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ABSTRACT

The concepts of multiplicative stochastic perturbations and noise-induced transitions are applied to a quasi-
geostrophic b-plane model of barotropic flow over topography. The spectral three-component low-order rep-
resentation of this configuration yields the Charney–DeVore (CDV) model. The externally prescribed damping
of the system is allowed to scatter around a mean value. The stochastic representation of the damping term
leads to a multiplicative stochastic forcing. The Fokker–Planck equation and the stochastic differential equation
of the low-order CDV model are solved numerically. It is found that the qualitative behavior of the system is
a function of the multiplicative noise level. In particular, the effect of multiplicative noise is not simply a
smoothing of the probability density function, as it would be for pure additive noise. Rather, multiplicative noise
leads to the high-index state being favored over the low-index state. The concept of noise-induced transitions
explains this behavior. The noise-induced transition of the stochastic low-order model is confirmed by numerical
integrations of a corresponding gridpoint model with many more degrees of freedom than the spectral model.
It is suggested that the statistics of the unresolved physical processes could be an important factor in understanding
the behavior of midlatitude large-scale atmospheric dynamics.

1. Introduction

It has long been observed that the atmospheric mid-
latitude circulation appears to alternate between a zonal
high-index flow and a low-index flow with a pronounced
wave component (e.g., Pandolfo 1993). This behavior
suggests that there may exist more than one large-scale
flow regime consistent with a given external forcing.
Regimes are defined as regions in the system’s phase
space where the probability of occurrence attains local
maxima. The definition is due to the fact that a chaotic
system may possess a set of attractor basins each much
smaller than the phase space of the entire system. Char-
ney and DeVore (1979) (CDV) were the first who pro-
posed that the occurrence of large-scale flow regimes
may be due to multiple equilibria of the nonlinear gov-
erning equations. They suggest that blocking and zonal
flow could be associated with two stable stationary so-
lutions of the spectrally truncated nonlinear barotropic
quasigeostrophic vorticity equation. Within this frame-
work Legras and Ghil (1985) elucidate the dynamical
importance of unstable fix points. Steady states that are

* Current affiliation: Scripps Institution of Oceanography, Univer-
sity of California, San Diego, La Jolla, California.

Corresponding author address: Dr. Philip Sura, Scripps Institution
of Oceanography, University of California, San Diego, 9500 Gilman
Drive, La Jolla, CA 92093-0230.
E-mail: pgsura@ucsd.edu

unstable to a small number of modes, but stable to a
large number of modes, may act to steer a time-depen-
dent model, thus providing a mechanism for a tempo-
rarily persistent regime. Nevertheless, the observational
evidence for multiple states or regimes in the atmo-
spheric circulation is rather sparse. Furthermore, the rel-
evance of multiple equilibria in truncated models has
been questioned by Tung and Rosenthal (1985).

One fundamental drawback of the low-order CDV
model is that the trajectories of the system always move
toward one of the two stable steady states. That is, the
deterministic CDV model is not able to explain tran-
sitions between the equilibria. To overcome this prob-
lem, transitions between the two regimes might occur
as a result of high-frequency fluctuations not resolved
in the three-component low-order system. In particular,
these unresolved fluctuations are often parameterized by
additive stochastic processes. A stochastic representa-
tion of the truncated high-frequency modes has been
applied to the CDV model by Egger (1981), Benzi et
al. (1984), and DeSwart and Grasman (1987). The ad-
ditive noise forces the system to alternately visit the
attracting domains of the two stable equilibria. Thus,
the system shows a bimodal behavior. Even the neigh-
borhood of the unstable equilibrium is visited for some
time during the transition between the two stable equi-
libria. This supports the conjecture of Legras and Ghil
(1985) that unstable equilibria are important for atmo-
spheric dynamics.

In climate models the stochastic forcing is normally
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FIG. 1. Nondimensional streamfunction patterns for the equilibria
of the deterministic CDV model (a 5 1, b 5 1, C 5 0.2, 5 4.19,*x1

b 5 2.55).

TABLE 1. Dimensional model parameters.

Coriolis parameter
Beta effect
Layer depth
Ekman layer depth
Acceleration of gravity
Topography amplitude
Forcing amplitude
Domain extent (east–west)
Domain extent (north–south)

f0 5 1.0 3 1024 s21

b 5 1.6 3 10211 m21 s21

H 5 1 3 104 m
DE 5 120 m
g 5 9.81 m s22

h0 5 500 m
c 5 6.7 3 106 m2 s21*0
Lx 5 3 3 106 m
Ly 5 1.5 3 106 m

introduced as an additive process. That is, the intensity
of the the stochastic forcing is treated to be independent
of the state of the system. However, the stochastic forc-
ing may also represent the fluctuations of model param-
eters. In that case, the stochastic process appears as
multiplicative noise. It is well-known that multiplicative
noise can substantially change the dynamical behavior
of nonlinear systems (Horsthemke and Lefever 1984;
Landa and McClintock 2000). An example is a phe-
nomenon that is called a ‘‘noise-induced transition’’
(Horsthemke and Lefever 1984). Noise-induced tran-
sitions can occur if a certain amount of multiplicative
noise is present in the system under consideration. Then,
the system can undergo a characteristic qualitative

change of its probability density function due to the
impact of the external multiplicative noise.

The relevance of using multiplicative noise in at-
mospheric models is twofold. On the one hand, it will
be impossible in the foreseeable future to perform long-
term integrations of complex high-resolution atmo-
spheric models in order to resolve decadal or even cen-
tennial timescales. At present simplified deterministic
atmospheric models are often used to explore low-fre-
quency climate variability (e.g., Kurgansky et al. 1996;
Dethloff et al. 1998). In general, there is a crucial in-
terest in modeling the low-frequency behavior of the
atmospheric circulation (Corti et al. 1999). Thus, there
is a potential need for more sophisticated stochastic
models beyond linear Langevin equations to understand
long-term climate variability. Majda et al. (1999) show,
using the same model of barotropic quasigeostrophic
flow over topography as in the present paper, that the
effect of the original 57 degrees of freedom can be well
represented by a theoretically predicted stochastic model
with only 3 degrees of freedom. They use a sophisticated
stochastic approach, including multiplicative noise. On
the other hand, most atmospheric models, simplified or
even complex, parameterize unresolved processes using
deterministic approximations. Sardeshmukh et al.
(2001) show how deterministic parameterization of ac-
tually highly variable processes in numerical prediction
models contribute to climatological mean errors found
in those models. Therefore, there is a need to understand
the basic effects of multiplicative noise in atmospheric
models.

In the present study the concepts of multiplicative
stochastic perturbations and noise-induced transitions
are applied to a quasigeostrophic b-plane model of bar-
otropic flow over topography. The spectral three-com-
ponent low-order representation of this configuration
yields the CDV model. The externally prescribed damp-
ing parameter of the system scatters around a mean
value. Therefore, the stochastic representation of the
damping term leads to a multiplicative stochastic forcing
term. Both the low-order CDV model and the corre-
sponding gridpoint model with many more degrees of
freedom are investigated in the multiplicative stochastic
framework. In particular, one intention is to investigate
the stochastic dynamics of the CDV model with mul-
tiplicative noise. In addition, the relationship to the
equivalent stochastically perturbed high-order gridpoint
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model is studied. This is done to investigate if the effect
of multiplicative noise in the low-order environment is
also present in the corresponding high-order gridpoint
model. In this framework it is important to note that
Charney and DeVore (1979) and Yoden (1985b) show
that the existence of multiple equilibria is not an artifact
of the low-order model. Indeed, the corresponding grid-
point model with many more degrees of freedom shows
the two stable equilibria, too. Nevertheless, a priori it
is not obvious if noise-induced transitions, which are
normally observed in systems with very few degrees of
freedom, can also be observed in the high-order system.

In section 2 the quasigeostrophic channel model and
its low-order spectral representation, the CDV model,
is described briefly. Moreover, the stochastically per-
turbed CDV model and the corresponding Fokker–
Planck equation is introduced. Section 3 presents the
experimental design and the results of the numerical
experiments. Finally, section 4 provides a discussion of
the results.

2. The model

a. Quasigeostrophic equation

In this paper we confine our study to the behavior of
a simple barotropic quasigeostrophic flow of undis-
turbed height H over topography with a bottom eleva-
tion h(x, y) in a midlatitude b-plane channel. The gov-
erning equation reads

] h
2 2 2(¹ c 2 g c) 1 J c, ¹ c 1 f 1 by01 2]t H

DE 25 2 f ¹ (c 2 c*), (1)0 2H

where c(x, y, t) is the streamfunction, J(a, b) 5 ]a/]x
]b/]y 2 ]a/]y ]b/]x the Jacobian operator, and g 2 5

/gH the squared inverse Rossby radius (g is the ac-2f 0

celeration of gravity and f 0 is the Coriolis parameter).
The right-hand side of (1) contains the effect of a fric-
tionally induced vorticity sink and a parameterized vor-
ticity source. The parameter c * is a forcing stream-
function that parameterizes the meridional temperature
gradient. In the classical deterministic model the forcing
and dissipation terms are proportional to the depth of
the bottom Ekman layer DE 5 (2Ay / f 0)1/2, where Ay is
the vertical turbulent viscosity coefficient. Thus, t 5
2H/ f 0DE 5 2/( f 0 ), with the vertical Ekman number1/2E y

Ey 5 (2Ay )/( f 0H 2), is a characteristic damping timescale
for the decay of the quasigeostrophic motion under the
influence of Ekman layer friction. A derivation of the
equations can be found in Pedlosky (1987).

If the motion is considered in a channel of width 0
# y # Ly, and length 0 # x # Lx, the boundary condition
of no normal transport at the channel boundaries re-
quires c to be constant at y 5 0 and y 5 Ly. In addition,
the ageostrophic boundary condition requires ]c/]yLx#0

dx 5 0 at y 5 0 and y 5 Ly as well. Furthermore,
periodic boundary conditions are used: c(x, y, t) 5 c(x
1 Lx, y, t).

In the entire study the bottom topography h(x, y) and
the forcing streamfunction c * are assumed to have sim-
ple sinusoidal structures with amplitudes h0 and toc *0
model a ridge–trough topography and a meridional tem-
perature gradient:

2px py
h(x, y) 5 h cos sin ,0 1 2 1 2L Lx y

py
c* 5 c* cos . (2)0 1 2Ly

If not stated otherwise, the dimensional model param-
eters used for the subsequent experiments have values
summarized in Table 1. These are the values used in
the study of DeSwart and Grasman (1987).

b. Low-order model

A spectral model of (1) and (2) can be derived by
expanding c, c *, and h in orthonormal eigenfunctions
of the Laplace operator. The low-order model studied
in this paper only retains three modes. The nondimen-
sional three-component model equations of the baro-
tropic quasigeostrophic flow over topography driven by
an external streamfunction forcing read (see appendix)

ẋ 5 bx 2 C(x 2 x*)1 3 1 1

1
ẋ 5 2ab x 2 b x 2 Cx2 1 3 21 22

1 1
ẋ 5 ab x 2 b x 2 ax 2 Cx . (3)3 1 2 1 31 22 2

This set of equations is often designated as the CDV
equations or model. It is well known that for a suitable
range of parameters the unperturbed low-order system
(3) exhibits three equilibria E1, E2, and E3 (see Fig. 1).
In the present study the nondimensional parameters are
identical to DeSwart and Grasman (1987): a 5 1, b 5
1, C 5 0.2, 5 4.19, b 5 2.55. Equilibrium E1 5x*1
(3.91, 0.74, 20.06) consists of a nearly zonal high-index
flow and is stable, E2 5 (1.88, 1.40, 20.46) shows an
intermediate flow and appears to be unstable. Equilib-
rium E3 5 (0.94, 21.06, 20.65) shows a low-index
flow with a pronounced wave component and is stable.
For arbitrary initial conditions the phase space trajec-
tories always tend to one of the two stable equilibria.
A detailed discussion of the CDV model can be found,
for example, in Charney and DeVore (1979), Egger
(1981), Yoden (1985a), and DeSwart (1988). Moreover,
Charney and DeVore (1979) and Yoden (1985b) show
that the existence of multiple equilibria is not an artifact
of the low-order model. Indeed, a gridpoint model with
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FIG. 2. Steady-state probability density isosurfaces of the CDV Fokker–Planck equation with multiplicative and
additive noise: 5 0.1 and 5 0.3 (i 5 1, 2, 3); a 5 1, b 5 1, C 5 0.2, 5 4.19, b 5 2.55. IsosurfaceM A *s s xi i 1

values from upper left to lower right: 1.0, 2.0, 3.0, 4.0.

many more degrees of freedom than the spectral model
shows two stable equilibria, too.

c. Stochastic perturbations of the CDV model and the
corresponding Fokker–Planck equation

Because the undisturbed CDV model does not exhibit
transitions between the stable equilibria the model is
unrealistic. Transitions between the two regimes might
occur as a result of fluctuations not resolved in undis-
turbed low-order system. For this reason it is assumed
that the CDV model can be made more realistic by
introducing stochastic perturbations. As argued by Eg-
ger (1981) there are at least two possibilities to introduce
noise in the CDV model. On the one hand the modes
retained in the CDV equations are perturbed by additive
noise components. The additive stochastic components
mimics the influence of the truncated modes; this pos-
sibility is investigated by Egger (1981). On the other
hand, the external parameters of the model may fluc-
tuate. That is, if the system resides near one of the stable
equilibria, and if an external parameter changes to make
this equilibrium unstable, the system may tend to an-
other equilibrium (Egger 1981). For the CDV model it

seems to be meaningful to stochastically perturb the
frictional parameter C to parameterize the mixing due
to turbulent eddies. Deterministic models usually char-
acterize this damping with a constant parameter. Thus,
the stochastic differential equations (SDEs) correspond-
ing to the CDV model are

M Aẋ 5 bx 2 (C 1 h )(x 2 x*) 1 h1 3 1 1 1 1

1
M Aẋ 5 2ab x 2 b x 2 (C 1 h )x 1 h2 1 3 2 2 21 22

1 1
M Aẋ 5 ab x 2 b x 2 ax 2 (C 1 h )x 1 h ,3 1 2 1 3 3 31 22 2

(4)

where are the additive stochastic components. NoteAhi

that the stochastic components that perturb the fric-Mhi

tional parameter C lead to a multiplicative stochastic
forcing, except the forcing term , which is indeedMh x*i 1

an additive stochastic term. For convenience, the no-
menclature of as a multiplicative stochastic forcingMhi

is retained. In the subsequent discussion all stochastic
components and are assumed to be independentA Mh hi i
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Gaussian white noise processes with corresponding am-
plitudes and :A Ms si i

A A A A 2^h (t)& 5 0, ^h (t)h (t9)& 5 (s ) d(t 2 t9)i i i i

M M M M 2^h (t)& 5 0, ^h (t)h (t9)& 5 (s ) d(t 2 t9), (5)i i i i

where ^. . .& denotes the averaging operator. Because of
the Gaussian distribution of the noise it is possible that
C 1 becomes negative occasionally. Despite the factMhi

that the deterministically defined depth of the Ekman
layer cannot become negative, this is not a conceptual
problem because it is known that turbulent eddy fluxes
can occasionally change their sign as well.

The probability density function of the SDE is gov-
erned by the corresponding Fokker–Planck equation. In
general, if an n-dimensional SDE is written as

dx
M A5 A(x) 1 B(x)h 1 h , (6)

dt

with the n 3 n matrix, B, the corresponding Fokker–
Planck equation for the probability density function p(x,
t) reads (e.g., Gardiner 1985; Horsthemke and Lefever
1984)

]p(x, t)

]t

] ]
M 25 2 A 1 a (s ) B B p(x, t)O Oi i ik jk1 2[ ]]x ]xi j,ki j

21 ]
M 2 T1 (s ) (BB ) p(x, t)O i i j2 ]x ]xi,j i j

21 ]
A 21 (s ) p(x, t), (7)O i 22 ]xi i

where a can have two different values, to yield two
physically important stochastic calculi: the Itô (a 5 0)
and the Stratonovich calculus (a 5 1/2). The Fokker–
Planck equation describes the conservation of the prob-
ability density p(x, t) of the system described by the
SDE (6). The first term in angular brackets describes
the dynamics of the deterministic system and is called
the deterministic drift. The second term in angular brack-
ets, which does not occur in Itô systems (a 5 0), is called
the noise-induced drift. The remaining terms cause the
diffusion of the system. The first diffusive term is a con-
sequence of the multiplicative noise and, thus, depends
on the state of system. The second diffusive term is due
to the additive noise and is independent of the state of
the system. Note that for the particular case of the sto-
chastic CDV model (4) no mixed derivatives appear in
the corresponding CDV Fokker–Planck equation due to
the simple structure of the matrix B.

For a detailed discussion of stochastic integration and
the differences between Itô and Stratonovich SDEs see,
for example, Horsthemke and Lefever (1984) or Gar-
diner (1985). In briefly summarizing, the Stratonovich
calculus resembles most directly the situation where rap-

idly fluctuating quantities with small but finite corre-
lation times are parameterized as white noise. Thus, the
Stratonovich calculus is preferred in the subsequent cal-
culations. The Itô stochastic calculus is used where dis-
crete uncorrelated fluctuations are approximated as con-
tinuous white noise.

3. Results

In this section numerical solutions of the CDV Fok-
ker–Planck equation (7) in the Stratonovich interpre-
tation (a 5 1/2) are presented and discussed. To verify
and interpret the results of the Fokker–Planck equation
numerical integrations of the stochastic CDV model (6)
are performed as well. Moreover, stochastically per-
turbed integrations of the high-order gridpoint model
(1) and (2) are qualitatively compared with the phe-
nomenology of the stochastic low-order models.

a. Solutions of the CDV Fokker–Planck equation

Analytic solutions of the Fokker–Planck equation (7)
can only be found for limited cases; for more general
cases numerical methods must be used. In this paper the
semi-implicit Chang–Cooper method is implemented to
solve (7) (Chang and Cooper 1970; Park and Petrosian
1996). The Chang–Cooper method is a flux-conserva-
tive finite-difference scheme second order in time. It is
originally designed to solve one-dimensional Fokker–
Planck equations. Nevertheless, an extension of this
method to multidimensional problems is straightforward
using the operator splitting method (Park and Petrosian
1996; Press et al. 1992). A regular grid with a mesh
size 0.1 and 100 3 100 3 100 grid points is used. The
domain of computation is chosen to be the cubic [22.5:
7.5, 25:5, 25:5] that encloses the fix points of the
deterministic CDV model for the used parameter values.
The nondimensional time step is set to 0.25 (0.96 days
in dimensional units). The CDV Fokker–Planck equa-
tion is integrated until a steady state is reached, which
is attained at least after 100 days of integration, in agree-
ment with Egger (1981). The initial distribution of the
probability density p is chosen to be a symmetric three-
dimensional Gaussian, with std dev 2, centered in the
origin of the system. Other initial distributions do not
change the subsequent results. The value of the inte-
grated probability density p is conserved and is arbi-
trarily set to 100.

The parameter varied is the strength of the multipli-
cative noise ( ). The strength of the additive noiseMs i

( ) and the amplitude of the forcing ( ) remain un-As x*i 1

changed for the reference experiments (a 5 1, b 5 1,
C 5 0.2, 5 4.19, b 5 2.55). These reference ex-x*1
periments show the main results and are, therefore, pre-
sented and discussed in detail. For convenience the
strength of the multiplicative and additive noise com-
ponents are chosen to have the same values in each
dimension: 5 5 and 5 5 . TheM M M A A As s s s s s1 2 3 1 2 3
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FIG. 3. Steady-state probability density isosurfaces of the CDV Fokker–Planck equation with multiplicative and
additive noise 5 0.2 and 5 0.3 (i 5 1, 2, 3); a 5 1, b 5 1, C 5 0.2, 5 4.19, b 5 2.55. IsosurfaceM A *s s xi i 1

values from upper left to lower right: 1.0, 1.5, 2.0, 2.5.

strength of the additive noise is set to 5 0.3. In theAs i

following the steady-state solutions of the CDV Fokker–
Planck equation are presented as three-dimensional iso-
surfaces. An isosurface is the three-dimensional exten-
sion of the familiar two-dimensional isoline. The dif-
ference is that one two-dimensional isoline plot with
several isolines is enough to present the structure of a
two-dimensional field. In contrast several three-dimen-
sional plots with only one isosurface each are necessary
to present the general structure of a three-dimensional
field. Note that, as in the two-dimensional case, the
choice of the shown isosurfaces depends on the structure
of the three-dimensional field. For each set of param-
eters four different valued isosurfaces are presented to
qualitatively reveal the three-dimensional structure of
the probability density function. Figures 2, 3, 4, and 5
display the steady-state probability density for four dif-
ferent multiplicative noise levels 5 0.1, 0.2, 0.3, andMs i

0.4.
With 5 0.1 (Fig. 2) the system shows a nearlyMs i

monomodal low-index behavior. The most probable
states are clustered around the low-index equilibrium
E3. Only the 1.0 isosurface shows a remainder of the
high-index equilibrium E1. Nevertheless, the dominant

maximum values of the probability density, up to 9.0,
are centered inside the 4.0 isosurface near the low-index
flow E3. Enhancing the multiplicative noise level to

5 0.2 (Fig. 3), the system begins to show a weakMs i

bimodality. However, the maximum values of the prob-
ability density, up to 4.0, are centered inside the 2.5
isosurface near the low-index equilibrium E3. With

5 0.3 (Fig. 4) the system shows a more pronouncedMs i

bimodal behavior. The most probable states, with max-
imum probability densities up to 2.6, are now near the
zonal high-index equilibrium E1. Nevertheless, the low-
index states near the equilibrium E3 have only a slightly
lower probability. Thus, the system shows a clear bi-
modal behavior. Further enhancement of the multipli-
cative noise level to 5 0.4 (Fig. 5) gives rise to aMs i

nearly monomodal high-index flow. The most probable
states, with maximum probability densities up to 2.9,
have entirely moved to the neighborhood of the high-
index equilibrium E1. Only the 0.75 isosurface shows
a remainder of the low-index equilibrium E3. The dom-
inant maximum values of the probability density are
centered inside the 2.25 isosurface in the neighborhood
of the zonal high-index equilibrium E1.

In summarizing, one observes that the qualitative
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FIG. 4. Steady-state probability density isosurfaces of the CDV Fokker–Planck equation with multiplicative and
additive noise: 5 0.3 and 5 0.3 (i 5 1, 2, 3); a 5 1, b 5 1, C 5 0.2, 5 4.19, b 5 2.55. IsosurfaceM A *s s xi i 1

values from upper left to lower right: 0.75, 1.25, 1.75, 2.25.

structure of the probability density changes as a function
of the multiplicative noise level. The system shows a
nearly monomodal low-index behavior for weak mul-
tiplicative noise. Increasing the noise level to inter-
mediate intensities, the system becomes bimodal. Strong
multiplicative noise squeezes the system into the zonal
high-index state. Thus, the system undergoes a noise-
induced transition (Horsthemke and Lefever 1984). It
is important to note, that for the CDV Fokker–Planck
equation there is no significant difference between the
Stratonovich and the Itô interpretation. Numerical ex-
periments show that both stochastic calculi show the
same noise-induced regime transition. This qualitative
equivalence of both stochastic calculi is due to the lin-
earity of the multiplicative noise terms. In this linear
case, the contribution of the stochastic drift is neglect-
able for small multiplicative noise amplitudes.

b. Numerical solutions of the stochastic CDV model
and mechanism of the noise-induced transition

To verify and interpret the results of the Fokker–
Planck equation, numerical integrations of the stochastic

CDV model (6) using the Stratonovich interpretation
are performed. The SDE is numerically solved by the
stochastic Euler scheme (Rümelin 1982; Kloeden and
Platen 1992). For a time-discrete approximation the
Gaussian white noise h t does have the standard devia-
tion s, because the continuous restriction ^h(t)h(t9)& 5
s2d(t 2 t9) cannot be implemented numerically. Thus,
for discrete time steps the Gaussian white noise fulfills

2^h & 5 0, ^h h & 5 s d ,t t t9 tt9 (8)

where dtt9 denotes the Kronecker delta. The parameters
used for the subsequent experiments are the same as in
the previous section. Using a time step of 0.01 the sto-
chastic CDV model is integrated for 10 000 nondimen-
sional units, which equals a dimensional interval of
about 106 years. Note that a single experiment is only
one finite realization of a stochastic process. The sta-
tionary solution of the corresponding Fokker–Planck
equation, however, yields the probability density func-
tion for an infinite number of stochastic realizations.
Time series of the x1 component of the stochastic CDV
model using multiplicative noise with standard devia-
tions 5 0.1, 0.2, 0.3, and 0.4 are shown in Fig. 6.Ms i
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FIG. 5. Steady-state probability density isosurfaces of the CDV Fokker–Planck equation with multiplicative and
additive noise: 5 0.4 and 5 0.3 (i 5 1, 2, 3); a 5 1, b 5 1, C 5 0.2, 5 4.19, b 5 2.55. IsosurfaceM A *s s xi i 1

values from upper left to lower right: 0.75, 1.25, 1.75, 2.25.

For convenience, only intervals of 1000 nondimensional
units are shown. The corresponding histograms of the
entire time series consisting of 10 000 units are shown
in Fig. 7.

For 5 0.1 the trajectory of the system remainsMs i

near the blocked low-index equilibrium E3 with x1 5
0.94 for the entire integration (Fig. 6a). The correspond-
ing histogram (Fig. 7a) illustrates the monomodal be-
havior. If the standard deviation of the multiplicative
noise is enhanced to 5 0.2, the system temporarilyMs i

attains the zonal high-index state E1 with x1 5 3.91 (Fig.
6b). Note that the trajectories variance is somewhat low-
er in the zonal state compared to the blocked state. The
bimodality of the system is visualized by the corre-
sponding histogram (Fig. 7b), whereby the probability
of the blocked state is somewhat higher than the prob-
ability of the zonal state. Further enhancement of the
standard deviation ( 5 0.3) changes the bimodal be-Ms i

havior such that the system’s trajectory visits the neigh-
borhood of the zonal state E1 (Fig. 6c) more often. Fur-
thermore, the variance of the blocked state is enhanced,
whereas the variance of the zonal state approximately
remains unchanged. Therefore, the corresponding his-

togram (Fig. 7c) retains the bimodality, but reveals that
the zonal state becomes the most probable regime. Fi-
nally, if the standard deviation of the multiplicative
noise is enhanced to 5 0.4, the variance of theMs i

blocked state increases noticeably (Fig. 6d). Neverthe-
less, the characteristic of the zonal regime remains near-
ly unchanged. The histogram illustrates that the bimo-
dality vanished in favor of the zonal high-index state
(Fig. 7d).

In summarizing, one observes that the stochastic
CDV model (6) shows the same noise-induced transition
as the corresponding Fokker–Planck equation (7). Nev-
ertheless, a realization of a stochastic process reveals
the mechanism of a noise-induced transition. As de-
scribed previously, one observes (Fig. 6) that the var-
iance of the trajectory in the blocked state increases as
the multiplicative noise level is enhanced, whereas the
trajectories variance in the zonal state remains nearly
unchanged. This behavior can be explained by the mech-
anism of a noise-induced transition. A schematic illus-
tration is presented in Fig. 8. For convenience, only a
one-dimensional system with two stable equilibria, E1

and E3, is considered. It is important to note that the
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FIG. 6. Time series of the x1 component of the stochastic CDV model with additive and multiplicative noise:
a 5 1, b 5 1, C 5 0.2, 5 4.19, b 5 2.55, 5 0.3 (i 5 1, 2, 3). (a) 5 0.1, (b) 5 0.2, (c) 5 0.3,* A M M Mx s s s s1 i i i i

(d) 5 0.4. Note the noise-induced regime transition.Ms i

FIG. 7. Normalized histograms of the x1 component of the stochastic CDV model with additive and multi-
plicative noise: a 5 1, b 5 1, C 5 0.2, 5 4.19, b 5 2.55, 5 0.3 (i 5 1, 2, 3). (a) 5 0.1, (b) 5* A M Mx s s s1 i i i

0.2, (c) 5 0.3, (d) 5 0.4. Note the noise-induced regime transition.M Ms si i
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FIG. 8. Schematic mechanism of the noise-induced transition. The illustration shows the mechanism of the noise-
induced transition at the moment the multiplicative noise is thought to be switched on.

illustration shows the mechanism of the noise-induced
transition at the moment the multiplicative noise is
thought to be switched on. The structure of the deter-
ministic potential illustrates the dynamics and the sta-
bility properties of the system under consideration. With
state independent, that is, additive, noise the stable state
E3 is the most probable regime, illustrated by the deep
potential well. In contrast to E3, the other stable state
E1 is rarely attained by additive stochastic perturbations.
The situation changes as soon as the system is perturbed
by multiplicative noise. In this case the effect of the
multiplicative noise depends on the state of the system.
If, for example, the effect of the multiplicative noise is
weaker in the neighborhood of equilibrium E1 than in
the neighborhood of E3, the dynamics of the stochastic
system changes substantially. Such a situation occurs if
the multiplicative stochastic term obeys ẋ 5 · · · 2 hM(x
2 x*) 1 hA, with x* ø E1. Then, the probability that
the system’s trajectory is found near E1 increases as the
amplitude of the multiplicative stochastic component is
enhanced. Because of the larger amplitudes of the mul-
tiplicative noise in the neighborhood of E3, as compared
to the neighborhood of E1, the system’s trajectory is
mainly found in the vicinity of E1. Furthermore, because
the amplitudes of the stochastic perturbations are small
in the vicinity of E1, the trajectory remains there for a

long time. That is, the probability of the two regimes
is a function of the multiplicative noise level. The over-
all structure of the original deterministic potential
changes due to the effect of the multiplicative noise and
becomes an altered effective potential. This one-dimen-
sional mechanism of a noise-induced transition can be
extended to three dimensions, to explain the observed
behavior of the stochastic CDV model with multipli-
cative noise.

Note that in each of the three dimensions the variance
of the multiplicative noise term acts to push the system
away from the low-index state, and gets weaker when
the system is near the high-index state. In particular, the
term ẋ1 5 · · · 2 (x1 2 ) steers the system towardMh x*1 1

, as described above. Nevertheless, even the multi-x*1
plicative noise terms in the remaining two dimensions
ẋ2 5 · · · 2 x2 and ẋ3 5 · · · 2 x3 steer the systemM Mh h2 3

toward lower absolute values of x2 and x3, and therefore
nearer to the high-index state. Remember that x2 and x3

of the high-index state E1 5 (3.91, 0.74, 20.06) have
smaller absolute values than the corresponding coor-
dinates of the low-index state E3 5 (0.94, 21.06,
20.65). Numerical experiments with multiplicative
noise only in the forcing term support this conjecture;
in this particular case the multiplicative noise has to be



1 JANUARY 2002 107S U R A

FIG. 9. Dimensional streamfunction patterns (106 m2 s21) for the two stable equilibria of
the gridpoint model: (a) zonal high-index state, (b) blocked low-index state. The axes are
horizontal distances in kilometers.

very much stronger to force the noise-induced transition
toward the zonal high-index state.

c. Qualitative comparison with a gridpoint model

This section will confirm that the noise-induced tran-
sition found for the low-order spectral model also oc-
curs, in a qualitative sense, in a numerical integration
of a gridpoint model with many more degrees of free-
dom. Charney and DeVore (1979) and Yoden (1985b)
show that the existence of multiple equilibria is not an
artifact of the low-order model. The corresponding grid-
point, respectively high-order spectral model shows two
stable equilibria as well.

The dimensional quasigeostrophic vorticity equation
(1) with topography and forcing (2) and parameters
summarized in Table 1 is numerically solved by standard
finite differences in space and time. Space differencing
is performed by space-centered approximations. In par-
ticular, the nonlinear Jacobian is approximated by the
Arakawa scheme. Time differencing is performed by
the third-order Adams–Bashforth scheme. The Helm-
holtz equation appearing at each time step is solved by

cyclic reduction. The spatial resolution is Dx 5 120 km
in the zonal, and Dy 5 60 km in the meridional direc-
tion. Thus, the channel has 25 3 25 grid points. The
time step is 1 h. The streamfunction is saved once a
day. For all further purposes these daily data are used
to visualize the stochastically induced variability. The
additive white noise is just an additional term in (1).
The multiplicative noise is implemented by stochasti-
cally perturbing the Ekman layer depth DE, that is, the
damping of the flow. Thus, DE stochastically fluctuates
around the mean value E: DE 5 E 1 h(t).D D

Indeed, the deterministic gridpoint model has two sta-
ble equilibria for the used parameter values. The cor-
responding streamfunction patterns are shown in Fig. 9.
The first stable equilibrium in Fig. 9a consists of a zonal
high-index regime, whereas the second stable state in
Fig. 9b shows a blocked low-index flow. These two
stationary solutions resemble the two stable equilibria
of the deterministic low-order CDV model (see Fig. 1).
Nevertheless, the zonal high-index state of the gridpoint
model has a different structure compared to the low-
order model. In particular, the high-index state of the
gridpoint model does not have the spatial symmetry with
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FIG. 10. (a) Time series of the dimensional streamfunction (106 m2

s21) in the center of the channel (x 5 1500 km, y 5 750 km) for the
gridpoint model with additive noise only. Positive streamfunction
values characterize the blocked state; negative streamfunction values
characterize the zonal state (see Fig. 9). (b) The corresponding nor-
malized histogram.

FIG. 11. (a) Time series of the dimensional streamfunction (106 m2

s21) in the center of the channel (x 5 1500 km, y 5 750 km) for the
gridpoint model with additive and multiplicative noise. Positive
streamfunction values characterize the blocked state; negative stream-
function values characterize the zonal state (see Fig. 9). (b) The
corresponding normalized histogram.

respect to the transformation c(x, y) → c(x 1 p/2, p
2 y); see Yoden (1985b) for the symmetry properties
of the CDV vorticity equation. Notwithstanding that,
the gridpoint model has two stable equilibria which at
least resemble a zonal high-index regime and a blocked
low-index flow.

With additive noise both the stochastic low-order
CDV model and the stochastic gridpoint model show
qualitatively similar results. A 50-yr-long time series of
the dimensional streamfunction in the center of the
channel (x 5 1500 km, y 5 750 km) is shown in Fig.
10a. Positive streamfunction values characterize the
blocked state, negative streamfunction values charac-
terize the zonal state (see Fig. 9). The corresponding
histogram is shown in Fig. 10b. It is perceivable that
in the additively perturbed gridpoint model the blocked
low-index flow is the most probable regime. The zonal
high-index flow, however, is of secondary importance.

That is, the behavior of the additively perturbed sto-
chastic CDV model is not an artifact of the low-order
spectral truncation, but is qualitatively found in the sto-
chastic high-order gridpoint model as well.

The qualitative behavior of the stochastic gridpoint
model changes as soon as multiplicative noise is used
in addition to additive noise. With additional multipli-
cative noise even the high-order gridpoint model shows
a noise-induced transition. That is, with multiplicative
noise the probability that the system attains the zonal
regime increases significantly. This behavior is clearly
seen in Fig. 11. As before, in Fig. 11a, a 50-yr-long
time series of the dimensional streamfunction in the
center of the channel (x 5 1500 km, y 5 750 km) is
shown. The corresponding histogram is shown in Fig.
11b. For the presented results the standard deviation of
the multiplicative noise that perturbs the Ekman layer
depth is 300 m. Sensitivity experiments show that the
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observed phenomenon is indeed a pure noise-induced
transition: Similar results cannot be obtained with ad-
ditive noise only. Nevertheless, it is not possible to raise
the probability of the zonal state beyond the presented
bimodal distribution; for higher multiplicative noise lev-
els the gridpoint model is not numerically stable any
more.

In summarizing, the noise-induced transition observed
within the framework of the low-order stochastic CDV
model is at least qualitatively confirmed to some extent
by numerical stochastic integrations of the corresponding
gridpoint model with many more degrees of freedom than
the low-order model. Thus, the noise-induced transition
is not an artifact of the low-order model.

4. Summary and discussion

The concepts of multiplicative stochastic perturba-
tions and noise-induced transitions are applied to a qua-
sigeostrophic b-plane model of barotropic flow over to-
pography. The spectral three-component low-order rep-
resentation of this configuration yields the CDV model.
In addition to an additive stochastic term the externally
prescribed damping of the system is allowed to scatter
around a mean value. This leads to a multiplicative sto-
chastic forcing. The Fokker–Planck equation and the
stochastic differential equation of the stochastic low-
order CDV model are solved numerically. It is found
that the behavior of the model changes as a function of
the multiplicative noise level. The effect of multipli-
cative noise is not simply a smoothing of the probability
density function, as it would be for pure additive noise.
Rather, multiplicative noise leads to the high-index state
being favored over the low-index state. In particular, the
system shows a nearly monomodal low-index behavior
for weak multiplicative noise. Increasing the noise level
to intermediate intensities, the system becomes bimodal.
Strong multiplicative noise squeezes the system into the
zonal high-index state. The concept of noise-induced
transitions explains this qualitative behavior. Further-
more, the relationship to the stochastically perturbed
high-order gridpoint model is studied. It is found that
the noise-induced transition observed within the frame-
work of the low-order stochastic CDV model is at least
qualitatively confirmed by numerical integrations of the
corresponding gridpoint model with many more degrees
of freedom than the low-order model. Therefore, the
noise-induced transition is not an artifact of the low-
order model. Thus, the results of the present paper il-
lustrate the phenomenon of a noise-induced transition
and, furthermore, show that multiplicative noise can
have a crucial effect on the qualitative behavior of the
barotropic quasigeostrophic equation.

A comparable result for the qualitative behavior of
the North Atlantic thermohaline circulation is presented
by Timmermann and Lohmann (2000). The authors use
a simplified box ocean model to study the influence of
multiplicative short-term climate variability on the sta-

bility and long-term dynamics of the thermohaline cir-
culation. As a result the behavior of the thermohaline
circulation becomes a function of the noise level. Thus,
the system undergoes a noise-induced transition.

In general, these findings illustrate that the qualitative
behavior of simplified climate models can be signifi-
cantly altered by the stochastic representation of exter-
nal parameters, that is, by the use of multiplicative noise.
Another issue raised is the question of how reliable
deterministic bifurcation or stability analysis is. In par-
ticular, it is questionable to what extent the analysis of
a deterministic system reveals the behavior of the cor-
responding stochastic systems. The probability density
in the phase space of a nonlinear stochastic system can
be entirely different from the probability density of the
deterministic system.

Although the models used in the present paper are
very simple, it is expected that the use of multiplicative
noise and the concept of noise-induced transitions is
useful to understand the behavior of large-scale atmo-
spheric dynamics. It deserves further research to un-
derstand the influence of multiplicative noise in more
complex models.
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APPENDIX

Derivation of the Low-Order Spectral Model

In this appendix the low-order spectral model used
in the present paper is derived. The scaling is identical
to DeSwart and Grasman (1987). See section 2 for a
more detailed description of the underlying dimensional
model.

With the rigid-lid approximation (g 2 5 0), the char-
acteristic height H, the timescale s21, the horizontal
length scale k21, and the characteristic amplitude of the
topography h0, the nondimensional quasigeostrophic
vorticity equation reads

] ]c
2 2¹ c 1 J(c, ¹ c) 1 gJ(c, h) 1 b

]t ]x
25 2C¹ (c 2 c*), (A1)

with the parameters

f h b f D0 0 0 Eg 5 , b 5 , C 5 . (A2)
sH sk 2sH

By letting k 5 2p/Lx, the nondimensional domain of
the channel is 0 # x # 2p and 0 # y # pb, with b 5
2Ly/Lx.
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The low-order spectral model is developed by ex-
panding the nondimensional streamfunction c in three
orthonormal modes, c 5 c1 1 c2 1 c3. These modes
are

y
c 5 c f 5 c Ï2 cos1 1 1 1 1 2b

y
c 5 c f 5 c 2 cos(x) sin2 2 2 2 1 2b

y
c 5 c f 5 c 2 sin(x) sin . (A3)3 3 3 3 1 2b

The nondimensional topography and forcing read

1 y
h(x, y) 5 f 5 cos(x) sin ,2 1 22 b

y
c* 5 c*f 1 c*Ï2 cos . (A4)0 1 0 1 2b

Next (A3) and (A4) are inserted into the quasigeo-
strophic vorticity equation (A1). Utilizing the orthon-
ormality of the eigenfunctions fi, putting xi 5 i/b, sc
5 f 0h0/H, and defining the new time 5 (4 /3p)t,t Ï2
the low-order model becomes

ẋ 5 bx 2 C(x 2 x*)1 3 1 1

1
ẋ 5 2ab x 2 b x 2 Cx2 1 3 21 22

1 1
ẋ 5 ab x 2 b x 2 ax 2 Cx , (A5)3 1 2 1 31 22 2

with

2b 3p 3p
a 5 , b 5 b, C 5 C,

21 1 b 4Ï2 4Ï2

Uk
x* 5 . (A6)1 s

The velocity scale U is connected with the dimensional
amplitude of the streamfunction forcing through thec *0
relation 5 Ub /k.c * Ï20
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