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1. Introduction6

The meridional overturning circulation of the ocean plays a fundamental role in the7

climate system by providing a link between the deep ocean, where vast quantities of heat8

and carbon can be stored, and the atmosphere (??). Much of the global deep water upwells9

in the Southern Ocean due to Ekman pumping by the surface westerlies, but the wind-driven10

upwelling is partially cancelled by an eddy-induced circulation (Toggweiler and Samuels 1998;11

Marshall and Radko 2003; Abernathey et al. 2011; Marshall and Speer 2012).12

Despite its importance, direct observation of the MOC is extremely challenging, demand-13

ing continuous, high-resolution measurements of the ocean flow field across entire basins and14

through the full water column. One such attempt has been made in the North Atlantic15

through the RAPID program, a dense array of moorings and repeat sections along 26.5◦ N16

(??). However, doubt remains whether even this sophisticated network can distinguish MOC17

trends from slow internal variability and noise from the eddy field (?). Given the remoteness18

and hostility of the Southern Ocean, it seems unlikely that such direct approaches will ever19

be implemented there. Instead, various indirect methods will continue to be employed.20

A common approach in the Southern Ocean has been to infer distinct components of21

the MOC in different ways. For instance, Sallée et al. (2010) recently used ARGO data to22

estimate the steady geostrophic flow, satellite data to calculate the Ekman pumping, and23

the eddy parameterization of Gent and McWilliams (1990, henceforth referred to as GM)24

to estimate the eddy-induced advection. The divergence of these three components of the25

transport across the base of the mixed layer gave the net subduction and upwelling, i.e. the26

residual MOC.27

The isoypcnal mixing rates from DIMES will be very valuable if they can lead to im-28

proved estimates of the eddy-induced component MOC in the Southern Ocean. However,29

the link between observable diagnostics of mixing and the actual eddy-induced transport is30

somewhat obscure. The studies of Speer et al. (2000) and Sallée et al. (2010) rely on the GM31

framework to infer the eddy-induced advection, which is based on the lateral diffusivity of32
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buoyancy. Smith and Marshall (2009) have shown that this quantity can differ significantly33

from the diffusivity of potential vorticity or passive tracers. Smith and Marshall (2009) and34

Abernathey et al. (2010) also demonstrated that mixing rates in the Southern Ocean vary35

strongly with depth, a fact that further upsets the equivalence between GM and potential36

vorticity mixing.37

The goal of this paper is to compare various methods of diagnosing lateral mixing and38

assess which diagnostics are the most useful. Some of these diagnostics are possible only39

in the context of a numerical model, in which all the dynamical fields are known exactly.40

We call these perfect diagnostics. But there are less precise diagnostics have been or could41

potentially be applied to the real ocean, for example, in the recent DIMES experiment. We42

call these practical diagnostics.43

[[[Need to improve and expand the intro.]]]44

2. Numerical Model45

[[[Needs to be written.]]]46

3. Perfect Mixing Diagnostics47

The perfect mixing diagnostics are quantities which can be calculated only with very48

detailed synoptic observation of the flow. Such diagnostics provide the most complete char-49

acterization of mixing and transport possible. They are straightforward to extract from50

numerical models but nearly impossible for the real ocean. (In the atmosphere, where ex-51

tensive reanalysis products provide sufficient spatial and temporal resolution, many perfect52

diagnostics can be calculated.)53

Observational problems aside, the interpretation of perfect mixing diagnostics still poses a54

challenge. Different diagnostics have been used throughout the literature to characterize eddy55
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mixing, and the relationship between these diagnostics is not always obvious. Our purpose56

here is to consolidate many different diagnostics in one place and show their relationship.57

A similar study was made for the atmosphere by Plumb and Mahlman (1987, henceforth58

PM87), who also review some theoretical aspects. Here we basically repeat their methodology59

for an ACC-like flow. In the next section, we will compare the perfect diagnostics with60

practical diagnostics, that is, diagnostics which there is some hope of obtaining from the real61

ocean.62

a. Passive Tracers63

Our starting point is to examine the mixing of passive tracers. Passive tracers obey an64

advection-diffusion equation of the form65

∂c

∂t
+ v · ∇c = κ∇2c+ C (1)

where c is the tracer concentration, u is the velocity field, κ is a small-scale diffusivity, and66

C is a source or sink. We will focus on cases where C = 0 and the diffusive term is negligible67

for the large-scale budget of c. (Some small-scale diffusion is necessary for mixing to occur,68

and likewise it is impossible to eliminate diffusion completely from numerical models. But69

for flows of large Peclét number, diffusion is an important term only in the tracer variance70

budget, not the tracer budget itself.)71

1) Diffusivity Tensor72

PM87 performed a detailed study of the transport characteristics of a model atmosphere73

using passive tracers. Here we briefly review their definition of K, the diffusivity tensor,74

which we view as the most complete diagnostic of eddy-transport. The reader is referred to75

PM87 for a more in-depth discussion.76

Taking a zonal average of (1) (indicated by an overbar) and neglecting the RHS terms,77
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we obtain78

∂c

∂t
+ v · ∇c = −∇ · Fc (2)

where Fc = (v′c′, w′c′) is the eddy flux of tracer in the meridional plane. The tensor diffusivity79

K relates this flux to the background gradient in each direction; it is defined by80

Fc = −K · ∇q . (3)

This equation is underdetermined for a single tracer, but PM87 thought to use multiple81

tracers with different background gradients to calculate it. This method has also recently82

been applied by ?.83

We found K by solving (3) for six independent tracers. In this case, (3) is overdeter-84

mined, and the “solution” is a least-squares best fit. The initial tracer concentrations used85

were as follows: c1 = y, c2 = z, c3 = cos(πy/Ly) cos(πz/H), c5 = sin(πy/Ly) sin(πz/H),86

c5 = sin(πy/Ly) sin(2πz/H), c6 = cos(2πy/Ly) cos(πz/H). (We experimented with different87

initial concentrations, but found the results to be insensitive to this detail, provided many88

tracers with different gradients were used.) The tracers were allowed to evolve from these89

initial conditions for one year. (An experiment with two years of evolution produced very90

similar results.) Fc and ∇c were calculated for each tracer by performing a zonal and time91

average over the one-year period and then over an ensemble of 20 different years. In matrix92

form, the equation solved to find K(y, z) was93  v′c′1 v′c′2 ... v′c′6

w′c′1 w′c′2 ... w′c′6

 = −

 Kyy Kyz

Kzy Kzz


 ∂c1/∂y ∂c2/∂y ... ∂c6/∂y

∂c1/∂z ∂c2/∂z ... ∂c6/∂z

 (4)

where each element of K at each point in (y, z) space is a least-squares estimate that mini-94

mizes the error across all tracers.95

It is most informative to decompose K into two parts,96

K = L + D , (5)

where L is an antisymmetric tensor and D is symmetric. Because the flux due to L is normal97

to ∇q, its effects are advective, rather than diffusive (Plumb 1979, PM87). Using this fact,98
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we can rewrite (2) as99

∂c

∂t
+ (v + v∗) · ∇c = ∇ · (D · ∇q) (6)

where v∗ = (v∗, w∗) is an eddy-induced effective transport velocity, defined by a streamfunc-100

tion χ, such that101

v∗ = −∂χ/∂z , w∗ = ∂χ/∂y (7)

and102

L =

 0 −χ

χ 0

 . (8)

Under adiabatic conditions, χ is approximatey equal to the transformed-eulerian-mean eddy-103

induced streamfunction, or the “bolus transport” stream function in thickness-weighted104

isopycnal coordinates. Again, for more detailed discussion, the reader is referred to PM87.105

Because L is advective in nature (and doesn’t appear in the tracer variance budget),106

all of the actual mixing due to eddies in contained in D. Since D is symmetric, it can be107

diagonalized by rotation through an angle α where108

tan 2α =
2Dyz

Dyy −Dzz

. (9)

The rotated matrix,109

D′ =

 D′yy 0

0 D′zz

 =

 cosα − sinα

sinα cosα

D (10)

describes the eddy diffusion along (D′yy, the major-axis diffusivity) and across (D′zz, the110

minor-axis diffusivity) the plane defined by α, which we call the mixing angle.111

We have seen that the physical interpretation of K is best summarized by four quantities:112

χ, α, D′yy, and D′zz. These quantities are plotted in Fig. 1. We see that the mixing angle113

is along isopycnals throughout most of the domain, except close the surface, where the114

mixing acquires a more horizontal character. This pattern is consistent with the paradigm115

that ocean eddies mix adiabatically in the interior and diabolically in the “surface diabetic116
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layer,” i.e. the layer over which isopycnals outcrop (Treguier et al. 1997). Consequently, D′yy117

can be described as an isopycnal mixing coefficient, and D′zz as diapycnal mixing.118

An obvious feature in the spatial structure of D′yy is pronounced peak at mid-depth119

(approx. 1200 m). Enhanced lateral mixing at a mid-depth critical layer is a general feature120

of baroclinically unstable jets (Green 1970; Killworth 1997). Many studies have confirmed121

the presence of an enhanced mid-depth mixing layer in the ACC (Smith and Marshall 2009;122

Abernathey et al. 2010; Klocker et al. 2011). Our highly idealized model evidently shares123

this behavior. It is also important to note, though, that D′yy varies even more strongly with124

y, with the strongest mixing being in the “storm track” at the center of the channel.125

The interpretation of D′zz is more puzzling. The major-axis diffusivity is much greater126

than the minor: |D′yy|/|D′zz| ' 107. Combined with the fact that α departs only very slightly127

from 0 (due to the aspect ratio of the domain), this means that D′yy ' Dyy. On the other128

hand, each individual component of D is much greater in magnitude than D′yy, whose value129

depends on large cancellations in (10). The implied diapycnal diffusivity of O(10−4) m2 s−1130

is at odds with a previous study focused exclusively on diapycnal mixing (?), which found131

values of O(10−5) m2 s−1 and below in the exact same model. Our conclusion is that small132

errors in α cause D′zz to be polluted with spurious large values, and that the multiple-tracer133

method described here is not a good diagnostic of diapycnal mixing. [[[ How can we improve134

this argument? ]]] Regardless, the focus of the present study is on lateral mixing, and we135

will not concern ourselves with D′zz further here.136

Say something about χ. Griffies (1998).137

2) Nakamura Effective Diffusivity138

The framework developed by Nakamura (1996) has gained widespread use in assessing139

lateral mixing in the ocean and atmosphere (Nakamura and Ma 1997; Haynes and Shuck-140

burgh 2000a,b; Marshall et al. 2006; Abernathey et al. 2010; ?). This framework is relies on141

a tracer-based coordinate system, in which the flux across tracer isosurfaces can be charac-142
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terized by an effective diffusivity, which depends only on the instantaneous tracer geometry.143

The same concept was developed by Winters and D’Asaro (1996) and subsequently applied144

by ? to diagnose the temporal evolution of diapycnal mixing in an internal-wave-breaking145

scenario.146

The effective diffusivity is defined as147

Keff = κ
L2
e

L2
min

(11)

where...blah blah blah. Do we really have to repeat this shit again?148

As described in the preceding section, the model was constructed to be as adiabatic149

as possible, with explicit horizontal and vertical diffusion set to zero. However, the effec-150

tive diffusivity framework requires a constant small-scale background horizontal diffusivity.151

Therefore, in the tracer advection for the effective diffusivity experiments, we used an ex-152

plicit horizontal diffusivity of 50 m2 s−1. Analysis of the tracer variance budget indicated153

that numerical diffusion elevated this value slightly, to 55 m2 s−1. We performed our exper-154

iments by initializing a passive tracer with concentration c = y and allowing it to evolve155

under advection and diffusion for two years. Every month, a snapshot of c and T was out-156

put. This procedure was repeated for 10 consecutive two-year periods, to create a smooth157

ensemble-average picture of the evolution of Keff over two years.158

The 3D tracer field must be sliced into 2D surfaces in order to compute Keff (y). The159

most straightforward way to accomplish this is to examine surfaces of c at constant z; we call160

this KH
eff . However, since the mixing angle is along isopycnals, a more physically relevant161

choice is to project c into isopycnal coordinates; the effective diffusivity computed from this162

projection we call Kiso
eff . Abernathey et al. (2010) tried both methods, and here we do the163

same. Not surprisingly, we see a better match between Kiso
eff and D′yy.164

After two months, the overall magnitude of both Keff calculations stabilizes and remains165

roughly constant, as does the spatial structure of Kiso
eff . The spatial structure of KH

eff , on166

the other hand, continues to evolve over the two year period, departing further and further167

from Kiso
eff . The results of one Keff ensemble calculation (at 10 months) are shown in Fig.168
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2. Comparing this figure with Fig. 1, we see that Kiso
eff is quite similar in magnitude and169

spatial structure to D′yy. This agreement between these two diagnostics, based on quite170

different methods, is expected but nevertheless encouraging. KH
eff , on the other hand, while171

having the right general magnitude, has significant differences in spatial structure. From172

this we conclude that KH
eff is somewhat misleading diagnostic whose physical interpretation173

is unclear. Kiso
eff , on the other hand, seems like a robust diagnostic of isopycnal mixing.174

b. Active Tracers175

Here we compute flux-gradient diffusivities for active tracers. Active tracers are tracers176

which obey (1) but which also affect the dynamics of the flow. The active tracers we177

consider are buoyancy and potential vorticity. Unlike the passive tracers, these active tracers178

are forced at the surface, and their zonal means have reached a steady-state equilibrium.179

Therefore, it is interesting to ask whether they experience the same diffusivity as the passive180

tracers.181

1) Buoyancy Diffusivity182

A simple and widely-used diagnostic of eddy mixing is the horizontal buoyancy diffusivity,183

defined as184

Kb = −v
′b′

by
. (12)

This quantity plays a central role in the Gent and McWilliams (1990) eddy parameterization.185

Fig. 3 [[[More needed.]]]186

2) QGPV Diffusivity187

Shown in Fig. ??. [[[More needed.]]]188
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3) Isopycnal Ertel PV Diffusivity189

Have not done this calculation! Is it necessary?190

4. Practical Mixing Diagnostics191

a. Lagrangian Diffusivity192

b. Tracer Release193

c. Comparison of All Diagnostics194

5. 2D Model195

6. Conclusions196

Acknowledgments.197

Start acknowledgments here.198
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Table 1. This is a sample table caption and table layout. Enter as many tables as necessary
at the end of your manuscript. Table from Lorenz (1963).

N X Y Z
0000 0000 0010 0000
0005 0004 0012 0000
0010 0009 0020 0000
0015 0016 0036 0002
0020 0030 0066 0007
0025 0054 0115 0024
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1 Decomposition of eddy diffusivity tensor K into a major-axis diffusivity D′yy,261

minor-axis diffusivity D′zz, and eddy-induced transport stream function χ.262

χ has been converted to Sv by multiplying by Lx. The mean isopycnals263

are shown in white contours (contour interval 0.5◦ C), and the thermal-wind264

component of the zonal-mean velocity is shown in grey (contour interval 1265

cm s−1). In the left two panels, the mixing angle α is indicated by the black266

dashes. See text for discussion. 18267

2 Nakamura effective diffusivity calculated on a passive tracer after 10 months268

of evolution. Values shown are an average over an ensemble of 10 independent269

tracer-release experiments. In the left panel, KH
eff was calculated on slices of c270

at constant z (horizontal). In the middle panel, Kiso
eff was calculated on slices271

of c at constant T (isopycnal). The right panel shows Kiso
eff mapped back to272

depth space using the mean isopycnal depths. 19273

3 Left panel: horizontal buoyancy diffusivity Kb calculated from (??). Right274

panel: The equivalent quantity implied by χ. 20275

4 Left panel: mean qgpv gradient Qy. Middle: eddy qgpv flux v′q′. Right: qgpv276

diffusivity Kq. 21277
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Fig. 1. Decomposition of eddy diffusivity tensor K into a major-axis diffusivity D′yy, minor-
axis diffusivity D′zz, and eddy-induced transport stream function χ. χ has been converted
to Sv by multiplying by Lx. The mean isopycnals are shown in white contours (contour
interval 0.5◦ C), and the thermal-wind component of the zonal-mean velocity is shown in
grey (contour interval 1 cm s−1). In the left two panels, the mixing angle α is indicated by
the black dashes. See text for discussion.
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Fig. 2. Nakamura effective diffusivity calculated on a passive tracer after 10 months of
evolution. Values shown are an average over an ensemble of 10 independent tracer-release
experiments. In the left panel, KH

eff was calculated on slices of c at constant z (horizontal).
In the middle panel, Kiso

eff was calculated on slices of c at constant T (isopycnal). The right
panel shows Kiso

eff mapped back to depth space using the mean isopycnal depths.
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Fig. 4. Left panel: mean qgpv gradient Qy. Middle: eddy qgpv flux v′q′. Right: qgpv
diffusivity Kq.
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