; Fi are
external forcing terms. Equations (6)–(10) are displayed
with Laplacian dissipation and diffusion operators even
though the code is implemented more generally, per-
mitting a choice within a family of hyperviscosity op-
erators. Because the numerical treatment of each of
these schemes is similar, we present the algorithmic ap-
proach for the particular choice corresponding to La-
placian dissipation and diffusion.

For stably stratified geophysical flows, numerical ac-
curacy can often be enhanced by focusing available pre-
cision on relatively small fluctuations about a steady
background. We therefore decompose the (potential)
density r into a reference value, a time-independent
field, and a fluctuating component that varies in space
and time:

r(x, y, z, t) 5 r 1 r(x, y, z) 1 r9(x, y, z, t). (11)0

A corresponding decomposition of pressure is defined in
terms of the nonfluctuating components of density:

p 5 p(x, y, z) 1 p9(x, y, z, t) (12)

]p
5 2(r 1 r )g. (13)0]z

We make the Boussinesq approximation assuming
that density fluctuations are small compared to the ref-
erence value and hence use r0 in place of r except where
it is multiplied by g [see Gill (1982), Lighthill (1978)
for a discussion of the physical underpinnings of this
approximation], obtaining

]u 1 ]p 1 ]p9
5 2u · =u 1 f y 2 2

]t r ]x r ]x0 0

21 F 1 n¹ u, (14)1

]y 1 ]p 1 ]p9
5 2u · =y 2 fu 2 2

]t r ]y r ]y0 0

21 F 1 n¹ y , (15)2

]w 1 ]p9 gr9
25 2u · =w 2 1 F 1 n¹ w 2 , (16)3]t r ]z r0 0

]r9
25 2u · =(r 1 r9) 1 F 1 k¹ (r 1 r9), (17)4]t

and

= · u 5 0. (18)

Note that the vertical gradient of does not appear inp
the equation for w once the hydrostatic relation (13) is
invoked.

A few more manipulations are required before trans-
forming the equations to wavenumber space. Because
the flow is divergence free, we can write

u · =r9 5 = · (r9u) 2 r9(= · u) 5 = · (r9u). (19)

The nonlinear terms can be expressed in terms of the
vorticity v 5 = 3 u using the identity

1
2u · =u 5 2u 3 v 1 = |u | . (20)

2

We define the new pressure variables,
2p9 = |u | p

P [ 1 and P [ , (21)
r 2 r0 0

and, for notational convenience,

T [ (T , T , T )1 2 3

5 [u 3 v] · (x, y, z) 1 (F , F , F )1 2 3

]P ]P
2 , , 0 (22)1 2]x ]y

and obtain

]u ]P
25 T 2 1 f y 1 n¹ u, (23)1]t ]x

]y ]P
25 T 2 2 fu 1 n¹ y , and (24)2]t ]y

]w ]P g
25 T 2 1 n¹ w 2 r9 (25)3]t ]z r 0

to go along with Eqs. (17) and (18).
The algorithmic objective is to compute approximate

solutions to the stratified flow equations over a mesh of
discrete grid points in Cartesian (x, y, z) space. The grid
is defined by xi 5 (i 2 1)Dx, yj 5 ( j 2 1)Dy, and zk

5 (k 2 1)Dz with (Dx, Dy, Dz) 5 (Lx/nx, Ly/ny, Lz/nz)
for (i, j, k) 5 1, 2, . . . , (nx, ny, nz 1 1). We assume
here that nx, ny, and nz can be represented as products
of powers of 2, 3, or 5 so that discrete FFTs can be
computed efficiently over the global data space.

a. Transformed equations: Triply periodic boundary
conditions

Time integration is performed in wavenumber space
to the spatially transformed version of the equations of
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motion. The form of the variable expansions, and hence
the form of the transformed equations, depend on the
boundary conditions to be imposed. For triply periodic
boundary conditions, we expand each of the primitive
variables u, y, w, r9, and P in discrete Fourier series of
the form

i(kx1ly1mz)u(x, y, z, t) 5 ũ (t)e , (26)O O O k,l,n
i j n

where the indices i 5 [2nx/2 1 1, 2nx/2 1 2, . . . ,
nx/2], j 5 [2ny/2 1 1, 2ny/2 1 2, . . . , ny/2] and n
5 2[nz/2 1 1, 2 nz/2 1 2, . . . , nz/2] define discrete
wavenumber values k 5 i(2p/Lx), l 5 j(2p/Ly), and m
5 n(2p/Lz). We assume here that ] /]z is a periodicr
function of the spatial variables though need not be.r
This allows, for example, simulation of periodic flows
in uniformly stratified fluids.

Spatial differentiation is analytic in wavenumber
space with the operator transform pairs (]/]x, ]/]y,
]/]z) → (ik, il, im); for example,

]u ]u
i(kx1ly1mz)5 ikũ (t)e ⇔ 5 ikũ. (27)O O O k,l,n]x ]xi j n

For the triply periodic case, transformation of the equa-
tions and some straightforward algebra yield

]ũ
2˜ ˜5 T 2 ikP 1 f ỹ 2 n |k | ũ, (28)1]t

]ỹ
2˜ ˜5 T 2 ilP 2 f ũ 2 n |k | ỹ , (29)2]t

]w̃ g
2˜ ˜5 T 2 imP 2 r̃9 2 n |k | w̃, (30)3]t r 0

]r̃9 ˜ 2̃˜˜5 2ik · (ru) 1 (F 2 u · =r 2 k¹ r )4]t
22 k(|k | r̃9), and (31)

k · u 5 0. (32)

The transformed variables, for example, ũ or T̃3, rep-
resent sets of values at each discrete wavenumber lo-
cation. The transformed equations therefore form a set
of ordinary differential equations in time for the com-
plex expansion coefficients at each value of the triplet
(i, j, n) within the expansion range for a given discrete
grid mesh.

A significant advantage of working with the trans-
formed equations is that the pressure variable P̃ can
be expressed in terms of the other variables by dotting
the wavenumber vector (k, l, m) into the vector form
of the momentum equations and making use of (32).
This analytical step is analogous to solving a Poisson
equation for P in physical space, a task that often
requires the use of iterative methods in purely grid-
point-based formulations. The resulting expression
for P̃ is then substituted into the momentum equations
to give

2 2]ũ l 1 m kl km
25 G 2 G 2 G 2 n |k | ũ, (33)1 2 32 2 21 2]t |k | |k | |k |

2 2]ỹ kl k 1 m lm
5 2 G 1 G 2 G1 2 32 2 21 2]t |k | |k | |k |

22 n |k | ỹ , and (34)

2 2]w̃ km lm k 1 l
25 2 G 2 G 1 G 2 n |k | w̃,1 2 32 2 21 2]t |k | |k | |k |

(35)

where

˜G 5 T 1 f ỹ , (36)1 1

˜G 5 T 2 f ũ, and (37)2 2

g˜G 5 T 2 r̃9. (38)3 3 r 0

b. Transformed equations: Free-slip, solid surfaces at
z 5 0, Lz

We frequently encounter problem formulations in
which the vertical extent of the domain is finite, though
viscous boundary layers are not of primary interest. We
can modify the variable expansions slightly to enable
simulation of flows satisfying free-slip conditions at the
rigid lids z 5 0, Lz. In particular, we consider flows
satisfying periodicity conditions in x and y with

w 5 0 z 5 0, L , (39)z

]u ]y
5 5 0 z 5 0, L , (40)z]z ]z

r 5 r (x, y) z 5 0, and (41)bottom

r 5 r (x, y) z 5 L . (42)top z

By choosing

z z
r 5 r (x, y) 1 1 2 r (x, y), (43)top bottom1 2L Lz z

we obtain the simple boundary condition r9 5 0 at z 5
0, Lz and can therefore treat the primitive variables pairs
(u, y) and (w, r9) in terms of cosine and sine expansions
in the vertical, respectively. Other choices could be made
for specifying consistent with these expansions. In gen-r
eral the function must be of the formr

np
r 5 f (x, y) 1 g(x, y)z 1 a (x, y) sin z, (44)O n Ln z

where f, g, and an are arbitrary periodic functions of x
and y.

One application for which this formulation is useful
is internal wave dynamics in a stratified, finite-depth
ocean. For these problems, the vertical displacement of
fluid particles from their equilibrium position is ap-
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proximately given by r9/ z, where the fluctuations arer
defined relative to some ambient density stratification

, for example, with d /dz equal to a constant. Sincer r
the vertical motion must vanish at a rigid lid, we require
that the vertical displacement, and hence, r9 also vanish.
Note, however, that these boundary conditions are not
generally adiabatic because there can be a nonzero flux
of density through the upper and lower bounding sur-
faces. Nevertheless, these boundary conditions are com-
monly prescribed for problems focusing on gravity wave
interactions with reflective upper and lower boundaries.
Convectively driven flow produced by a steady, spatially
variable temperature difference between two free-slip
plates can also be formulated using these boundary con-
ditions. These and other examples are discussed further
in section 6.

We refer to functions that vanish at z 5 0, Lz as odd
functions; that is, their periodic extensions have odd
symmetry across the boundaries. The functions r9 and
w are both odd and therefore expanded in the form

i(kx1ly)w(x, y, z, t) 5 w̃ (t) sin(mz)e , (45)O O O k,l,n
i j n

where the i, j horizontal indices and k, l wavenumbers
are defined as in the triply periodic case but in the ver-
tical we take n 5 [0, 1, . . . , nz] and m 5 n(p/Lz).

Functions with even periodic extensions, that is, u,
y, and P, have z derivatives that vanish at z 5 0, Lz and
are expanded in the form

i(kx1ly)u(x, y, z, t) 5 ũ (t) cos(mz)e . (46)O O O k,l,n
i j n

The vertical derivatives take the forms

]
w(x, y, z, t)

]z
i(kx1ly)5 mw̃ (t) cos(mz)e and (47)O O O k,l,n

i j n

]
u(x, y, z, t)

]z
i(kx1ly)5 2mũ (t) sin(mz)e . (48)O O O k,l,n

i j n

The procedure for deriving the transformed equations
for these boundary conditions is nearly identical to that
for the triply periodic case except that the transformed
space vertical derivative operator is either 6m, de-
pending on whether the function being differentiated
has even or odd symmetry. Our notation is such that f̃
could refer to either the result of a Fourier–Fourier–sine
transform or a Fourier–Fourier–cosine transform, with
the symmetry properties implied by the context.

The transformed equations for domains of finite ex-
tent in z are

2 2]ũ l 1 m kl ikm
25 G 2 G 1 G 2 n |k | ũ, (49)1 2 32 2 21 2]t |k | |k | |k |

2 2]ỹ kl k 1 m ilm
5 2 G 1 G 1 G1 2 32 2 21 2]t |k | |k | |k |

22 n |k | ỹ , (50)

2 2]w̃ ikm ilm k 1 l
5 2 G 2 G 1 G1 2 32 2 21 2]t |k | |k | |k |

22 n |k | w̃, and (51)

]r̃9 ˜ ˜ ˜5 2ik(r9u) 2 il(r9y) 1 m(r9w)
]t

–2 2˜˜ ˜1 (F 2 u · =r 2 k¹ r) 2 k|k | r̃9. (52)4

3. Numerical algorithms

a. Treatment of nonlinear terms

Collocation methods (Canuto et al. 1988) are used
for nonlinear terms. Terms involving products, for ex-
ample, r9u and T, are computed by local multiplication
of values at the discrete grid points followed by trans-
formation of the resulting product to wavenumber space.
Care must be taken when using this approach however
as aliasing errors are possible. Rather than employing
relatively severe truncation rules to formally exclude
the possibility of aliasing, we routinely monitor energy
spectra in each of the three wavenumber directions as
a means of detecting the development of aliasing errors.
In well-resolved simulations of nonlinear flows, viscous
and diffusive effects act to remove energy at small
scales, at rates as fast or faster than the rate of energy
transfer from larger scales. With insufficient grid res-
olution, however, energy tends to accumulate near the
maximum resolvable wavenumbers because nonlinear
transfers to unresolved scales are misrepresented at re-
solved scales. Accumulation of energy at small scales
is a characteristic signature of an underresolved simu-
lation. In practice, it is often difficult to predict how
fine a mesh will be required for a given nonlinear flow.
Monitoring the energy spectra is one tool by which an
objective assessment of whether a given grid is suffi-
ciently fine can be made.

b. Transform tools

As discussed further in section 4, the parallelization
strategy is based on performing simultaneous transforms
of different data on different processors rather than dis-
tributing the computations required for each transform
across the processors. This ‘‘coarse grained’’ approach
to parallelism allows the use of serial FFT code. We
adopt the approach of Cooley et al. (1970) and use a
discrete, complex to complex FFT as a computational
kernel, around which the various specialized transforms
(real to conjugate symmetric, real sine/cosine, etc.) are
built. Specifically, we have implemented procedures 4–
7 of Cooley et al. (1970) using the Temperton FFT
package for the low-level FFTs.
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c. Time integration and treatment of viscous/diffusive
terms

At each discrete spatial wavenumber, each of the trans-
formed ordinary differential equations has the form

d
2 2 2f 5 F 2 a(k 1 l 1 m ) f, (53)

dt

where F is a function of the wavenumbers k, l, and m.
An integrating factor can be introduced to obtain the
condensed form

d 2 2 2 2 2 2a(k 1l 1m )t a(k 1l 1m )t[ fe ] 5 e F. (54)
dt

The quantity fe is integrated discretely in time2 2 2a(k 1l 1m )t

using an explicit, third-order Adams–Bashforth (AB3)
scheme. Introducing superscripts to indicate the time
level tn 5 (n 2 1)dt, the AB3 scheme is defined by

dy
n115 c ⇒ y

dt

dt
n n n21 n22 45 y 1 (23c 2 16c 1 5c ) 1 O(dt ).

12
(55)

Applying this scheme to (54), for time levels n $ 2,
yields

2 2 2n11 2dta(k 1l 1m )f 5 e

dt 2 2 2n n 2dta(k 1l 1m ) n213 f 1 [23F 2 16e F5 12

2 2 222dta(k 1l 1m ) n221 5e F ] . (56)6
A simple startup procedure based on explicit, lower-
order methods is used for n , 2. Because the AB3 is
a multilevel scheme, the functions F from two previous
time steps are required in addition to the current value
in order to advance the fields. The AB3 method is as-
ymptotically stable for wavelike problems as discussed
by Canuto et al. (1988) and Slinn (1995).

We note here that simple generalizations to the dia-
batic terms in the governing equations, for example,
anisotropic diffusion or dissipation operators, or ‘‘hy-
perviscosity’’ schemes such as biharmonic diffusion, are
treated similarly. These generalizations lead to a slight
modification of the exponential terms in (56). The nu-
merical code is implemented in term of generalized op-
erators, the parameters of which are specified by the
user during configuration.

4. Parallelization

The parallelization strategy is based on the data par-
allel or single-process, multiple-data (SPMD) paradigm
in which an identical copy of the program runs on each
node of a parallel machine. Each process operates on

distinct portions of the globally distributed data space.
Exchange of data between the nodes is accomplished
through calls to the message passing interface (MPI;
Gropp et al. 1996; Gropp and Lusk 1996). To the extent
that each processor can execute its assigned set of tasks
without requiring an exchange of data with other pro-
cessors, a parallel algorithm achieves a linear speedup;
that is, the total execution time decreases linearly with
the number of processors. For nontrivial algorithms,
however, it is not possible to eliminate the need for data
transfers between nodes entirely and communication
overhead reduces the return of employing additional
processors. Communication overheads are significant
for algorithms based on global differentiation methods
for which the value of a discrete derivative at a given
point depends not only on values at neighboring points
but on all values along the direction of differentiation.
Implicit compact schemes and analytic differentiation
in discrete Fourier space are two examples of global
differentiation methods. The increase in accuracy and
convergence rate comes at a cost in terms of the inherent
degree of parallelism of the algorithm.

The global data space for the physical space repre-
sentation of the primitive variables consists of four
three-dimensional arrays of real valued elements cor-
responding to the three velocity components and the
perturbation density at each of the nx 3 ny 3 (nz 1 1)
spatial grid points. The apparently extra value in the z
direction is required for functions that are even sym-
metric in z. For periodic or odd functions, the value at
z 5 Lz is equal to either the value at z 5 0 or zero and
would not generally require explicit storage. At certain
stages of the algorithm, we will need to work with the
transformed, wavenumber space representation of these,
and similarly expanded, variables. The parallelization
strategy therefore relies intrinsically on both a physical
and a wavenumber space distribution of data across mul-
tiple processors.

The data partitioning in physical space is based on
the logical allocation of a contiguous block of locnz 1
1 5 nz/np 1 1 horizontal planes consisting of (nx 1
2) 3 (ny 1 1) real data values to each of np processor
elements as shown in Fig. 1a. There are two (one) extra
locations in the x (y) dimension that are not accessed in
the physical space representation. They permit in-place
real to complex FFTs in the x direction and a graceful
collapse of the algorithm to two dimensions when ny
5 0. We refer to the storage arrays in this orientation
as data slabs. Each processor is assigned a unique iden-
tification label myid, with values ranging from 0 to np
2 1. The uppermost (locnz 1 1) plane is superfluous
except for the uppermost processor myid 5 (np 2 1),
where it is required if free-slip boundary conditions are
imposed. For simplicity of the implementation, we use
identical storage arrays for all processors and restrict
the partition parameters locnz 5 nz/np and locnx 5 (nx/
2)/np to integer values.

Parallelization issues arise for sections of the algo-
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FIG. 1. Layout of data in slab orientation. (a) Physical space representation of each three-dimensional flow variable
is distributed across np processors in slabs. (b) Each interior processor is assigned nx 3 ny 3 nz/np real values stored
within a slightly expanded array of size (nx 1 2) 3 (ny 1 1) 3 (nz/np 1 1).

FIG. 2. Layout of data in wavenumber space representation. (a) Data arrangement after
columnsptopslabs has been completed. (b) Data representation after z transforms are computed.

rithm where the underlying numerical operations are
global in scope rather than local. For example, Fourier
transformation in the z direction of an initially real-
valued, z-periodic variable would require nx 3 ny in-
dependent one-dimensional transforms over vectors of
length nz. The operation is global in the sense that, at
each discrete (x, y) location, all nz elements in the ver-
tical direction are required to calculate the transform.
Communication is an issue because the data needed to
compute any one of the required transforms is distrib-
uted across the np processors. In contrast, x and y trans-
forms are local in the sense that sets of these transforms
can be performed over data already residing on each
processor. Clearly, the operations required for each set
of x or y transforms are independent of one another and
the sets of transformations can therefore be executed in
parallel.

We illustrate the approach by considering a three-
dimensional transform of w, from physical to wave-
number space, for a simulation in a finite depth ocean.

Forward Fourier-Fourier-Sine transform of w
Given the nx 3 ny 3 nz/np discrete values of w stored

in the local data slab, each processor performs the fol-
lowing steps in parallel.

1) Perform ny 3 nz/np one-dimensional, real to com-
plex FFTs over data vectors of length nx. Results
from each transform are overwritten into the slab
storage structure filling the extra two elements in the
x direction.

2) Perform (nx/2 1 1) 3 (nz/np) complex to complex
FFTs over data vectors of length ny.

3) Send (np 2 1) subblocks of the results, each con-
sisting of [(nx 1 2)/2]/np 3 ny 3 (nz/np) complex
elements to each of the remote processors.

4) Receive (np 2 1) like-sized subblocks of results from
each of the remote processors, arranging the data to
form a local column of horizontally transformed data
with [(nx 1 2)/2)/np 3 ny 3 nz] complex data el-
ements as shown in Fig. 2.

5) Perform sine transforms in z over each of the (nx 1
2)/np 3 ny data vectors of length nz in the local data
column.

Steps 3 and 4 consist of data transfers between pro-
cessors and thus represent communication overhead to
the algorithm for the three-dimensional transforms. In
the implementation, these steps are isolated from all
computation and performed in a single routine called
slabsptopcolumns. Inverse transforms are performed in
a similar fashion, reversing the order of the transform
directions and utilizing a communications routine called
columnsptopslabs.

5. Diagnostics

a. Energy balance equations

Data enabling a time-dependent analysis of the energy
balances Eqs. (57) and (58) (see, e.g., Winters et al.
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1995; Gill 1982) is routinely computed at user-specified
time intervals as the integration proceeds:

d 1 p 1
2 2 2E 5 2 1 (u 1 y 1 w ) u · n̂ dSk R [ ]dt V r 20S

g 1
22 rw dV 1 nu · ¹ u dVE Er V V0 V V

1
1 uF 1 yF 1 wF dV and (57)E 1 2 3V V

d g g
E 5 2 gzru · n̂ dS 1 rw dVp ERdt r V r V0 0 VS

g kg
1 zF dV 1 z=r · n̂ dSE 4 Rr V r V0 0V S

kg
2 (r 2 r ), (58)top bottomr L0 z

where

1
2 2 2E 5 (u 1 y 1 w ) dV and (59)k E2V V

g
E 5 rz dV (60)p Er V0

are the kinetic and potential energies in joules per ki-
logram, respectively.

For horizontally periodic boundary conditions, the
surface integral in Eqs. (57), that is, the term containing
the pressure work and advection of kinetic energy, is
always zero, regardless of which boundary condition set
is chosen in the z direction. In (58), the surface integral
quantifying energy changes associated with advection
of fluid across the bounding surface S vanishes for the
rigid-lid boundary conditions w 5 0 at z 5 0, Lz but is
nonzero for vertically periodic conditions. The quanti-
ties Ek and Ep, the terms on the right-hand sides of (57)
and (58), and the corresponding values of time are writ-
ten to an ascii output file at specified time steps. Discrete
differentiation of Ek(t) and Ep(t) can then be used to
check the accuracy of the volume-integrated energy bal-
ances and to diagnose bulk energy transfers within an
evolving flow. Slightly modified forms of the dissipative
terms are used if hyperviscosity is specified during con-
figuration.

b. Energy spectra

As discussed previously, pseudospectral numerical
methods are subject to aliasing errors if the underlying
discrete grid is too coarse. To detect the onset of aliasing
errors, the output data can be analyzed to compute en-
ergy spectra as functions of wavenumber in each di-
mension. Because calculation of spectra in each wave-

number direction requires significant interprocessor data
exchanges, we do not perform the calculation as the
simulation proceeds. Rather we monitor the output files
using the spectral calculations as a form of a posteriori
quality control.

Typically, a nonlinear simulation will start out well
resolved and exhibit energy spectra that decay with
wavenumber near the small-scale limits. As the simu-
lation proceeds and the flow evolves, energy is generally
transferred toward small, dissipative scales. Depending
on the rate of the transfer, the grid may or may not be
fine enough to resolve the evolving flow without alias-
ing. An insufficient grid can be diagnosed by examining
the behavior of the spectra at small scales. If aliasing
is detected, for example, upturned energy spectra near
the cutoff wavenumbers is observed, the simulation can
be rerun using a finer grid. To save computational effort,
a well-resolved flow field at an intermediate time can
be interpolated to a finer mesh and used as an ‘‘initial’’
condition for a higher-resolution continuation run.

c. Lagrangian trajectories

In addition to computing the flow fields, the under-
lying fields (and derived quantities) can be sampled in
time along Lagrangian trajectories defined by

dx̃
5 u. (61)

dt

To compute the trajectories, velocities at positions that
are not coincident with grid points are required. Rather
than interpolating the required values from values at
nearby gridpoint locations using locally based inter-
polation schemes, the direct-sum formulas Eqs. (26) and
(27), or (45) and (46), are used. The values obtained in
this way at arbitrary points are therefore just as accurate
as the ‘‘known’’ values at the grid points. In this sense,
the values are free of spatial interpolation errors. The
summations are naturally distributed across multiple
processors, as a distinct range of expansion coefficients
are stored on each processor as shown in Fig. 2. For
each distinct location (x, y, z) at which velocities are
required, each processor computes a partial sum cor-
responding to the expansion coefficients within the pro-
cessor’s assigned portion of wavenumber space. The
partial results are then globally summed to produce the
required values. Though the summations are very ef-
ficiently computed, the summation algorithm itself is
computationally intensive; it is not FFT based. For ex-
ample, to compute values at n 5 O(nx 3 ny 3 nz)
arbitrary locations via direct summation requires O(n2)
floating point operations. In contrast, if the N values
were required at the grid points, as they are in the un-
derlying flow calculations, they can be obtained using
the FFT algorithm in O(n logn) operations. Our La-
grangian float model, while highly accurate, is therefore
intrinsically computationally expensive within the over-
all FFT-based spectral algorithm. The model was de-
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FIG. 3. Lagrangian advection. (a) Time series of position for three Lagrangian trajectories. (b) Density values along the same trajectories.
(c) Initial (passive) density distribution, particle tracks traced out by the three trajectories over the simulation period. Initial positions shown
as asterisks. (d) Final density distribution and trajectory locations.

signed to compute only a small number of trajectories
(compared to the number of grid points), but to do so
very accurately.

Slightly modified summation formulas are used to
reconstruct, for example, the density field and its La-
placian ¹2r. The time series obtained by sampling r at
each point on a given trajectory, rE(t), can then be com-
pared to rL(t) obtained by integrating the equation

drL 25 k¹ r. (62)
dt

Exact integration of this equation gives, in principle, a
time series identical to rE. In practice, however, accu-
racy depends on estimation of second derivatives and
discrete integration in time. Estimation of the second
derivative is a noise-amplifying operation; that is, noise
in the high-wavenumber components of r will be am-
plified by the square of the wavenumber magnitude.

Contamination of these components will lead to a dis-
crepancy between the time series before the contami-
nation is likely to be noticed in the underlying flow
fields. Comparison of the two series is therefore a strin-
gent test of the numerical quality not only of the ‘‘La-
grangian float’’ model, but for the underlying flow cal-
culations as well. To minimize time-stepping errors, the
Lagrangian float model is integrated in time using a
fourth-order Runge–Kutta technique, which is inher-
ently more accurate than the third-order method used
to integrate the flow itself.

Figure 3 shows Lagrangian trajectories computed in
a steady flow with circular streamlines in horizontal (x,
y) planes. In this simulation, density was used as a pas-
sive scalar, that is, g 5 0, and initialized with a uniform
gradient in the x direction as shown in Fig. 3c. The
viscosity and diffusivity were set to very small values
and, over the time period shown here, their effects can
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FIG. 4. (top) Depth and time series of horizontal velocity for an inertial gravity wave simulated as an initial value problem with free-slip
boundary conditions. A time series at a fixed depth (circles) is shown in the second panel along with the analytical solution of the linearized
equations (red line). (bottom) Depth and time series of an initially quiescent fluid subject to wavelike forcing in the near-bottom region.
Vertical spectra at the three times indicated (color-matched vertical lines) are shown in the bottommost panel. All quantities have been
nondimensionalized by the initial/forced wave period, total depth, and characteristic velocity.

be considered negligible. Time series of x and y position
data are shown in Fig. 3a for three trajectories. Each
trajectory traces out a circle in the (x, y) plane as shown
in Fig. 3c. Though the circular motion of the fluid ad-
vects and distorts the density field (Fig. 3d) in the limit
of vanishing diffusivity, the density along any given
trajectory should remain constant. Figure 3b shows the
computed density as a function of time for the same
three trajectories. Both quantities rE and rL are shown
but cannot be distinguished.

The float model can be configured to be imperfectly
Lagrangian, that is, to use modified trajectory equations
with residual or random components added to the right-
hand side of (61). In addition, flow variables can be
sampled at additional positions slightly offset from the
location point of the infinitesimal float. This allows es-
timation of gradients of field quantities, for example,
]r/]z or ]u/]z, at each point along the trajectories. Such
calculations are relatively expensive, however, as per-
forming them is similar in workload to carrying nearby
‘‘shadow’’ floats in the calculation.

6. Applications

a. Internal gravity waves

The model is well suited to study nonlinear interac-
tions between internal gravity waves. Simulations can
be made in two or three dimensions, with or without
rotation, and in the presence or absence of ambient
flows. The ambient stratification need not be uniform,
but can vary, for example, with depth. A variety of
wave-related processes are therefore amenable to fully
nonlinear simulation, for example, critical-level inter-
actions (Winters and D’Asaro 1994), turning points,
caustics, and wave instability.

Figure 4 shows two simple examples. In the first, the
simulation is run as an initial value problem in a rotating
reference frame, with initial conditions chosen as snap-
shot of a horizontally propagating, vertically standing
wave. In the limit of small wave amplitude and vanish-
ing viscosity, an analytic solution can be found. A com-
parison of the analytic solution, evaluated as a function
of time at a fixed spatial position, with the computed
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FIG. 5. (a) Initial vorticity zy and density (b) r as functions of horizontal and vertical position, normalized by the
horizontal wavelength 2p/kx. Also shown are the lines of constant phase (dashed) for the initialized wave motion. (c),
(d) Same quantities at t ø 402p/v0. Phase lines (solid) corresponding to a linear wave of frequency 2v0 have been
added.

solution at the same location is shown (Fig. 4, second
panel from top).

Alternatively, forced waves can be simulated utilizing
the functions Fi. In the example shown (Fig. 4, bottom
panels), the (x, t) dependences of Fi are derived from
a monochromatic, infinite-space planar gravity wave so-
lution, but localized near the bottom by a windowing
function. As in the unforced case, the wave frequency
is set to the M2 tidal frequency. Note the downward
phase propagation, indicative of upward energy prop-
agation. Even this relatively simple situation produces
rich behavior, as nonlinear interactions between upward-
and downward-propagating (reflected) waves increas-
ingly transfer energy toward high frequencies and wave-
numbers as shown in the bottom panel of Fig. 4. A
similar approach might be used, for example, to simulate
the nonlinear interactions between a spectrum of waves
generated over variable topography.

Nonlinear interactions between gravity waves often
lead to wave instabilities. We illustrate by recomputing
the solution for run P1 in Bouruet-Aubertot et al. (2001).

In this experiment, a two-dimensional, spatially periodic
internal gravity wave propagates vertically through a
linearly stratified fluid. The ambient flow field is infin-
itesimally disturbed by the presence of random velocity
fluctuations such that the kinetic energy of the fluctu-
ations is a factor of 104 smaller than the kinetic energy
of the primary wave. As discussed in Bouruet-Aubertot
et al. (2001), such waves are unstable, regardless of their
initial amplitude. The instability is related to the para-
metric subharmonic instability (PSI) mechanism, trans-
ferring energy from the primary wave to one of half the
frequency.

Figure 5a shows the y (into page) components of
vorticity and Fig. 5b density, along with lines of constant
phase for the primary wave at the start of the calculation.
For linear gravity waves, the motion of fluid particles
is along phase lines, with frequency proportional to the
inclination angle from the horizontal. Figures 5c and 5d
show the same quantities at a later time (after approx-
imately 40 buoyancy periods). The overall orientation
of the observed phase is consistent with energy transfer
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FIG. 6. (top) Vertical velocity in z 5 Lz/2 horizontal plane and (bottom) vertical vorticity in
the same plane.

to lower frequency by PSI. Small-scale structure is also
apparent in both the vorticity and density fields, which
exhibit gravitationally unstable overturns.

b. Vortex street instability

In this example we consider a network of counter-
rotating vortex monopoles in a stably stratified fluid. A
similar pattern of vorticity, sometimes called a vortex
street, is seen after an object is towed through a stratified
fluid and the initially turbulent wake collapses under the
stabilizing effects of gravity. In the laboratory, these
structures are typically observed to be long lived, sur-
viving at least as long as it is feasible to conduct ex-
periments (Spedding 1997).

We consider here a vorticity distribution comprising
12 pairs of vortex monopoles, each of which with an
azimuthal speed Vu given by

2 2r r z
V 5 6 V exp 1 2 2 , (63)u 1 2 1 2[ ]r r zm m m

where r and z are the radial and vertical distances from
the vortex center, respectively; rm and zm are character-

istic decay scales in the horizontal and vertical direc-
tions; and V is the characteristic speed of the swirling
motions. Negative/positive vortex centers are distrib-
uted initially at z 5 Lz/2 along rows y 5 Ly/2 6 ys/2
with a spacing of xs in the x direction. The precise lo-
cations and scales of the individual monopoles are per-
turbed by random fluctuations with magnitudes of about
5% of the corresponding scales. In addition, a random
incompressible flow field is added at all resolvable
scales. The total kinetic energy of this random com-
ponent is set at 1 3 1024 times the kinetic energy of
the vortex motion.

Figure 6 shows the vertical velocity (top panel) and
the vertical vorticity (bottom panel) on the central hor-
izontal plane z 5 Lz/2 after the vortex street has been
significantly deformed by the mutual interaction of the
vortex monopoles. There has been an upscale energy
transfer, producing a flow characterized by larger hor-
izontal spatial scales than were present initially. Small-
scale features are apparent in the vorticity field and are
correlated with patches of highly structured regions of
flow with alternating bands of upward and downward
flow (Fig. 6 top). Owing to the vertical structure of the
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FIG. 7. (top) Inverse Richardson number (colors) and density contours. (bottom) Cross-stream
velocity (colors) and density contours.

initial vorticity field, the vortex interactions and defor-
mations are most pronounced in the central region of
the flow. Figure 7 shows the Richardson number (a mea-
sure of stability in a stratified flow) and the cross-stream
velocity component y in the y–z plane indicated in Fig.
6. The cross-stream flow has a jetlike structure, with
high shears on the upper and lower flanks. These shears
are unstable, as indicated by values of the inverse Rich-
ardson number greater than 4, producing a train of coun-
terrotating Kelvin–Helmholtz (KH) billows on the
flanks. The vertical motions associated with these sec-
ondary instabilities appear as the alternately signed
bands in Fig. 6. Figure 8 shows some of the three-
dimensional structure of the flow. Shown are the vertical
vorticity on two separated horizontal planes as well as
the planes y 5 Ly and x 5 Lx along with contours of
density.

c. Shear-driven mixing layer

Very detailed studies of processes leading to turbulent
transports in stratified flows can also be undertaken. We
consider here a shear-driven mixing layer that develops
from the unstable velocity and density profiles:

u 2 L0 zu 5 tanh z 2 and (64)1 22 h 20

r 2 L0 zr 5 2 tanh z 2 . (65)1 22 h 20

The flow is unstable first to Kelvin–Helmholtz bil-
lows and subsequently to smaller-scale three-dimen-
sional instabilities leading to turbulence. Eulerian as-
pects of this flow have been studied by Smyth and
Moum (2002) and Smyth et al. (2001) as a model of
small-scale turbulent patches observed by vertical pro-
filing instruments in the ocean thermocline. The La-
grangian floats submodel was used by D’Asaro et al.
(2004) to diagnose the signatures of such events de-
tectable by Lagrangian instrumentation.

Figure 9 shows a snapshot of the density field in the
y 5 0 vertical plane, along with cross sections taken at
the positions indicated in the top panel. The flow was
computed on a grid with uniform mesh spacing at a
resolution of 512 3 256 3 64 for Pr 5 n/k 5 1 on a
Cray T3E using 32 processors. Thirty-six floats, each
sampling the flow field at nearby shadow locations as
well as their actual positions, were carried along for the
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FIG. 8. Cutaway view of vertical vorticity and density contours when secondary instabilities are present.

Lagrangian study. Projections of the trajectories in
streamwise, cross-stream, and horizontal planes are
shown in Fig. 10. At early times, before the KH billows
collapse and become turbulent, the trajectories trace out
simple paths, particularly in the y–z and x–y planes,
where the paths are vertical and horizontal lines, re-
spectively. Significantly more structure is evident at lat-
er times.

d. Horizontal convection

We now consider the flow in an elongated container
driven by an externally maintained temperature differ-
ence between the upper and lower bounding surfaces.
We consider the response to a sinusoidal distribution of
heating and cooling at the upper surface with the bottom
surface maintained at the mean value imposed at the
upper surface. A similar model has been examined re-
cently (Paparella and Young 2002) in the context of the
thermally driven component of the global circulation.
Taking density as a surrogate for temperature, we pre-
scribe

r 5 Dr cos(2px/Lx) z 5 L and (66)z

r 5 0 z 5 0, (67)

along with horizontal periodicity and free-slip rigid
lids. The time-independent field is prescribed as 5r r
(z/Lz)r(x, y, Lz) and so r9 is required to vanish at z 5
0, Lz. In this simplified model, positive (negative) values
of r correspond to cooling (heating) at the ‘‘poles’’ and
‘‘equator,’’ respectively.

Figure 11 shows the density field at several instants
in time for a convectively driven flow with Rayliegh
number Ra 5 g9 /nk 5 1.5 3 106 and Pr 5 n/k 5 3,3Lz

where g9 5 (Dr/r0)g. Dense, convectively unstable fluid

descends to depth at the poles x 5 0, L until it reaches
the bottom surface, at which point it propagates toward
the equator x 5 0 as a gravity current. The simulation
was done in two dimensions on a Macintosh laptop for
a container with an aspect ratio of 10 using 1024 3 129
grid points in the horizontal and vertical directions, re-
spectively.

e. Customization

Because the source is freely available, the code can
be adapted for very specific research problems in fluid
dynamics. Two examples are briefly presented here. W.
D. Smyth (2003, personal communication) has modified
the source to carry an additional passive scalar and to
compute the active scalar r at higher resolution than
that used for u and P. Such an approach is useful for
flows with Pr 5 n/k . 1, where the scale at which
density fluctuations are diffusively smoothed are smaller
than the scales at which kinetic energy is viscously dis-
sipated. Figure 12 shows two scalars with different dif-
fusivities computed at different resolutions within the
same flow field.

M. A. Sundermeyer and M. P. Lelong (2003, personal
communication) have used the model to study the for-
mation of vortical modes through the relaxation of dia-
pycnal mixing events, and their effect on the lateral
dispersion of a passive tracer. To force the model, they
have added a subroutine, which they call from within
the main time-stepping loop of the code, to periodically
inject potential energy (PE) in the form of randomly
placed Gaussian-shaped stratification anomalies. Rather
than explicitly simulating diapycnal mixing caused by
breaking internal waves, they represent the effects of
wave breaking by imposing a short-lived diapycnal dif-



82 VOLUME 21J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 9. Images of the density field from a turbulent mixing layer in the y 5 0 streamwise–vertical plane and three spanwise–vertical cross
sections.
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FIG. 10. Projections of Lagrangian trajectories in an evolving shear-driven mixing layer. Tracks are shown for the duration of the simulation.

fusivity profile at random locations in the model, the
result of which subsequently adjusts to form small-scale
vortical motions and radiating internal waves. Using this
approach, they simulate flows that evolve from rest to
a statistically stationary state in which the input of PE

and subsequent conversion to kinetic energy (KE) is
balanced by dissipation. The result is a random field of
small-scale geostrophic eddies, or vortical modes, and
a dispersing tracer field. The simulations are being used
to test theoretical predictions of vortical mode stirring
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FIG. 11. Images of the density field at several instants in time
for a fluid driven by an externally maintained density difference
Dr(x, y). The time scale T* 5 .ÏL /g9z

in the ocean (Fig. 13; see also Sundermeyer et al. 2003,
manuscript submitted to J. Phys. Oceanogr).

7. Performance benchmarks

The run-time profile for a a single processor run using
a grid mesh of 1203 points, with the Lagrangian floats
model switched off, was constructed. Nearly 88% of the
execution time is spent computing multidimensional
FFTs, which have an operation count that scales like
O(n logn), where n is the total number of mesh points.
Tasks such as computation of the wavenumber space
derivatives needed to form the vorticity field, calculating
various nonlinear products in physical space, combining
various terms to form the right-hand sides of the trans-
formed equations of motion, and time stepping the fields
in wavenumber space scale like O(n). The additional
tasks of writing three-dimensional output fields to disk
and computing the spatial integrals required for the en-
ergy balances also have O(n) workloads. These tasks,
however, are not executed at every time step but at user-
specified frequencies. As the problem size n increases,
the algorithm becomes increasingly dominated by the
FFTs.

A parallel scalability analysis quantifies the expected

improvement in performance as additional processors
are added to a parallel computation. Such analyses seek
to answer the question ‘‘how many processors can I use
before adding additional processors reduces the exe-
cution time too little to be worthwhile?’’ Quantitative
answers are specific to both the code and the architecture
of the computing facility.

We assume that a given algorithm can be decomposed
into a parallelizable component and a nonparallelizable
or serial component. The total execution time T is then
written as

TpT(np) 5 1 T , (68)snp

where Tp is the time required for the parallelizable por-
tion, Ts is the time required for the serial portion, and
np is the number of processors. The total execution
times for runs using different numbers of processors can
be used to construct a linear relationship between T and
1/np, yielding Tp and Ts for a given computing envi-
ronment. Results are typically displayed as a plot of
speedup S versus the number of processors np where S
5 T(1)/T(np). In the limit Ts/Tp → 0, the speedup is
linear with respect to np and the algorithm scales infi-
nitely well. For real algorithms, the ratio is finite and
leads to a flattening of the speedup curve signifying
diminishing returns for additional processors.

Figure 14 shows the speedup curves for the algorithm
on two different architectures based on estimates of Tp

and Ts from calculations with O(1283) grid points. The
red curve gives results for a Beowulf cluster connected
using an inexpensive 100-Mbit ethernet switch. The
curve suggests that, for this algorithm, additional pro-
cessors beyond about 30 yield only slight improvements
in performance. On this cluster, the ratio Ts/Tp ø
0.0396.Similar analyses were performed for a 128-node,
dual-processor, Pentium Linux cluster with a Myrinet
switch at the Scripps Institution of Oceanography (SIO)
and the Cray T3E at the Texas Supercomputer Center
(TACC). Both communications switches are signifi-
cantly superior to a simple ethernet switch and so im-
provements in parallel scalability are expected. The re-
sults show that increasing the speed of communications
produces a smaller Ts/Tp ratio and a wider range in np
before the speedup curve flattens. Figure 14 shows that
the algorithm scales reasonably well on the T3E to a
few hundred processors. One might choose to run a
given problem on more processors if memory limita-
tions were the primary constraint, but the results show
that additional processors beyond a few hundred would
contribute relatively little in reducing the execution
time.
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FIG. 12. Turbulent flow in a collapsing KH billow. The instability was driven by a maximum shear of 0.035 s 21

across a layer of initial depth 0.22 m. The viscosity was 0.995 3 1026 m2 s21, so the Reynolds number based on the
total thickness of the shear layer was 1700. The flow carried two scalars differing only in their diffusivities: (a) 5.7
3 1027 m2 s21 and (b) 1.4 3 1027 m2 s21. Density was controlled by the less-diffusive scalar such that the minimum
gradient Richardson number was 0.04. The more diffusive scalar was resolved on a 192 3 48 3 120 grid (with
uniform spacing) as were the velocity and pressure fields. The less diffusive scalar was resolved on a 384 3 96 3
240 grid. Interpolation between grids was done using FFTs.
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FIG. 13. (top left) Time series of PE and KE for a typical model spinup and equilibration, and (top right) KE
spectrum after statistical equilibrium has been reached. Bottom two rows: plan views of potential vorticity with
(subsampled) velocity vectors overlaid, and tracer at t 5 0, 5, 10, and 20 inertial periods after KE equilibrium is
reached.

FIG. 14. Speedup characteristics on three facilities with different
communications infrastructures.

this work by James J. Riley and thank Bill Smyth, Miles
Sundermeyer, and Pascale Lelong for their valuable con-
tributions.

APPENDIX A

Configuration for User-Defined Problems

The code is written in Fortran77 and makes calls to
both the MPI and NETCDF libraries. The model has
been succesfully run on the following platforms: single-
and dual-processor Pentium workstations, Linux; a
small cluster of Digital Equipment Corporation (DEC)
Alpha workstations, Linux; a Cray T3E, Unicosmk; a
256-processor Pentium cluster, Myrinet, Linux; and a
Macintosh PowerBook G4, OS X.

For our systems, we use the mpich implementation
of MPI available from Argonne National Laboratory
(information available online at http://www-unix.mcs.
anl.gov/mpi/mpich). The NETCDF libraries are avail-
able from the National Center for Atmospheric Research
(NCAR) (information available online at http://www.



JANUARY 2004 87W I N T E R S E T A L .

TABLE A1. Parameters in input/problem_params.h.

Parameter Value Comments

netcdf_file
force_flag
bc_flag
Lx
Ly

None
No
zslip
20 000
20 000

Initial conditions not read in from existing netcdf file ( filename)
No user-defined forcing terms added to equations of motion (yes)
Free-slip, rigid lid at z 5 0, Lz (zperiodic)
All fields periodic in x over scale Lx
All fields periodic in y over scale Ly

Lz
g
xlat
xOmega
f

2000
9.81
p /4
V 5 2p /(24 3 3600)
f 5 2V sin(f)

z boundary conditions applied at z 5 0, Lz

Gravitational acceleration in m s22

Latitude f in rad (458)
Earth’s rotation frequency in s21

Coriolis parameter
rho_0
nu
kappa
diss_flag
p

1027
1 3 1026

1 3 1026/0.75
Isotropic
2

Reference density r0 in kg m23

Fluid viscosity in m2 s21

Diffusivity of density in m2 s21

n 5 nx,y 5 nz, no stretching of dissipation operators (anisotropic)
Use standard Laplacian dissipation and diffusion (DNS)

T_diss
DGRAD
U0
bfreq
dt

2999 999 99
2 3 1026(r0 /g)
0.01
Ï(g /r0) 3 DGRAD
46

Option unused for case isotropic, p 5 2
Characteristic scale of density gradient in kg m24

Characteristic velocity scale in m s21

Derived quantity, do not alter
Time step in s

t_start
t_end
t_write_all
vort_flag
t_stat

0
4000 3 dt
50 3 dt
No
50 3 dt

Start time in s for integration
End time for integration
Time increment in s between creation of output files
Do not write the three vorticity components to the output files (yes)
Time increment in s between calculation of volume-integrated statistics

float_switch
t_floats_on
z_close
z_offset
delta_w
efactor

Off
t_start
0.5 3 dz/Lz
20.5 3 dz/Lz
0.0/U0
0

Do not calculate trajectories of Lagrangian floats (on)
Time in s at which floats are released, ignored if float_switch is off
Min distance from z 5 0, Lz allowed for floats, ignored if float_switch is off
Relative location of second float sensor, ignored if float_switch is off
Dimensionless residual velocity of imperfect floats
No random noise added to initial conditions

unidata.ucar.edu/packages/netcdf/). Our expectation is
that, provided the MPI and NETCDF libraries are in-
stalled, the source code should compile and run on any
UNIX-like system with a Fortran compiler. Because the
model is designed to be run in a parallel environment,
calls will be made to MPI even when the number of
processors is set to one. The MPI library is therefore
required even if the code is to be run only in a single-
processor environment. Fortunately, the widely used im-
plementations of MPI have been designed to function
efficiently in the single-processor limit.

There are three main steps to configuring the model
for a user-defined problem: configuring the parameter
file, configuring the user-defined routines, and compil-
ing the executable code. The procedure is explained here
using the unforced internal wave example discussed in
section 6b as an illustrative example. This configuration
computes the time evolution of an internal wave mode
in a rigid-lid, free-slip ocean using a snapshot of the
linearized analytical solution as an initial condition.

a. Configure the main parameter file

The first step is to specify basic parameters such as
the domain size, the boundary conditions, fluid prop-
erties, and run-time control parameters, for example, the
time step, the total number of time steps in the inte-
gration, and how frequently to write the results to output

files. The specification is accomplished by setting values
in the text file input/problempparams.h, which are then
incorporated during compilation.

Table A1 gives a brief description of each of the
parameter settings for the default configuration. The file
supplied with the code can be used as a template for
developing new configurations. Comments in parenthe-
sis give other legal values for text-based parameters.

If the parameter floatpswitch is set to ‘‘on,’’ an ad-
ditional file called floatppositions.dat must be placed in
the input directory. Each line of the file must contain
an integer float label (i.e., 1, 2, 3. . .) followed by the
dimensional x, y, and z starting locations for each float.
A sample file is included with the code.

b. Configure user-supplied subroutines

There are three user-supplied subroutines that require
configuration prior to compilation. All three reside in
the input directory. Again, the routines supplied with
the code should be used as templates for constructing
more elaborate definitions.

The first routine, rhopbarpfunc.f, is used to specify the
ambient density profile (x, y, z), its partial derivatives,r
and its Laplacian. The horizontal gradients of the cor-
responding hydrostatic pressure field are also specified
here. Recall from section 2 that the total (potential)
density is decomposed as
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r 5 r 1 r 1 r9(x, y, z, t),0 (A1)

where r0 is a constant reference value. By splitting the
remainder of the density field into a time-invariant part
and a time- and space-dependent fluctuating part, the
available resolution of the algorithm is focused on the
relatively small unknown component rather than on a
larger invariant component. Note that this is a mathe-
matical decomposition rather than a purely physical one.
The same problem can be solved using different choices

of . Different fluctuating components will be solvedr
for numerically but the combination 1 r9 will be ther
same (up to roundoff errors). The fluid is assumed to
obey the Boussinesq approximation (fluctuations are
much smaller than the characteristic value) and so r0 is
neither carried explicitly in the calculation nor included
in the output data.

The routine below prescribes a linear density profile,
that is, a fluid with constant buoyancy frequency N.

subroutine rhopbarpfunc(xprime,yprime,zprime,rhopbar,
* rhopbarpx,rhopbarpy,rhopbarpz,g2rb,
* ppbarpx,ppbarpy,Lz,DGRAD,U0,rhop0)

c
c *****input arguments xprime,yprime,zprime are DIMENSIONLESS as are the
c *****output variables rhopbar,rhopbarpx,ppbarpx etc
c
c (xprime,yprime,zprime):
c d·less vertical position
c Lz:
c vertical domain length [m]
c DGRAD:
c characteristic density gradient used to scale variables [kg/m^4]
c U0:
c characteristic velocity scale used in nondimensionalization
c rhop0:
c reference density [kg/m3]
c rhopbar, rhopbarpx, rhopbarpy, rhopbarpz, g2rb
c density, and spactial gradients, g2rb5grad2(rhopbar)

c N.B.
c LZ,DGRAD, & U0 ARE OBTAINED BY THE CALLING MODULE
c FROM THE INPUT FILE input/problempparams.h. THEY ARE
c USED TO NONDIMENSIONALIZE THE RETURNED VALUES. YOU
c MAY OR MAY NOT WANT/NEED TO USE THEM IN YOUR DEFINITIONS

implicit none
real xprime,yprime,zprime
real Lz,DGRAD,U0,rhop0
real rhopbar,rhopbarpx,rhopbarpy,rhopbarpz,g2rb,ppbarpx,ppbarpy

c local variables
real x,y,z

c **** USER DEFINED DEFINITIONS START HERE ***********************************
x 5 xprime*Lz ! use dimensional value to evaluate formulae
y 5 yprime*Lz ! use dimensional value to evaluate formulae
z 5 zprime*Lz ! use dimensional value to evaluate formulae

rhopbar 5 DGRAD*(Lz-z) ! linear stratification, fn of z only
rhopbarpx 5 0.0
rhopbarpy 5 0.0
rhopbarpz 5 -DGRAD
g2rb 5 0.0

c ppbar 5 -g rhop0 z - g* integral rhopbar (x,y,z9) dz9
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c only the quantities ppbarpx and ppbarpy are needed
ppbarpx50.0
ppbarpy50.0

c **** USER DEFINED DEFINITIONS END HERE *************************************
c return nondimensional values

rhopbar5rhopbar/(DGRAD*Lz)
rhopbarpx 5 rhopbarpx/(DGRAD)
rhopbarpy 5 rhopbarpy/(DGRAD)
rhopbarpz 5 rhopbarpz/(DGRAD)
g2rb 5 g2rb/(DGRAD/Lz)
ppbarpx 5 ppbarpx/( (rhop0*U0**2/Lz) )
ppbarpy 5 ppbarpy/( (rhop0*U0**2/Lz) )

return
end

There are two ways in which the initial conditions
can be prescribed. The first is used in the example
configuration. Here, the values of the flow velocities
and the perturbation density are calculated and spec-
ified in a user-defined subroutine, given the spatial
location at which the values are required. The internal
wave example here is relatively simple; it evaluates
some straightforward analytical functions of position
derived from the linearized internal wave equations.
Much more complicated user-defined routines could
be used, for example, using random number genera-

tors to introduce random components of flow at var-
ious scales. The routine userpdefinedpics is called for
each spatial grid point whenever the value of
netcdfpfile is set to ‘‘none’’ in input/prob-
lempparams.h. The user-defined routine need not be
particularly efficient because it is called only once
prior to the real computational workload of integrat-
ing the equations forward in time. Local variables
may be defined and used for storing intermediate re-
sults provided they are declared with respect to type
as shown in the following example:

subroutine userpdefinedpics(x,y,z,Lx,Ly,Lz,u,v,w,pd)
c
c inputs
c x,y,z positions in spatial domain [m]
c Lx,Ly,Lz domain lengths in x,y,z [m]
c outputs
c u,v,w speeds in x,y,z directions at (x,y,z) [m/s]
c pd perturbation density [kg/m3]
c
c rhoptotal5rhop0 1 rhopbar(z) 1 pd(x,y,z)
c rhopbar defined in user supplied rhopbarpfunc.f
c rhop0 specified input/problempparams.h

implicit none
real x,y,z,u,v,w,pd

c **************************************************************************
c **user declares any additional local variables to be used here

real kpics,lpics,mpics,omega2,omegapics,Apics,c(2,2),arg
real ambientpdensitypgradient,Lx,Ly,Lz,N2pics,pi,rhop0,g,f

c **************************************************************************

pi54.*atan(1.)

c WAVE PARAMETERS FOR SIMPLE TEST WAVE
c n.b. wave is defined in uniform stratification
c ambientpdensitypstratification should be consistent with
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c the definition of rhopbar in rhopbarpfunc

ambientpdensitypgradient 5 -(rhop0/g)*2e-6 ! [kg/m4]
rhop051027. ! [kg/m3]
g59.81 ! [m/s2]
f52*(2*pi/(24*3600))*sin(pi/4.) ! [1/s] 45 deg latitude

Apics53. ! displacement [m]
kpics5((1)*(2.*pi/Lx)) ! [1/m]
lpics5((0)*(2.*pi/Ly))
mpics5((4)*(pi/Lz))
N2pics5(-g/rhop0)*ambientpdensitypgradient ! [1/s^2]
omega2 5 ( ((f)**2)*mpics**2 1 N2pics*(kpics**21lpics**2) )/
* ( kpics**2 1 lpics**2 1 mpics**2 )
omegapics5sqrt(omega2) ! (1/s)

c constants in front of u & v expressions [m/s]
c(1,1)5Apics*kpics*mpics*omegapics/(kpics**21lpics**2)
c(1,2)5Apics*lpics*mpics*f/(kpics**21lpics**2)
c(2,1)5Apics*lpics*mpics*omegapics/(kpics**21lpics**2)
c(2,2)5Apics*kpics*mpics*f/(kpics**21lpics**2)

arg5kpics*x 1 lpics*y ! generally -omegapics*t but set t50

w 5 Apics*omegapics*sin(mpics*z)*sin(arg)
pd 5-Apics*ambientpdensitypgradient*sin(mpics*z)*cos(arg)
u 5 c(1,1)*cos(mpics*z)*cos(arg)
* -c(1,2)*cos(mpics*z)*sin(arg)
v 5 c(2,1)*cos(mpics*z)*cos(arg)
* 1c(2,2)*cos*(mpics*z)*sin(arg)

return
end

A second method is to use the values in an existing
NETCDF data file as initial conditions. This method is
invoked whenever netcdfpfile is set to the pathname of
an existing NETCDF file rather than to none. We assume
here that the NETCDF file is global, that is, that it
contains initialization data over the full computational
domain, and is consistent with the run for which it is
being used to initialize [i.e., matching resolution and
reference profile r( )]. Local NETCDF files, that is,z
those containing only data allocated to individual pro-
cessors, can be concatenated together using calls to the
NETCDF libraries (or using other tools designed to ma-
nipulate NETCDF files). We require a global data file
for initialization so that a given NETCDF file can be
used to initialize new runs independent of the number
of processors used to carry out the simulations.

When this second initialization method is chosen, the
dimensional flow variables are extracted from the file,
nondimensionalized using the scales specified in problem-
params.h for the new run, and stored in arrays to be

used as initial conditions. This technique can be used,
for example, to restart a simulation from any saved out-
put point.

Finally, the external forcing functions Fi (see section
2) need to be defined if the parameter forcepflag is set
to ‘‘yes.’’ The routine is not called, and need not be
modified, if forcepflag is set to ‘‘no.’’ The routine
userpdefinedpforcing allows these functions to be spec-
ified as functions of space and time. The example below
lists the routine used for the forced wave run discussed
in section 6b. In this case, body forces are applied near
the bottom boundary z 5 0 with magnitude and phase
chosen to project strongly onto a monochromatic, up-
ward-propagating internal gravity wave. Efficiency is
somewhat more critical in this case because the routine
is called for each grid point at each time step. Compared
to multidimensional transform operations, however, the
computational workload is small, that is, O(n) compared
to O(n logn), where n is the total number of spatial grid
points:
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subroutine userpdefinedpforcing(x,y,z,t,F1,F2,F3,F4,Lx,Ly,Lz,f,g,rhop0)

c **************************************************************************
c User defined subroutine to add time/space dependent forcing to the
c equations of motion. Inputs and outputs for this routine are all
c DIMENSIONAL.
c

c inputs:
c x,y,z spatial location at which forcing is to be defined, [m]
c t time at which forcing is to be defined [s]
c f,g,rhop0 Coriolis parameter, gravity, reference density [1/s,m/s2,kg/m3]
c f,g and rhop0 specified in input/problempparams.h
c outputs:
c F1-3 acceleration at x,y,z & t in x,y,z directions [m/s2]
c F4 rhs of perturbation density eqn [(kg/m^3)/s]
c careful with F4, you must take into account what you are
c using for rhopbar when you define this term
c **************************************************************************

implicit none
real x,y,z,t,F1,F2,F3,F4
real Lx,Ly,Lz,f,g,rhop0

c declare local variables
real Apforce,omegapforce,kpforce,lpforce,mpforce,b,Fpofpz,Fprime,
envelopepuv,envelopepwp,arg,pi

real ambientpdensitypgradient,N2pforce,omega2pforce,Fpofpt

c define rhs values

c properties of forcing wave, dimensional
c it is most convenient to specify horizontal wavenumber and frequency

pi54.*atan(1.)
ambientpdensitypgradient 5 -(rhop0/g)*2e-6 ! [kg/m4]
N2pforce5(-g/rhop0)*ambientpdensitypgradient ! [1/s^2]

Apforce53. ! displacement [m]
kpforce5((1)*(2.*pi/Lx)) ! [1/m]
lpforce5((0)*(2.*pi/Ly))
mpforce5((4)*(pi/Lz))
omega2pforce 5 (((f)**2)*mpforce**2 1 N2pforce*(kpforce**21lpforce**2) )/
( kpforce**2 1 lpforce**2 1 mpforce**2 )

omegapforce5sqrt(omega2pforce) ! [1/s]

beta50.2e-4 ! width of guassian forcing wavenumber packet
bfactor51.0 ! height of vertical amplitude window compared

to mpforce
b5bfactor*mpforce/(2.*pi) ! characteristic height of vertical amplitude

window
Fpofpz5exp(-(b**2)*(z**2)) ! Vertical amplitude window
Fprime5-2.*(b**2)*z*Fpofpz ! derivative of vertical amplitude window

c loop through wavenumbers and force in an envelope around kpforce

F150
F250
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F350
F450

do i51,32
k5(i*2.*pi/Lx)
dk52.*pi/Lx
A5Apforce*exp(-((k-kpforce)/(sqrt(2.)*beta))**2)
m5k/alpha
l5lpforce
arg5k*x1l*y-omegapforce*t
envelopepuv5*Fpofpz*cos(m*z)-(Fprime)*sin(m*z) ! [] rhs forcing envelope

for u and v
envelopepwp5*Fpofpz*sin(m*z)
F15F11A*(omegapforce**2/k)*sin(arg)*envelopepuv
F25F2-A*(omegapforce**2/k)*(f/omegapforce)*cos(arg)*envelopepuv
F35F3-A*(omegapforce**2/m)*cos(arg)*envelopepwp
F45F41A*(omegapforce/m)*(rhop0*N2/g)*sin(arg)*envelopepwp

enddo

return
end

c. Compile: Setup

Once the main parameter file and the user-defined
routines have been configured, all that remains is to
compile and run the code. The compilation, along with
various organization tasks, is invoked by executing the
Perl script setup with the appropriate switches. The rou-
tine setup performs several tasks. In particular, setup

• modifies source code so that arrays are properly di-
mensioned given the requested resolution and number
of processors;

• constructs a makefile and compiles the code;
• creates an output directory and archives source and

parameter files in a subdirectory codespetc;
• creates a file input/floatppositions.dat containing ran-

dom starting locations for nfloats Lagrangian trajec-

tories (the file can be edited if different starting lo-
cations are desired);

• calculates and reports run-time memory usage, com-
paring it to the memory available on the local ma-
chine;

• calculates and reports total disk space required for the
output files, comparing it to disk space currently avail-
able in the requested output location; and

• constructs a short shell script run containing the com-
mand needed to launch a multiprocessor job under
MPI.

The setup script processes information obtained from
command line switches and from the system.conf file.
A typical setup invocation is

./setup -np 4 -nx 128 -ny 128 -nz 128 -nfloats 3 -outputpdir /work/kraig/
spectralpmodel/floatsptest.

This command configures and compiles the code for a
four-processor run at a spatial resolution of (128 3 128
3 128), with three infinitesimal Lagrangian floats, with
output sent to the specified location. The systempconf sup-
plied with the code contains several example configura-
tions for different computing environments. The file is
used to specify locations of the NETCDF and MPI li-
braries, the Fortran compiler and desired compilation
switches, and the syntax of the run command for MPI

jobs. The example below can be used on machines with
Intel processors running Linux, assuming that the libraries
have been installed in the customary location/usr/local/lib.
The syntax of the run command is appropriate for the
mpich implementation of MPI. A log file will be written
as the code is executed. We are assuming in this example
that mpich has been configured for a cluster consisting of
at least four processors. Changing the 2np flag to 1 will
generate code for a uniprocessor run:
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# x86 linux g77. (NOTE: If using an f77 compiler, define F77 below, but do not
define F90!)

FFLAGS 5 $FFLAGS -O3 -I/usr/local/include -ffixed-line-length-none -x f77-
cpp-input

FLIBS 5 -L/usr/local/lib -lnetcdf -lmpich
F77 5 g77
RUNpCOMMAND 5 /usr/local/mpich/bin/mpirun -np NUMPROCS $PWD/flowpsolve.x .&
output/runlog &

TABLE B1. Format of energetics file.

Column Quantity Units

1
2
3

Time t
Ek

Ep

s
J kg21 5 m2 s22

J kg21

4
g

rw dVEr V0 V

W kg21 5 m2 s23

5
1

2nu · ¹ u dVEV V

W kg21

6
g

2 gzru · n̂ dSRr V0 S

W kg21

7
kg

z=r · n̂ dSRr V0 S

W kg21

8
kg

2 (r 2 r )top bottomr L0 z

W kg21

9
1

uF 1 yF 1 wF dVE 1 2 3V V

W kg21

10
g

zF dVE 4r V0 V

W kg21

APPENDIX B

Model Output

Results are output at a user-specified frequency in the
form of NETCDF files. In a multiprocessor run, each
processor writes files containing data over the portion
of physical space allocated to that processor. The nam-
ing convention of the files is cfd3Dpxxxxxxpyyy, where
xxxxxx is a six-digit integer string corresponding to the
time step at which the file was written and yyy is a
three-digit string corresponding to the identification
number of the processor that wrote the file. For single-
processor runs the files are simply named cfd3Dpxxxxxx.
Each file contains data values for the velocity compo-
nents u, y, and w; the perturbation density r9; the am-
bient profile (z); and the pressure P. The files alsor
contain values for the independent variables x, y, z, and
t, along with descriptive labels and units for each var-
iable. If the user-specified parameter vortpflag was set
to ‘‘yes’’ during configuration, the three components of
the vorticity vector will also be present.

There are many tools available to manipulate, view,
or extract data from NETCDF files, though a detailed
discussion is beyond the scope of this paper. We do
mention a few particularly useful tools, however:
Ncview (information available online at http://meteora.
ucsd.edu/pierce/ncviewphomeppage.htmland) and NCO
(for NETCDF operators; information online at http://
nco.sourceforge.net). Ncview is a visual browser for
data stored in NETCDF format. NCO allows operations
such as extraction, appending, new file creation, and
averaging to be applied to data stored in NETCDF files.
We also import NETCDF files, either those written di-
rectly by our model or new files created by extraction
or concatenation, directly into the commercial software
package MATLAB for further analysis or display. A
freely available NETCDF interface can be obtained
from the U.S. Geological Survey (available online at
http://woodshole.er.usgs.gov/operations/modeling/
mexcdf.html).

A diagnostic file energetics is also written out con-
taining estimates of the volume integrated kinetic and
potential energies in addition to the energy transfer rates
on the right-hand sides of Eqs. (57) and (58). The fre-
quency at which the data are computed and stored is

controlled by the parameter tpstat in problempparams.h.
Note that tpstat should be specified small enough to
allow reasonable estimates of the time derivatives of Ek

and Ep. The file is formatted as shown in Table B1 with
white-space-separated values. The energy balances can
then be evaluated on a term by term basis. Generally,
we have found that for well-resolved simulations, the
balances are accurate enough that errors in estimation
of the time derivatives and spatial integrals, neither of
which affect the quality of the underlying simulation
itself, dominate the residual.
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