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ABSTRACT

The processes that determine the depth of the Southern Ocean thermocline are considered. From
the perspective of heat transport, the thermocline depth is determined by the efficiency of the
geostrophic circulation at transporting heat poleward. Existing conceptual frameworks focus
on the importance of transient eddies, assuming that standing eddies can be neglected through
transformation to a “streamwise” coordinate. Using numerical simulations of a simple circumpolar
channel, we show that, when topography is present, standing eddies are the primary mechanism
of poleward heat transport by the geostrophic circulation. The standing eddies are more efficient
at transporting heat than the transient eddies, meaning that a flat-bottomed experiment with
identical forcing has a significantly deeper thermocline. The standing eddies are also fundamentally
different from transient eddies because they are not adiabatic, i.e. their heat flux is not directed
along zonal-mean isotherms but rather has a significant down-gradient component. Analysis of the
variance budget shows that this down-gradient transport by standing eddies is in fact sustained
by a term related to the transient eddy heat flux. Thus the transient eddies remain important
for the equilibration, but play a different role. A simple quasigeostrophic analytical model of a
standing eddy is developed which reproduces many characteristics of the numerical solutions. The
numerical model is also analyzed in streamwise coordinates; from this viewpoint, the heat balance
with topography more resembles the flat-bottomed case, in which transient eddies dominate the
geostrophic heat transport across the front. However, unlike the zonally symmetric flat-bottomed
case, the transient eddy fluxes are highly localized downstream of topography.

1. Introduction

Mid-latitude gyre flows, confined within closed basins,
produce relatively shallow stratification. In contrast, the
Southern Ocean’s unique geometry permits the Antarctic
Circumpolar Current (ACC) to circumnavigate the globe,
accompanied by much deeper stratification. The deep strat-
ification is necessary for the thermal wind balance of such
a strong baroclinic current and is intimately linked to the
meridional overturning circulation (MOC). Many studies
have shown that the stratification generated in the ACC
pervades the global ocean below roughly 500 m depth (Tog-
gweiler and Samuels 1995; ?; Wolfe and Cessi 2010; Nikurashin
and Vallis 2012; Munday et al. 2012). Therefore, to under-
stand the global deep stratification and MOC, it is nec-
essary to understand how the ACC stratification itself is
determined and how this equilibrium responds to changes
in forcing. There is ample evidence that the wind stress
forcing the Southern Ocean has increased over decadal time
scales (Marshall 2003; Toggweiler 2009) and may have been
drastically reduced during the last glacial maximum (Togg-
weiler and Russell 2008). The means that the equilibration
of the Southern Ocean is an issue of relevance for a wide
range of climate problems.

The dominant paradigm for understanding the ACC

stratification involves a balance between wind-driven up-
welling, which tends to tilt up the isopycnals and deepen
the stratification, and transient eddies produced by baro-
clinic instability, which work to reduce the isopycnal slope
(Karsten et al. 2002). These two processes reflect the mean
and eddy-driven components of the MOC. Seen from this
perspective, the ACC is a version of the classic problem
of macroturbulent baroclinic equilibration, similar to the
midlatitude atmosphere (Green 1970; Stone 1972; John-
son and Bryden 1989; Schneider 2006; Jansen and Ferrari
2012). An increase in wind-driven upwelling can be par-
tially or completely offset by an increase in eddy-driven
restratification, resulting in an insensitivity of the ACC
stratification and transport to wind changes; this behavior
has been dubbed “eddy saturation” (Straub 1993; Hallberg
and Gnanadesikan 2006; ?; Viebahn and Eden 2010; Far-
neti et al. 2010; Abernathey et al. 2011; Meredith et al.
2012; Morrison and Hogg 2012; Munday et al. 2012).

In addition to the transient, turbulent eddy field that
arises from baroclinic instability, the ACC contains many
“standing eddies,” steady-state meanders of the current
caused by interaction with topographic features such as, for
instance, the Kerguelen plateau or the Scotia Arc. There
are somewhat conflicting views regarding the importance of
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standing eddies in the Southern Ocean. On one hand, when
the zonally-averaged fluxes due to transient and standing
eddies are decomposed separately, it is clear that the stand-
ing component dominates in both idealized models with
simple topography (????) and in realistic eddy-permitting
models (Marshall et al. 1993; Karoly et al. 1997; Olbers
and Ivchenko 2001; Lee and Coward 2003; ?; ?; Dufour
et al. 2012). Inspired by the observation of de Szoeke and
Levine (1981) that the mean geostrophic flow of the ACC
does not transport heat across a contour of depth-averaged
temperature, many authors have advocated thinking about
the ACC in a “streamwise” coordinate, in order to remove
the standing eddy component and emphasize importance of
transient eddies (Marshall et al. 1993; Olbers et al. 2004).
This streamwise-averaged perspective underpins the con-
temporary theoretical model of the ACC (Marshall and
Radko 2003; Olbers and Visbeck 2005). Neverthless, in
practice, many of the latest models continue to be analyzed
using a simple zonal average (Hallberg and Gnanadesikan
2006; ?; ?; ?; ?; ?; ?; ?; ?), rather than a streamwise aver-
age, leading to a profound disconnect with the theory. (No-
table exceptions are ? and Viebahn and Eden (2012).) It is
striking that even the original proponents of the streamwise
coordinate (Marshall et al. 1993) declined to analyze their
numerical results in this framework due to the practical
difficulty, opting instead for a standard zonal average. As
a result, the role of standing eddies in the eddy saturation
phenomenon remains unclear.

Our study seeks to gauge the importance of standing
eddies by comparing the equilibration of model ACCs with
and without topography, focusing on the thermocline depth
at the northern boundary as a metric of stratification. Our
simulations clearly show that, in the the presence of the
ridge, the stratification is significantly shallower. The ther-
mocline always remains well above the ridge crest, so this
is not a direct effect of the intrusion of topography, but
rather a result of the strong southward heat transport by
the standing wave. Furthermore, the stratification in the
channel with a ridge displays even weaker sensitivity to
wind changes; the saturation is more complete. This indi-
cates that standing eddies are more efficient at restratifying
the channel than transient eddies alone.

The time-mean flow in the ridge experiment is charac-
terized by a large scale meander which we call the “standing
wave.” We perform detailed diagnostics of this standing
wave, which reveal several interesting aspects. The stand-
ing wave heat flux is far from adiabatic—it has a strong
component across the zonal-mean isotherms, in contrast
to the transient eddy heat flux in the flat-bottomed case.
To explain this behavior, we derive a temperature variance
budget for the standing wave. This budget includes a term
proportional to the transient-eddy heat flux convergence,
which turns out to be the dominant driver of the merid-
ional heat transport by the standing wave. We develop a

quasi-linear analytical model for the standing wave that
parameterizes this term as a simple Rayleigh damping of
the wave temperature anomaly. Despite many simplifica-
tions, this model shows good qualitative agreement with
the numerical solutions and provides valuable insight into
the standing-wave dynamics.

As a final step, we analyze the heat budget in stream-
wise coordinates. We use two different definitions of the
streamwise coordinate: the depth-integrated temperature
and the barotropic transport streamfunction. The results
are the same in both cases: the standing eddy flux across
these contours nearly vanishes, and the transient eddies in-
stead dominate the heat transport by the geostrophic flow.
However, in contrast the the flat-bottomed case, the tran-
sient eddy heat fluxes are highly localized downstream of
the topography, in a region of high eddy energy and strong
gradients. This results in an overall more efficient cross-
stream heat transport by the transient eddies compared
with the flat-bottomed case. By diagnosing a local eddy
efficiency parameter (related to an eddy diffusivity), we
highlight the importance of the high-mixing region down-
stream of the ridge.

Throughout the paper, we frame our discussion in terms
of meridional heat transport. But we note that the merid-
ional heat transport is directly related to the vertical flux of
momentum by eddies, i.e. the interfacial form stress, which
is so important for the momentum balance of the ACC
(Johnson and Bryden 1989; Marshall et al. 1993; Hughes
1997; Olbers 1998). One advantage of working with heat
transport is that is can be integrated vertically, allowing
us to easily compare the contributions of different parts of
the flow. But our results regarding the relative importance
of standing and transient eddies in the heat balance carry
over to the momentum balance as well. [[ Here would be a
good place for a discussion of Matt Mazzloff’s new paper, in
which standing eddies in the surface layer support a mean
pressure gradient that is very important in the momentum
balance. ]]

Our paper is organized as follows. Section 2 describes
the model setup and experiment design. Section 3 defines
a framework for characterizing the efficiency of restratifica-
tion by standing and transient eddies and then applies this
framework to diagnose the simulations. Section 4 contains
the detailed diagnostics of the standing wave in a reference
simulation. In Section 5, we present the quasi-linear ana-
lytical model of the standing wave. Analysis of the heat
transport in streamwise coordiantes is conained in Section
6. Finally, discussion of the results and conclusions are
given in Section 7.

2. Numerical Model Experiments

The goal of our study is investigate the relative impor-
tance of transient and standing eddies in a simple way in
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order to reveal the underlying physics. The key ingredients
of our model are (1) a zonally-reentrant domain, which al-
lows a zonal current to develop; (2) westerly wind stress
forcing, which drives an Eulerian-mean overturning; (3)
surface buoyancy restoring, which maintains a meridional
buoyancy gradient; and (4) a topographic obstruction in
the abyss. We work in the adiabatic regime, with interior
diapycnal mixing as weak as numerics will permit, and we
use a linear equation of state with no salinity. While this
setup is highly idealized, the relatively fine resolution (5
km) resolves the mesoscale eddy field well.

Following Marshall and Radko (2003), our assumption
is that the first-order buoyancy balance in the ACC is be-
tween wind-driven advection by the Ekman circulation and
eddy-induced advection, and that this balance determines
the stratification. A second-order balance exists between
the residual overturning circulation and diabatic processes,
such as air-sea exchange, interior diapycnal mixing, and
exchange with basins to the north. By supressing diapy-
cnal mixing and not representing the connection to other
basins, our model ACC approaches the limit of zero resid-
ual circulation described by Johnson and Bryden (1989) or
Kuo et al. (2005). This means our model is appropriate for
studying the first-order problem of the stratification, but
not the second-order problem of the residual circulation.

The model grid and numerical parameters are nearly
identical to those described in Abernathey et al. (2011), to
which the reader is referred for further details. The code
solves the hydrostatic, primitive, Boussinesq equations in
Cartesian coordinates using the MITgcm (Marshall et al.
1997a,b). The domain is a box Lx = 2000 km x Ly = 2000
km x H = 2985 m. The wind stress forcing is a zonally-
symmetric sinusoidal westerly jet of maximum strength τ0
in the center of the domain, such that τ = τ0 sin(πy/Ly).
For the reference simulations, τ0 = 0.2 N m−2.

The model’s potential temperature equation can be writ-
ten as

θt + u · ∇θ = κh∇2
hθ + (κvθz)z −

λ

δ
(θs − θ∗) . (1)

Here κh is a spatially uniform horizontal diffusivity and
κv is a vertical diffusivity. Advection is performed using a
second-order-moment scheme (Prather 1986). Explicit dif-
fusivity (κh and κv) is set to zero, and a detailed analysis
has shown that the effective numerical diapycnal diffusiv-
ity in this model is weaker than 10−5 m2 s−1, meaning the
interior is highly adiabatic (Hill et al. 2012). However,
the KPP scheme (Large et al. 1994) is employed to simu-
late the surface mixed layer, where κv is greatly enhanced.
The final term represents the surface forcing, active only in
the top model level; λ is a temperature relaxation inverse
timescale, and δ is the thickness of the top grid cell. The
surface temperature θs is relaxed to a linear function of
latitude of the form θ∗ = ∆θ(y/Ly). The minimum tem-
perature is 0◦C, and we choose a maximum temperature

∆θ = 8◦C. This leads to a maximum buoyancy contrast of
∆b = gα∆T = 1.6×10−2 m s−2. The relaxation timescale
λ−1 is chosen to be 30 days (Haney 1971), which keeps
the actual surface temperature very close to the prescribed
profile.

In simulations with topography, a gaussian-shaped ridge
is present in the middle of the domain. The motivation for
this form was to capture the large meridional obstructions
encountered by the ACC along is path, such as Kerguelen
Plateau or the Scotia Arc. The depth in this case is given
by

−H + h0e
−x2/σ2

. (2)

We selected h0 = 1000 m, about one third of the total
depth, and σ = 75 km, leading to a steep ridge. However,
the topographic length scale σ is still large compared to the
deformation radius which is approx. 15 km in the middle
of the domain. Different topographic geometries can lead
to different types of standing waves (?), but we did not ex-
plore other forms, focusing instead on the gross differences
with and without topography.

The model equilibrates after about 100 years of spinup.
Snapshots of the temperature field from the equilibrated
state are show in Fig. 1. The time-mean isotherms are also
superimposed. While both simulations contain mesoscale
eddies, the figure illustrates how the flat-bottomed case is
statistically symmetric in x, while the ridge case contains
a standing wave in the time-mean θ field.

3. Eddy Saturation and the Meridional Heat Trans-
port

The mean meridional heat transport (MHT) across a
latitude circle is given, in the Boussinesq approximation,
by

H = ρ0cpLx

∫ 0

−H
〈v(θ − θ0)〉dz (3)

where ρ0 and cp are, respectively, the reference density and
specific heat of seawater, v is the meridional velocity, θ is
the potential temperature, and the angle brackets indicate
a zonal and time average (?). Since the total vertically-
integrated mass flux across a latitude circle (or any other
circumpolar contour) must vanish, an arbitrary constant θ0

can be chosen without changing H (de Szoeke and Levine
1981). By choosing this constant to be the temperature
of the abyss, 0◦ C, we can allow ourselves to ignore the
contribution to the heat transport by the deep mean flows,
such as the bottom Ekman flow or the geostrophic flow
below topography, in which θ ' θ0.

In the adiabatic limit, H must tend to zero in a model
such as ours. This is because any nonzero H must be bal-
anced by an air-sea heat flux. But since the residual cir-
culation also tends to zero, there is no advective term to
balance such an air-sea flux at the surface (Marshall and
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Fig. 1. Colors show an instantaneous snapshot of the θ field from each reference experiment (flat on the left, ridge on
the right). The color scale ranges from 0 to 8◦C. The field has been clipped at y = 1000 km, the meridional midpoint, to
reveal a zonal cross section. The white contours are the time-mean isotherms θ, illustrating the statistical zonal symmetry
of the flat-bottomed case and the standing wave in the ridge.

Radko 2003). In practice, we do not achieve a truly van-
ishing MOC or MHT due to diabatic effects in the surface
layer. Our model contains a weak overturning cell in the
top 200 m, similar to the one noted by Kuo et al. (2005).
However, this is clearly a second-order effect, and as the
subsequent analysis shows, we remain very close to the
limit of zero net MHT. This vanishing-residual MOC limit
is a useful idealization of the real ACC, in which there is
a nonzero MHT and MOC, but where large cancellations
between mean and eddies nevertheless occur (Speer et al.
2000; Hallberg and Gnanadesikan 2006; ?).

We can use this constraint on the heat transport to
derive a scaling for the termocline depth. Thanks to our
choice of θ0, the heat transported by the mean overturning
circulation is simply the heat transported in the Ekman
layer:

HEk = ρ0cpLxVEk〈θs〉 ∼ −cpLx
τ

f
∆θ

y

Ly
. (4)

This is an equatorward heat transport which is determined
solely by externally specified parameters. Then there is a
heat transport by the geostrophic flow:

Hg = ρ0cpLx

∫ 0

−h
〈vgθ〉dz . (5)

This heat transport occurs over the thermocline of depth
h, below which θ = 0. Because there is no zonal pressure
gradient above the topography, 〈vg〉 = 0, meaning that Hg
arrises only from eddy correlations; it potentially contains
contributions from both standing and transient eddies.

In order to maintain the heat balance, the geostrophic
motions in the interior must transport heat poleward at

the same rate as the Ekman circulation transports it equa-
torward. Setting H = HEk +Hg ≈ 0.

A scaling can be derived based on residual mean the-
ory, following Karsten et al. (2002). The Eulerian-mean
overturning cell, whose strength is determined by the wind-
driven Ekman transport, is 〈ψ〉 = −tau/(ρ0f). We express
the eddy-induced circulation as ψ∗ = 〈vgθ〉/〈θz〉. The van-
ishing residual circulation requires

0 = 〈ψ〉+ ψ∗ = − τ

ρ0f
+
〈vgθ〉
〈θz〉

. (6)

Because all the temperature classes are supplied at the sur-
face, we have 〈θz〉 ∼ ∆θ/h, where h is the scale of the
thermocline depth h. Using the vanishing of the residual
circulation we arrive at the scaling

h =
τ0∆θ

ρ0f〈vgθ〉
(7)

The sensitivity of the thermocline depth h to wind changes
depends on the heat transport by geostrophic motions. If
〈vgθ〉 is approximately independent of the wind stress, the
thermocline depth scales linearly with τ0. The concept of
“eddy saturation,” in which h becomes independent of τ0,
implies that 〈vgθ〉 ∝ τ0. In general 〈vgθ〉 exhibits a depen-
dence on τ0 that is intermediate between these two limits
(Spence et al. 2009; Meredith et al. 2012). Here we con-
trast the sensitivity of 〈vgθ〉 and h to τ0 with and without
topography, finding a higher level of “saturation”, i.e. a
smaller sensitivity of h on the wind stress.

As a practical matter, we find h via the expression

h = 2

∫ 0

−H z〈θ〉dz∫ 0

−H〈θ〉dz
(8)
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Fig. 2. Top panel: the meridional heat transport, H = HEk +Hg, from the same experiments. The black dotted line is
the approximate form of HEk from the RHS of (4). Hg is just the vertical integral of the bottom panel. Bottom panel:
zonal and time-mean temperature flux by the geostrophic flow 〈vgθ〉 in color. The black arrows indicate the direction the
flux in the (y, z) plane and the grey contours show the zonal mean isotherms 〈θ〉, contoured every 0.5◦C. The shaded
area in the lower right panel shows the height of the topographic ridge.

evaluated at the northern boundary, where the thermocline
is deepest. This is a standard method for characterizing
thermocline depth (???).

To illustrate these concepts, we present diagnostics of
〈vgθ〉 and H in Fig. 2. This figure compares the reference
simulations (τ0 = 0.2 N m−2) with and without the topo-
graphic ridge. The upper panel demonstrates that HEk
and Hg are essentially the same in both cases, with HEk
remaining very close to the approximation defined in (4).
Hg compensates almost completely for HEk, meaning that
H, the net MHT, remains very close to zero. The difference
between the two simulations is only revealed when the bot-
tom panel is examined; the heat transport in the ridge case
is confined to a shallower layer, implying a smaller value
of h, i.e. a shallower thermocline. Specifically, according
to (8), the thermocline depth at the northern boundary is
approx. 1200 m in the flat-bottom experiment and 1000 m

in the ridge experiment. Lest this difference seem small,
we note that it leads to a doubling of the thermal-wind
induced circumpolar volume transport. This transport is
given by

T = −gα
f

∫ Ly

0

∫ 0

−2000 m

∂〈θ〉
∂y

dzdy . (9)

(We integrate only above 2000 m, the depth of the ridge
crest, to fairly compare both experiments.) The value of
T is 55 Sv in the ridge case and 107 Sv in the flat case.
Because 〈θ〉y remains fixed at the surface, thermal wind
implies that T ∝ h2.1

1It is important to note that, in the flat-bottom case there is also
a very strong barotropic component of the zonal transport that is
frictionally balanced (Cessi 2007; Abernathey et al. 2011). The mag-
nitude of this transport is directly proportional to the wind stress
and inversely proportional to the linear bottom drag parameter. In
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Fig. 3. Comparison of global variables in flat-bottom (circles, solid lines) and ridge (triangles, dashed lines) experiments.
Top left: the stratification depth h at the northern boundary, evaluated from (8). Top right: the area integrated bottom
velocity U0. Bottom left: The geostrophic heat transport 〈vgθ〉, averaged over all latitudes. Bottom right: the eddy

kinetic energy, plotted in log-log space. The gray envelope indicates the range of proportionality between τ
1/2
0 and τ1

0 .

We now explore how the thermocline depth changes as
a function of wind stress. We run the flat and the ridge
experiments for the following values of τ0: 0.0125, 0.025,
0.05, 0.1, 0.2, 0.4, and 0.8 N m−2. This range constitutes
six successive doublings of the wind stress. The values of
h, Ubottom, and 〈vgθ〉 are plotted in Fig. 3. While the vari-
ables are quite close with and without topography for the
weakest winds, they quickly diverge as the winds are in-
creased. For the strongest winds, h is over 300 m deeper
without the topography, while U0 ?????. The general prin-
ciple of eddy saturation is reflected in h, which shows that,
as the winds increase, the geostrophic flow becomes more
and more efficient at transporting heat poleward, leading
to a weak dependence of h on τ0.

Recent studies have used the domain-averaged transient
eddy kinetic energy (EKE) as a proxy for the strength

the reference simulations discussed here, it has a magnitude of 450
Sv, completely overwhelming the thermal-wind transport. But it is
not dependent on the stratification. In the ridge case, this frictional
component is mostly absent, and the bottom velocity is determined
through the topographic form drag available to close the zonal mo-
mentum budget (?).

of the eddy-driven circulation (Meredith and Hogg 2006;
Abernathey et al. 2011; Meredith et al. 2012; ?; Munday
et al. 2012). According to this argument, a model with a
higher EKE will have a higher 〈vgθ〉 and therefore a shal-
lower thermocline. To test this idea, we calculated the EKE
in our simulations (Fig. 3). Both models have very similar
EKE for weak values of τ0. As the winds are increased,
the values diverge; the EKE in the flat-bottomed model
is always higher than the corresponding ridge case and is
nearly linearly proportional to τ0. The EKE in the model
with topography displays a slightly weaker dependence on
τ0. Nevertheless, 〈vgθ〉 is greater with topography. This
seems to upset the paradigm put forth by Meredith et al.
(2012), in which the EKE dependence on winds controls
the degree of eddy saturation.

This simple set of experiments demonstrates the impor-
tance of topographic effects in determining the Southern
Ocean stratification. No coordinate transformation (e.g. to
a streamwise coordinate system) will alter the fact that
the stratification at the northern boundary is shallower
when topography is present, or that the thermal-wind zonal
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transport is much less. But beyond these quantitative dif-
ferences, there are great qualitative differences in how the
two system equilibrate. In the rest of the paper, we further
explore the results from two different perspectives. From
the standard zonally-averaged perspective, the clear differ-
ence is that topography generates a standing wave which
is highly efficient at transporting heat poleward. In the
next section, we diagnose the model from this perspective.
We decompose Hg into transient and standing components
and show that the standing component becomes increas-
ingly dominant as the winds increase. In Sec. 6, we instead
consider the “streamwise” perspective, in which standing
eddy fluxes are greatly reduced. From this perspective, a
highly localized region of cross-stream transient eddy heat
flux downstream of the ridge is responsible for the greater
overall heat transport efficiency. While Both these per-
spectives are formally “correct,” they offer somewhat dis-
tinct views on the dynamics responsible for equilibrating
the thermocline.

4. Heat Transport by the Standing Wave

a. Standing and Transient Eddies

At this point, we must carefully define conventions for
time and zonal averaging. The time average of a variable
A(x, y, z, t) over interval ∆T is

A(x, y, z) = ∆T−1

∫ t+∆T

t

Adt . (10)

We will only take zonal averages of already time-averaged
fields. Other conventions are possible (see discussion in
Viebahn and Eden 2012), but this is the most informative
decomposition. The zonal / time average is

〈A〉(y, z) = 〈A〉 = L−1
x

∫ Lx

0

Adx . (11)

We define the anomalies as follows:

A′ = A−A
A† = A− 〈A〉 (12)

such that A = 〈A〉(y, z) + A†(x, y, z) + A′(x, y, z, t). The
standing wave is associated with A†. In a flat-bottom simu-
lation with statistical symmetry in the x direction, A† = 0.

Taking a zonal and time average of the θ equation (1),
we obtain

〈u〉 · ∇〈θ〉+∇ · 〈u†θ†〉+∇ · 〈u′θ′〉 =

κh∇2
h〈θ〉+ (〈κvθz〉)z−

λ

δ
(〈θ〉0 − θ∗) . (13)

Integrating this equation once in y gives an equation for
the meridional heat transport. All the diabatic terms on
the RHS are quite small compared to the advective terms.

To relate these advective terms to the components of the
heat transport mentioned in the previous section, we note
that 〈v〉 is associated with the Ekman overturning, and
therefore

HEk = ρ0cpLx

∫ 0

−H
〈v〉〈θ〉dz (14)

while Hg can be split into two components, one due to
standing eddies (HSE) and another due to transient eddies
(HSE) :

Hg = ρ0cpLx

∫ 0

−H
( 〈v†θ†〉+〈v′θ′〉 )dz

= HSE+HTE . (15)

For the flat-bottom experiments, HSE = 0.
In Fig. 4, we use this framework to decompose the MHT

from Fig. 2 into standing and transient eddy contributions.
This figure makes it clear that HSE is the dominant con-
tributor to Hg. This result has been found whenever eddy
fluxes are decomposed in this way, in a wide range of mod-
els (????Olbers and Ivchenko 2001; Lee and Coward 2003;
?; ?; Dufour et al. 2012). Nevertheless, we point it out
again here because the recent literature has focused so
much on the importance of transient eddies in eddy satura-
tion and compensation (??Meredith et al. 2012; Morrison
and Hogg 2012).

Fig. 4 illustrates the balance in a single experiment but
does not address the response to changing winds. We now
plot theHg, HSE andHTE at y = 1250 km (approximately
where the heat transport is most intense) as a function of τ0
for each of the experiments in Fig. 5. The figure shows that
it is HSE which responds to compensate for the increasing
value of HEk. In fact, HTE actually decreases weakly with
τ0 at this latitude, becoming more and more negligible in
comparison with HSE . We conclude that, when analyzed
from a zonally averaged perspective, the eddy saturation
is primarily a phenomenon of standing eddy saturation. A
similar conclusion was recently reached by (Dufour et al.
2012) in the analysis of the overturning circulation of a
realistic Southern Ocean model.

b. What drives the standing eddy heat transport?

It is clear why transient eddies must transport heat to-
ward the pole. Arising from baroclinic instability of the
mean state, their energy source is the available poten-
tial energy (APE) contained in the sloping isopycnals of
the ACC. The transfer from APE to EKE is expressed
in the eddy energy budget as a positive term gα〈w′θ′〉.
Under statistically steady, adiabatic conditions, this ver-
tical heat flux must be accompanied by a meridional flux
−〈v′θ′〉〈θ〉y = 〈w′θ′〉〈θ〉z, so that the heat flux is directed
entirely parallel to the mean isotherms, with no cross-gradient
component. This behavior is evident in Fig. 2 (left panel),
which includes arrows showing the direction of the heat flux
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Fig. 5. The different components of the meridional heat transport across y = 1250 km (where HEk is roughly maximum)
for different values of the wind stress parameter τ0. The components are: HEk (solid / squares), the Ekman induced heat
transport; HSE (dash-dot / triangles), the standing eddy heat transport; and HTE (dashed / circles), the transient eddy
heat transport. The flat-bottom experiments are on the left, and the ridge experiments are on the right.

in the meridional plane; the arrows clearly point along the
isotherms. Because of this energy pathway, when transient
eddies are the only contributor to the MHT, it is indeed
reasonable to associate increased Hg with higher EKE.

It is not so obvious why standing eddies should trans-
port heat poleward. They do not arise from baroclinic
instability, but rather from interactions of the current with
topography. The meanders of the ACC are often explained
using an “equivalent barotropic” analysis, in which the cur-
rent is characterized by a single mode which decays (usually
exponentially) with depth (?). While such models success-
fully explain many of the features of the ACC, they says
nothing about the heat transport by standing eddies. This
is because equivalent barotropic flow cannot transport any
heat. Heat transport in geostrophic flow requires at least
two vertical modes (?).

Some progress can be made by considering the standing-
wave variance budget. To derive this budget, subtract (13)
from (1), multiply the result by θ†, and take a zonal and
time average. The result,

∂

∂t

〈θ†2〉
2

+∇ ·
(
〈u〉 〈θ

†2〉
2

+
〈u†θ†2〉

2

)
+ 〈u†θ†〉 · ∇〈θ〉 =

−〈θ†∇ · (u′θ′)〉 − κh〈|∇θ†|2〉 − 〈κv|θ†z|2〉 −
λ

δ
〈θ†2s 〉 ,

(16)

where transport terms due to variance diffusion have been
neglected. This equation resembles a standard tracer vari-
ance equation, except for the first term on the RHS, which
describes the interaction of the standing eddies with the
transient eddies.

We have diagnosed this budget from our simulations.
The last three terms (mixing- and forcing-related) are neg-
ligible except for a small contribution close to the surface.
This indicates that surface forcing is not important for
driving the standing-wave heat transport. The mean ad-
vection term is also small. If we neglect these terms, divide
by 〈θ〉y, and integrate in z, we find an approximate expres-
sion for what is driving the standing eddy heat transport:

HSE = ρ0cpLx

∫ 0

−H
〈v†θ†〉dz

= −ρ0cpLx

∫ 0

−H
〈θ〉−1

y

[
〈w†θ†〉〈θ〉z +∇ · 〈u

†θ†2〉
2

+ 〈θ†∇ · (u′θ′)〉
]
dz

= HwSE +HtcSE +HteSE . (17)

The three components HwSE , HtcSE and HteSE are associ-
ated respectively with the three terms in the second line
of (17). Each represents a distinct physical process driv-
ing the standing eddy heat transport. The first HwSE , is
associated with the vertical buoyancy flux by the standing
wave. The second, HtcSE , is the so-called nonlinear “triple
correlation” term, resulting from advection of θ†2 by the
standing wave itself. The final one, HteSE , is due to the cor-
relation of θ† with heat flux convergence by the transient
eddies. These three components are plotted in Fig. 6.

Overall the balance can be summarized as follows. There
is a large degree of cancellation between HwSE and HtcSE ;
that is, the variance production by the 〈w†θ†〉〈θ〉z terms
is largely balanced by variance transport by the triple cor-
relation term. On the other hand, the transient-eddy re-
lated term HteSE is the dominant driver of the poleward
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heat transport by the standing wave. This is an interesting
result; it means that, although the transient eddies are rel-
atively unimportant in the meridional heat transport itself,
the local transient eddy heat convergence can nevertheless
be crucial for the standing wave meridional heat transport.

From an energetic perspective, the balance of terms in
(16) states that dominant potential energy pathway is for
potential energy to come from the mean flow to the stand-
ing wave (via the term 〈v†θ†〉∂〈θ〉/∂y), and then from the
standing wave to the transient eddy field (via the term
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Fig. 6. In color are the three different drivers of the stand-
ing eddy heat flux HSE defined in (17). The thick black
line is the net HSE , and the thin dashed black line is the
sum of the three terms HwSE , HtcSE , and HteSE . The close-
ness of the two black lines indicates that the approximation
in (17) works very well.

〈θ†∇ · (u′θ′)〉. Most of the dissipation must therefore oc-
cur in the transient eddy part of the flow, through bottom
drag.

5. Linear Quasi-geostrophic Model

In order to better understand the dynamics of the stand-
ing wave, we have developed a simple analytical model...

[[ Have to decide how much of the analytical solution to
include here vs appendix. ]]

6. Heat Transport Across Streamlines

It has long been recognized that the importance of
standing eddies is greatly reduced by adopting a coordi-
nate system which follows the meanders of the ACC. One
such coordinate system was proposed by de Szoeke and
Levine (1981), who analyzed the heat transport across a
contour of depth-averaged potential temperature. (We will
call this quantity Θ.) While this coordinate is not precisely
a streamline of the ACC, the Θ contours are certainly much
more aligned with the ACC streamlines than are latitude
circles. By analyzing a hydrographic atlas of the South-
ern Ocean, de Szoeke and Levine (1981) found that the
time-mean geostrophic flow transports no heat across a Θ-
contour within the ACC. They inferred that transient eddy
heat transport was required to close the heat budget. This
conclusions was later confirmed by performing the same
analysis in numerical models, where the transient eddy flux
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was known (?).
The idea of “streamwise” coordinates was taken up

from the perspective of the momentum budget by Marshall
et al. (1993). They noted that, in an isopycnal coordinate
system, the standing eddy component of the interfacial
form stress (related to the meridional heat transport) could
be eliminated completely by averaging along time-mean
contours of the Montgomery potential in each isopycnal
layer. Transient eddy interfacial form stress was therefore
required to close the momentum budget. Such an analysis
was performed by ? and ? in idealized models; they both
found that the transient eddy flux across Montgomery-
potential contours was highly localized in regions down-
stream of topographic features. The notion that stand-
ing eddies can be removed by a coordinate transformation
became a cornerstone of the residual-mean model of the
ACC, which should be interpreted as a mean along stream-
lines (Karsten and Marshall 2002; Marshall and Radko
2003; Olbers et al. 2004; Olbers and Visbeck 2005). But
these theoretical models were strongly influenced by labo-
ratory and numerical experiments without topography, in
which a zonal and streamwise average are indistinguish-
able (Karsten et al. 2002; Marshall et al. 2002; Cenedese
et al. 2004; Kuo et al. 2005). One shortcoming of this anal-
ogy is that truly zonally symmetric models have uniform
eddy statistics in x, while models with topography can have
strong local hotspots of cross-stream eddy flux (Thompson
2010). (This is precisely what we find below.)

Most recently, Viebahn and Eden (2012) examined how
to best construct the meridional overturning streamfunc-
tion using both along-isopycnal and along-streamline inte-
gration paths. The goal of this analysis was to eliminate
completely the standing-eddy contribution to the MOC,
which is directly related to both the heat transport and the
interfacial form stress. They found that the standing-eddy
component could only be eliminated completely by using a
streamwise coordinate which varied with depth (similar to
the conclusion by Marshall et al. 1993); since such a coor-
dinate system would be non-orthogonal, this transforma-
tion comes at the expense of great geometrical complexity:
the coordinate is not know a priori, and depends on the
flow. Viebahn and Eden (2012) conclude that a stream-
wise coordinate which does not vary with depth (like that
of de Szoeke and Levine 1981) is adequate to remove most
of the standing eddies component.

One goal of streamwise averaging is to make the real
ACC, with its complex meanders, as close as possible to
a zonally symmetric flow. The conceptual advantages of
this transformation for simple theoretical models are clear.
But our experiments have shown that a zonally symmetric
channel with the exact same forcing is different in impor-
tant ways from one with topography. (For instance, the
thermal-wind transport is halved with topography.) In the
previous sections, we attributed this difference to the pres-

ence of heat transport by the standing eddies. But how
can the difference be explained when the standing eddies
have been eliminated through averaging along streamlines?
This is the question we now take up.

a. Streamwise Coordinate Systems

The time-mean heat transport across any closed con-
tour S0 of S(x, y) can be expressed as

HS0 =ρ0cp

∮
S0

(∫ 0

−H
vθdz

)
· n̂dS (18)

=ρ0cp

∫ ∫
S<S0

∇ ·
(∫ 0

−H
vθdz

)
dxdy (19)

where n̂ = ∇S/|∇S| is the unit normal vector to S. The
overbar indicates a time average, as in the preceding sec-
tions. In the second line, we have used the divergence theo-
rem, yielding an expression that is much easier to evaluate
in practice from a numerical model. We employ with two
different streamwise coordinate systems. The first is de-
fined by Θ, identically to de Szoeke and Levine (1981).
The other uses the barotropic transport streamfunction Ψ.
Formally these two quantities are defined by

Θ(x, y) =
1

H

∫ 0

−H
θdz

Ψ(x, y) =−
∫ y

0

∫ 0

−H
vdzdy′ . (20)

S can be either Θ or Ψ. In what follows, we refer to both
these contours as “streamlines.” As we will see, the results
of our analysis using these two coordinates are similar in
most ways. The two fields are plotted in Fig. 7. The iso-
lines of both are primarily zonal away from the ridge but
meander coherently above and downstream of the ridge.
These meanders arise due to the standing-wave dynamics
discussed in the preceding sections. An important qualita-
tive difference between Ψ and Θ is that Ψ contains regions
of closed contours that do not circumnavigate the domain
(for example, the regions where Ψ < −15 Sv or Ψ > 75
Sv). The transport across these contours can no longer
be interpreted as across the circumpolar current; rather, it
is across the boundary of a barotropic gyre-like recircula-
tion. On the other hand, there are certain Θ contours that
are not closed at all, but intersect the northern boundary
(Θ > 1.6◦C). Despite these problematic regions, the con-
tours of both quantities are well-behaved over most of the
domain, accurately representing the meandering front.

To isolate the physical processes governing the cross-
stream heat transport, we separate the term vθ into ageostrophic
(i.e. Ekman), standing eddy, and transient eddy compo-
nents as follows:

vθ = vaθ + vgθ + v′θ′ (21)
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Fig. 7. The two streamwise coordinates Ψ and Θ, defined
according to (20), for the reference ridge experiment (τ0 =
0.2 N m−2).

where va and vg are the ageostrophic and geostrophic com-
ponents of the time-mean flow. The second term is the
standing eddy flux and the third is the transient eddy flux
(which is predominantly geostrophic). By decomposing
the flux in this way, we can separately diagnose HSEk (the
ageostrophic, Ekman driven heat transport), HSg (the total

geostrophic flow heat transport), HSSE (the standing-eddy
component of HSg ), and HSTE (the transient-eddy compo-
nent) using (19), analogously to the meridional heat trans-
port components defined in Sec. 4. The difference is that
these fluxes are across streamlines defined by S, rather than
latitude circles. (By choosing S = y, we could recover the
standard meridional heat transport definition.)

We examine these different components of the heat flux
across Θ and Ψ contours in Fig. 8 for the reference simula-
tions. (It is especially useful to compare with Fig. 4 from
Sec. 4, showing the components of the heat flux across lat-
itude circles.) We see that the overall magnitude of the
cross-stream heat flux by the Ekman transport is similar

in any coordinate system, peakings around 100 TW. This
heat transport is balanced by a geostrophic flux, leading
to very small net HS . However, by decomposing HSg , the
poleward heat transport by the geostrophic motions, into
standing and transient components, we see that in either
streamwise coordinate, the standing eddy heat flux is in-
deed very close to zero, and the transient eddies are what
balance the Ekman-induced heat flux. This is in strong
contrast to Fig. 4, where standing eddies dominated the
flux across latitude circles.

We now examine how the balance depends on wind
stress. The components of the heat transport across the
Θ contour whose average latitude is y = 1250 km is shown
in Fig. 9 for both flat and ridge experiments. (The equiva-
lent results for Ψ are almost identical and are not shown.)
In both cases, the increasing winds drive more and more
heat across the Θ contours via the Ekman transport. In
the flat experiments, of course only transient eddies can
balance the increasing Ekman-induced heat flux across Θ
contours, as with the meridional heat transport (Fig. 5) in
the previous section. However, in the ridge case, the stand-
ing eddy component HΘ

SE remains rather small, in strong
contrast to Fig. 5. Instead, like in the flat-bottomed ex-
periments, the transient eddy heat flux is what primarily
balances HΘ

Ek in the ridge case. We do point out that HΘ
SE

is not negligible in the balance, achieving a value of about
one third of HΘ

TE for the strongest winds. As suggested
by Fig. 8, this is somewhat dependent on the particular
Θ contour chosen. At different values of Θ, the relative
importance of HΘ

SE is less, or even reversed in sign.
The initial impression given by the streamwise anal-

ysis is in line the perspective advanced by Marshall and
Radko (2003) and Olbers and Visbeck (2005): that adopt-
ing a streamwise coordinate renders the system with to-
pography isomorphic to the zonally symmetric case with
no topography, wherein the dominant balance is between
Ekman advection and transient eddy fluxes. But this pic-
ture is not complete; for one thing, the bulk heat transport
efficiency Kg is demonstrably higher with topography, re-
gardless of the coordinate system used, meaning that the
transient eddies are actually more efficient at moving heat
across streamlines when topography is present. A related
issue is that the eddy heat flux itself is not distributed uni-
formly along a streamwise contour, as in the flat-bottom
case—instead it is highly localized downstream of the ridge.
To properly explore this, we must look at the local eddy
heat flux in the (x, y) plane.

b. Local Cross-Stream Heat Flux

We now wish to decompose the structure of vθ · n̂ lo-
cally, to see where heat is fluxed across streamlines. In the
flat-bottom case, all the statistics are completely homo-
geneous in the x-direction, meaning that each component
of the cross-stream heat flux (Ekman and transient eddy)
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Fig. 8. Components of the heat transport across Θ contours (top panels) and Ψ contours (bottom panels) for the reference
experiments (τ0 = 0.2 N m−2). The flat bottom experiments are on the left, and the ridge experiments are on the right.
The components are: HEk, black, the ageostrophic (primarily Ekman-induced) part; Hg, cyan, the heat-transport by
geostrophic motions; HSE , magenta, the standing eddy part of Hg; HTE , yellow, the transient eddy part of Hg; and H,
light gray, the net heat flux across the contour.

is spread evenly along a streamline. Prior studies of ide-
alized circumpolar currents with topographic ridges (??)
have shown that eddy thickness fluxes (related to the PV
flux) are concentrated in regions near and downstream of
the topographic ridge. A similar conclusion was reached
by ? in an analysis of altimetric data; they found that La-
grangian trajectories cross the ACC fronts preferentially in
a few locations downstream of major topographic features
such as Drake Passage or Kerguelen plateau. Therefore, we
should expect our eddy heat flux to be similarly localized.

To examine the local heat flux, first we note that, from
(19), only the divergent part of vθ participates in the cross-
stream heat flux. Yet locally, the eddy flux can be domi-
nated by a rotational component, obscuring the physics of
cross-stream transport (Marshall and Shutts 1981; ?; ?; ?).
In our numerical model, we can easily isolate the divergent
part by solving the elliptic Poisson problem

∇2φ(x, y) = ∇ ·
(∫ 0

−H
vθdz

)
(22)

subject to the Neumann boundary condition that φx = 0

at the northern and southern boundaries. The divergent
component of the temperature flux is then given by

F div(x, y) = ∇φ . (23)

We solve (22) for ψ numerically using an algebraic multi-
grid solver.2 We also solve separately for the steady ageostrophic,
geostrophic, and transient eddy components of the diver-
gence, giving three separate fields F div

a , F div
g and F div

TE .
Dotted with n̂, these three components correspond with
HSEk, HSSE , and HSTE , the three components of the cross-
stream heat transport identified above.

These three components of the vertically integrated di-
vergent eddy temperature flux (F div

a , F div
g and F div

TE ) are
plotted in Fig. 10 as arrows in the (x, y) plane. This figure
also shows the magnitude of the cross stream component
of the flux. In this figure, Θ was used as the streamwise
coordinate, and the Θ contours are also shown. We now
discuss each component separately.

2This python-based solver is freely available at https://code.

google.com/p/pyamg/.
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Fig. 9. The different components of the meridional heat transport across the Θ contour centered on y = 1250 km (where
HEk is roughly maximum) for different values of the wind stress parameter τ0. Otherwise similar to Fig. 5.

F div
a , the ageostrophic cross-stream flux, primarily il-

lustrates the broad pattern of the Ekman transport bring-
ing heat across the mostly-zonal Θ contours. However, in
the vicinity of the standing-wave meander, the ageostrophic
flux is not purely meridional. The zonal component can-
not be due to Ekman transport, since the winds themselves
are purely zonal. Instead it is caused by ageostrophic cur-
rents which are sustained by advective momentum trans-
port. These dynamics are important locally but evidently
not in an integral sense; as illustrated by Fig. 8, the mag-
nitude of HΘ

Ek (which measures the net ageostophic flux
across Θ contours) is quite close to that determined by
Ekman transport alone.

The heat flux across streamlines from the steady, geostrophic
flow is what we call F div

SE . According to Fig. 10, this flux
carries heat locally in both directions across the Θ con-
tours. The magnitude of this heat flux locally can be
greater than the Ekman-induced flux, especially in the me-
ander region. However, there is very little net heat flux
across streamlines associated with this component. The
positive and negative contributions along a Θ contour ap-
parently cancel out, and HSSE integrates to nearly zero.
This can be explained by the fact that that F div

SE is almost
completely due to advection of the vertically averaged tem-
perature by the barotropic flow: i.e. ∇ · F div

SE ' J(Ψ,Θ).
(We checked this but did not plot it here.) It is obvious
that an integral of such a flux across a contour of either
Ψ or Θ must vanish identically. In the case of Ψ contours,
this is because there can simply be no advection across the
streamlines at all. In the case of Θ contours, it is because Θ
is constant along the integration path and can be removed
from the integral in (19), leaving only the barotropic trans-

port, which also must integrate to zero across any closed
contour. This vanishing of the barotropic flow contribu-
tion is what prompted de Szoeke and Levine (1981) to use
Θ contours in their analysis. The remaining contribution
to HΘ

SE is due to advection by the baroclinic mean flow.
Evidently this contribution is small.

The most interesting and important part of Fig. 10 is
F div
TE , the local divergent transient eddy heat flux across Θ

contours. This eddy flux is what balances the positive flux
of heat across Θ contours by the Ekman transport. The
flux is nearly entirely down-gradient, as expected since it is
just the divergent part (Marshall and Shutts 1981). What’s
more, the vectors of the divergent flux are aligned normal to
the Θ contours, suggesting that these contours are indeed
fundamental. (Recall that the method for identifying the
divergent portion of the flux is completely unrelated to the
choice of streamwise coordinates.) The cross-stream flux
occurs mostly in the vicinity of the strong meander down-
stream of the ridge. In fact, close inspection of the arrows
in Fig. 10 reveals that F div

TE is mostly a zonal flux across the
Θ contours running north-south. These zonal fluxes go in
both direction out and away from the trough of the stand-
ing wave. No wonder the transient eddies did not make a
strong contribution to the meridional heat transport! The
most important eddy heat fluxes are actually zonal, not
meridional at all.

From this divergent eddy heat flux, it is possible to
construct a local cross-stream eddy diffusivity. We define
this diffusivity as

Kdiv
⊥ (x, y) = − 1

H

F div
TE · n̂
|∇Θ|

(24)
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where H is the full depth.3 This quantity measures the
local efficiency of eddies at transporting heat across the Θ
contours. Kdiv

⊥ is plotted in Fig. 11, for both the flat and
ridge reference experiments. For the flat-bottom experi-
ment, Kdiv

⊥ is zonally uniform, peaking in the northern part
of the domain around 4000 m2 s−1. For the ridge experi-
ments, Kdiv

⊥ is highly variable in space. The region of high-
est diffusivity is is downstream of the ridge in the standing
meander, particularly on the right side of the wave trough.
In this region, diffusivities exceed 5000 m2 s−1. This region
is precisely where the gradients are also strongest, leading
to an extremely strong local cross-stream flux. In the west-
ern part of the domain, but the diffusivity and the gradient
are weak. This local correlation between strong mixing and
strong gradient is perhaps the greatest challenge for con-
structing a theoretical model based only on streamwise-
averaged quantities. We will return to this point in the
forthcoming discussion.

7. Discussion and Conclusions

[[ I have started writing this section, but it is incom-
plete. Need to discuss more to decide what to emphasize.
]]

We have examined the equilibration of idealized circum-
polar currents with and without topography. The point
of this exercise was to reach a deeper understanding of

3Here we normalize Kdiv
⊥ by the full depth rather than just

the thermocline depth, in contrast to the definition of Kg in (??).
However, Kg is also defined based on the surface gradient ∂θs/∂y,
rather than ∇Θ, the vertically-averaged gradient. Assuming that
the zonal mean surface gradient is fixed, it can be shown that
∂Θ/∂y ' (h/H)∂θs/∂y, i.e. that the depth-averaged gradient is pro-
portional to the surface gradient scaled by the thermocline depth.
Therefore, our two diffusivity definitions are consistent.

how the thermocline depth is determined. In our simplified
problem, the thermocline depth is regulated completely by
the efficiency of the geostrophic flow at transporting heat
poleward. The amount of heat transported must approxi-
mately balance the equatorward heat transport by the Ek-
man circulation; the thickness of the layer over which the
heat is returned poleward is the thermocline depth. A more
efficient geostrophic heat transport can accomplish the nec-
essary heat transport in a shallower layer.

We first analyzed the simulations using a standard zonal-
averaged framework. From this perspective, the chief dif-
ference between the simulations with topography is that
they contain both standing and transient eddies, while the
flat-bottomed case contains only transient eddies. For the
same forcing, the thermocline depth is significantly shal-
lower when topography is present. Furthermore, the sen-
sitivity of the thermocline depth to the wind stress is less
when topography is present, indicating a more complete
state of eddy saturation. In the experiments with topogra-
phy, the geostrophic meridional heat transport is strongly
dominated by the standing eddy contribution. Therefore,
from this zonally averaged perspective, the eddy saturation
phenomenon is properly understood as an equilibration be-
tween wind-driven Ekman fluxes and standing eddy fluxes.
This should be kept in mind when analyzing more realistic
models, where standing eddies play a similarly prominent
role.

We also analyzed the heat transport across the the
meandering front using two different “streamwise” coor-
dinates, one based on the depth-averaged temperature (Θ)
and one based on the barotropic transport streamfunction
(Ψ).

Our study suggests that we have been framing the equi-
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Flat

Ridge

Fig. 11. Local eddy diffusivity for the vertically-integrated
divergent eddy heat flux, defined according to (24). The
Θ contours are shown in gray. The direction and magni-
tude of the divergent eddy heat flux F div

TE are indicated by
the black arrows. The integrated flux across contours is
essentially the same in both experiments.

libration problem incorrectly. All of the current theoretical
models for the ACC stratification rely on eddy diffusiv-
ity closures based on zonally or streamwise-averaged fields
alone, i.e. a fundamentally axisymmetric background state
(Johnson and Bryden 1989; Karsten et al. 2002; Cessi and
Fantini 2004; Marshall and Radko 2003; Olbers and Vis-
beck 2005; Cessi 2008; Jansen and Ferrari 2012; Nikurashin
and Vallis 2012). Many of these models can trace their clo-
sure schemes back to the two-layer quasigeostrophic equi-
libration problem studied by Held and Larichev (1996), or
to the diffusive closures made by Green (1970) and Stone
(1972) in an atmospheric context. (See also ?Schneider
2006, for a review of the atmospheric side of the problem.)
Ultimately, these theories are finite-amplitude, nonlinear
closures of the classic baroclinic instability problems posed
by Charney (1947), Eady (1949), and Phillips (1951) for
zonally-symmetric background states.

A powerful criticism of this paradigm can be found in

Pierrehumbert (1984), who examined the baroclinic insta-
bility of a simple flow with variations of the shear in the
zonal direction. Such a problem is clearly applicable to
our model, and indeed to the real ACC. There are impor-
tant qualitative differences between this “local” instability
problem and the classical zonally symmetric problem, such
as a strong dependence on the barotropic zonal mean flow.
(The zonally symmetric problem is essentially gallilean-
invariant and is therefore insensitive to the addition of a
barotropic mean zonal flow, but this invariance is broken
by the addition of fixed topography.) The unstable local
modes are confined spatially to the region downstream of
the maximum shear.

The strong spatial variation in mixing along a Θ con-
tour means that a diffusive closure for the cross-stream
transient eddy heat flux based on the streamwise-averaged
background gradient is unlikely to be satisfactory. To see
this more clearly we can rewrite the cross-stream eddy heat
transport using the diffusivity defined in (24) as

HΘ
TE = ρ0cp

∮
Θ

F div
TE · n̂ds = −ρ0cp

∮
Θ

Kdiv
⊥ |∇Θ|ds . (25)

If Kdiv
⊥ were approximately constant along the contour, it

could be removed from the integral, and HΘ
TE could be

written only in terms of this constant and the streamwise-
averaged |∇Θ|. But in fact, Fig. 11 shows that Kdiv

⊥ and
|∇Θ| are strongly correlated in space, with large diffusivity
precisely where the gradients are strong.
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