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I examine the geostrophic turbulence field in equilibrium with a horizontally uniform mean
zonal flow driven by solar heating. The equilibrium mean vertical shear is highly supercriti-
cal, and the turbulence field has its maximum in kinetic energy at wavenumbers smaller than
the wavenumbers of fastest growth predicted by linear stability thcory. Wavenumber spectra
obtained by averaging lengthy numerical integrations of the two-level quasi-geostrophic
equations agree well with the predictions of a simple Markovian turbulence model. Analysis
of the turbulence model suggests that the most energetic wavenumbers equilibrate from
scattering of the temperature perturbations into higher wavenumbers by the barotropic
advecting ficld. In the higher unstable wavenumbers, including the most supercritical, linear
instability is offset chiefly by local rotations of the unstable structures by larger, more
energetic eddies.

1. INTRODUCTION

The general circulation of the atmosphere and more particularly the
growth and decay of baroclinic waves fueled by potential energy in the
zonally averaged flow have been studied for many years. Most previous
theoretical studies have employed small amplitunde expansions of the flow
field about a zonal mean current. While these theories have proved
physically insightful, and are apparently adequate to explain many fea-
tures of the observed finite-amplitude flow, they may be incapable of
detailing the physical processes that ultimately limit the growth of
unstable waves and bring about a statistically steady final state. The
establishment of such state clearly depends on nonlinear eflects.

Highly nonlinear flow is the province of direct numerical simulations of
the equations of motion, and statistical turbulence theory. In contrast to
the linear perturbation theory, which is an expansion about a state of
small amplitude, the turbulence theories of the “direct-interaction family”
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may be looked on as expansions about a completely random state. The
turbulence theories make no unrealistic assumptions about the amplitude
of the motion.

This paper studies the highly nonlinear geostrophic turbulence field that
arises on a horizontally uniform mean zonal flow with vertical shear. The
phrase “finite-amplitude baroclinic instability” aptly describes the geo-
metry and physics. The tools of the analysis are elementary physical
reasoning, direct simulations of the two-level quasi-geostrophic equations
of motion, a closure theory of turbulence, and related simple ideas from
statistical mechanics. The primary goal is to explain the mechanism by
which amplifying baroclinic waves reach statistical equilibrium in a simple
atmospheric model, and to examine the nature of the equilibrium state.

In a previous study (Salmon, 1978; hereinafter called S78) I considered
two-layer quasi-geostrophic turbulence under the simplifying assumptions
of horizontal isotropy and uniform vertical average energy density. The
former study offered physical insight, but the imposed statistical symmetry
proved too severe to permit detailed comparison between the theory and
geophysical observations. The present study replaces the isotropic stirring
force of S78 by a westerly mean flow with vertical shear. The mean shear
is maintained by solar heating, and it is the source of energy for the
turbulence field, which is of central interest. The mean flow is constrained
to be horizontally uniform so that the turbulence field is statistically
homogencous in the horizontal, but anisotropy induced by the mean flow
and by the earth’s curvature (the beta-effect) is now included in the
theory. Also unlike S78, the present study uses Ekman friction at the
lower boundary only. The qualitative arguments of 578 (which are
summarized below but not reproduced in detail) apply fully to the new
model, but 1 am here primarily concerned with those new features of the
turbulence that depend on the presence of the mean flow and the beta-
effect. However, this paper should be read as a sequel to S73.

I have tried to present my results in a way which would appeal both to
meteorologists and turbulence theorists. Section 2 describes the model
equations of motion and reviews important features of the baroclinic
instability problem. Section 3 extends the qualitative theory of S78 and
proposes several testable mechanisms for baroclinic adjustment. Section 4
reports three lengthy numerical simulations with differing values of beta
and ground friction. Section 5 describes the turbulence closure. Readers
who are unfamiliar with closure methods can skip Section 5 with little loss
in continuity. Section 6 compares the wavenumber spectra predicted by
closure with the results of the numerical simulations. The agreement is
good. Close inspection of the closure equation governing northward heat
flux reveals the fundamental result of the paper: that linear instability is
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ultimately limited by the scrambling effect of larger-scale barotropic
motions. This observation suggests an asymptotic analysis, pursued in
Section 7, in which the scrambling mechanism is related more specifically
(but with less quantitative confidence) to stretchings and rotations of a
passively advected wavevector which represents the heat flux in unstable
eddies.

In many previous applications, turbulence closure theories have been
used to extend the resolution (or Reynold’s number) attainable by direct
simulation of the equations of motion. In this paper both the closure and
simulation experiments are performed at a relatively low reselution
corresponding to a square with 32 gridpoints in each direction. The low
resolution permits the simulations to be integrated long enough to get
stable averages of the large scales of motion, and finer resolution is
perhaps not justified by the quasi-geostrophic dynamics. Here, the closure
is used primarily to compute the effects of one statistic on another in a
way that permits analytical simplifications after the dominant terms are
identified. As in S78, the primary goal is physical insight.

2. THE MODEL

The model equations are nearly the same as those used in S78. except that
now a strictly meteorological interpretation is placed on all variables. The
dependent variables are /,, the streamfunction for the horizontal velocity
at the upper (nominal 250 mb) level; and ¥, the streamfunction at the
lower (750 mb) level. The governing quasi-geostrophic vorticity equations
at the two levels are

&,
S I l)=F, =12 (2.1a)
it
where
L=V 3R =), =31 (2.1b)
and
ob b 0
Japy=29¢ od (2.1¢)

ox @y dx oy’

In the above equations, F; is the frictional torque at the ith level; kgt
(units of length) is the internal Rossby deformation radius; and f is twice
the local vertical component of the earth’s rotation. The Cartesian
coordinates (x,y) measure distance in the (east, north) direction. Vertical
dependence has been removed by finite differencing, and the differencing
incorporates the vertical boundary conditions of no vertical motion at
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O0mb and at the earth’s surface (in the case of no viscosity). The Coriolis
parameter f is prescribed by

f=fo+By (22)

where f, and f are constants. Equations (2.1-2.2) are standard in
meteorology (Rossby, 1939; Charney and Phillips, 1952). For a discussion,
see Haltiner (1966). For a modern derivation, see Pedlosky (1964).

In this paper, I set

o= Viy+yi, and W= —Vart U, (2:3)

where ¥, and V, are either prescribed constants or vary only in time as
described below. The primed streamfunctions y/, ¥, are constrained to be
periodic in x and y with period L. The periodic box has the same surface
area as earth, that is

L2=4nr?, (2.4)

where r, is the radius of the earth. The westerly mean flow (V;,V,) is the
sole source of energy for the periodic motion. However, only the difference
V, —V, is dynamically relevant, since the effect of a completely uniform
mean current can be removed from the equations by Galilean transfor-
mation. For this reason I take

Vi=—V,=V (2.5)

in (2.3). The frictional torques F; are given to be

F,=0, and F,=—/V%, (2.6)

where /. is the coefficient of (Ekman) friction with the earth’s surface and
i, is the streamfunction at the surface.
In place of ¥/}, ¥} it is convenient to work with the modal variables

Y =3 +y) and  T=30)— ). (2.7)

The “barotropic” streamfunction ¥ may be regarded as the streamfunction
at 500 mb. The “baroclinic” streamfunction t is proportional to the 500 mb
temperature. In terms of ¥, 7 (2.1) become

5 3 "
V21/1,+Bca—x+ Vg— V21+J(1//,V2¢)+J(1,Vzr)+g V2. =0, (2.8)
) X
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and

i—Vzl,// +J (i, V2r) + J (1, V4) —%Vzws

0T
VZ‘L', +ﬁT+ V
ox a

=k§[r,— V%+J(1//,r)j|, (2.9)
ox

which are closed by setting
W=t —1.61. (2.10)

The factor of 1.6 comes from linear extrapolation with height through a
“standard atmosphere”.

If V=4=0, then (2.8, 2.9) conserve the mechanical energy of the
periodic flow, defined (in units of energy per unit area) as

AP o o v .y
E=y, LWL VUL VsV kG0 ) e
Ap 2.2
:?[w VY + VT - V4 k2] (2.11)

where

Ap=500mb and g=9.8msec 2,

and the square brackets denote average over the periodic box. The three
terms on the right side of (2.11a) represent the kinetic energy in the top
layer, the kinetic energy in the bottom layer, and the available potential
energy. The three terms in (2.11b) represent the kinetic energy in
barotropic flow, baroclinic kinetic energy, and the available potential
energy.

If V0, the rate of production (per unit area) of energy in periodic flow
from the mean flow energy is '

P=Q2VkzAp/g)V 1) e (2.12)

which is proportional to the northward eddy heat flux at 500 mb.

A well-known stability calculation examines the behavior of (2.8, 2.9)
when the periodic motion is weak enough so that ¥V may be considered
constant and the nonlinear terms in ¢, t neglected. With A=0 (for
simplicity) one finds solutions of the form real part of

Y =const -exp [i(k.x+ k,y—ot)] (2.13)
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and
= (w+pk /K W/Vk,,

where

— Bk, K KL [ AR (K- ka)\12
_ PR Ny Rk Sy B ) .
*=wr ! e T\ T ’ (2.14)

K2=kZ+ki, and kj=p/V.
For =0, (2.14) reduces to

kz_ 2N\1/2
o=+ ke (2.15)
X + 2

and all wavenumbers k (with k,#0) on k<ky are unstable. Fastest
growth occurs for k=k,=0.644 ky. By (2.13) the 500 mb temperature field
is displaced ninety degrees west in phase from the streamfunction Y in all
growing waves. This corresponds to optimal correlation between warm
and north-flowing air to maintain instability. If f#0 but k; <kg, then at
least some of the wavenumbers k on k< ky are unstable. Under typical
midlatitude conditions, kz;~4, kgp~8, and the unstable range extends
approximately from kz/2'2 to kg.t The phase lag between ¥ and 7 is
reduced from the optimum value at all k, and growth rates are less than
with f=0. All of these unstable modes are “deep” in the sense of Held
(1978). If ¥ =0, (2.14) reduces to the dispersion relation for barotropic and
baroclinic Rossby waves,

/1,2 . —
={ Bljis w#0 =0, (2.16)
— Bk /(K +kz); ¥=0, 7#0.

The baroclinic instability calculation has, of course, been made on
numerous more sophisticated dynamical models using more realistic mean
flow profiles. However, many workers have noted that, in some respects,
the calculations on simple models like the one used here compare better
with atmospheric observations than do the more refined calculations.
Smagorinsky (1963), Moura and Stone (1976) and especially Stone (1978)
present evidence that the observed zonal shear is near the critical value
predicted by the two-level model at latitudes from 40-45°N to 75°N, in all
four seasons.

tAll guantities in this paper will have dimensional values, to facilitate comparison with
real data. The single exception will be wavenumbers, which will always be given In
nondimensional form. The convention is that “wavenumber n” has » cycles in a distance L.
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The statistical. theory introduced in Section 5 provides a closed set of
equations in the second moments (the wavenumber spectra) of i and 1.
The remaining task of this section is to deduce the form these moments
can take. Let the streamfunctions be expanded in Fourier series,

Px, 1) =Y Yilt)e™ ™ (2.17)
k
where
" Y, if n=0
w_{r, if n=1,

and x is horizontal position. Since " is real, ¥} is conjugate symmetric.
Let ¢ > denote ensemble average. Since the flow is statistically homo-
geneous in X, the only nonvanishing spectral moments are of the form

R =i 0. (2.18)
By conjugate symmetry of ¥,
RY=(R{)Y, (2.19)

and by a symmetry property of the model equations,¥

Rk k=Rl - (2.20)
Define
U k)= k> i/ |dk|, T (k)= kit _u/dk|, 221)
D(k)=k?Real (Y o >/|dk|, F(k)= —k?Imag (Y, >/|dK|
and
E(k)=(k* + k2)T (k)/k2,
and let

k=k(cos8,sin ),

where 0 is the angle measured counterclockwise to k from the k -axis. It
follows from (2.19) and (2.20) that the spectra may be expanded in
angular series of the general forms

Uk)= U(k)|:1 + i U,,(k)cos (2n0)j|, (2.22)
n=1

+If Y (x.¥) and t(x,y) solve (2.8, 2.9) then so do —y(x, —y) and —rt(x, —y). I the
ensemble of initial conditions contains both solutions with equal probability then (2.20)
holds for all time.
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plus corresponding equations with U replaced by T and then D: and
Fk)=F(k)cos0+ 3 F,, . (k)cos[(2n+1)0]. (2.23)
n=1
It is convenient to define
U(k)=2nkU(k), T(k)=2rkT(k), D(k)=2nkD(k),
_ _ _ (2.24)
F(ky=2nkz{V>F(k), E(k)=(k*>+k3)k 2T(k).

The physical content of these spectra can best be learned by inspecting the
statement

Ap %
Quantity = rp’ (Integrand)dk,
g o

with the various substitutions from Table 1. In summary, positive
U,(k)(T,(k)) corresponds to clongation of barotropic (baroclinic) eddies

TABLE 1

Quantity Integrand
Barotropic energy U(k)
Baroclinic kinetic energy T(k)
Total kinetic energy U(k)+T(k)
Available potential energy kT (k)/k?
Total baroclinic energy E(k)
Total energy U(k)+E(k)
Kinetic energy in the upper layer HUK) + T(k)+2DB(k)]
Kinetic energy in'the lower layer LU+ Tik)—2D(k)]

-

(k)

Production of turbulent energy from the mean flow

in the north-south direction. D(k) is positive if warm air is more likely to
be found in high pressure than in low. Positive F(k) means that warm air
occurs more frequently to the west of high pressure than to the east.
Positive D(k) implies more energy in the upper layer than in the lower,
and positive F(k) implies a northward eddy heat flux. In S78,

F(k)=Uj,(k)=T,,(k})=D,,(k)=0,
by the assumption of horizontal isotropy, and
D(k)=0,

by the imposcd vertical statistical symmetry.
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3. QUALITATIVE THEORY

A remarkably simple deduction based on the quadratic invariants of the
motion will yield the direction of wavenumber energy transfer in sta-
tionary, homogeneous, two-layer turbulence. The deduction, which was
given in S78, owes its simplicity to a choice of vertical basis which divides
the total epergy in horizontal wavenumber k into barotropic and total
baroclinic components. The same theory applies to the present system.
The quadratic integral invariants of the motion are the total mechanical
energy, and the potential enstrophies,

&, =12

of each layer. It is convenient to replace the latter two by their sum and
difference, which are of course also invariant. Then in the notationf of the
previous section the three invariants are (proportional to):

I =) Uk)+E(k),
k
I, =Y kK*U(K)+ (k* + kg )E(k), (3.1)
k
Iy=> (k* + kz)D(k).
k
Let k, p, g be any three horizontal wavenumbers that sum vectorially to
7ero,
k+p+q=0. (3.2)

The energy I,, sum enstrophy I,, and difference enstrophy I, are
conserved triad-wise by the nonlinear terms in the equations of motion.
That is, “barotropic” triads (Y, ¥, ¥,) and “baroclinic” triads (Y, Tp, Tq)
respectively obey the detailed conservation laws

UK)+U(p)+U(Q)=0, KUK)+p’Up)+q°U(q)=0, (3.3)
and
UK)+E@)+E@=0, KUK+ +kDE®)+ (g +kR)E@ =0,
3.4)
where the tendencies are those resulting from interaction with other

+This statement is true even if averaging is omitted from (3.1) because the invariants are
conserved in every realization.
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members in the triad.t The conservation of
(k* + kx)D(k)+ (p*> + kz)D(p) + (¢* + kx)D(q), (3.5)

which places a restriction on energy transfer between layers, is actually a
condition on the four distinct triads (Y, ¥, ), (s, Ty Tgh (T4 ¥, 7,) and
(Tka‘cp’ l//q)

Important characteristics of the energy transfer follow directly from (3.3)
and (3.4). From these two equations, one sees that the rules governing
triad interactions are the same as in ordinary two-dimensional turbulence
except for the interactions obeying (3.4) on scales larger than the
deformation radius (k, p,q<kg). Energy transfer in the latter is a pairwise
exchange between the two baroclinic components only; can be nonlocal
(p<€g<kg) in wavenumber; and can move energy efficiently toward higher
wavenumber. There is negligible energy exchange with U(k), except as
k— k. One can show further that, in a two-layer system in which the only
energy source (e.g. solar heating) is at some low wavenumber k, <kp; and
k,> kg represents the horizontal scale at which the motion ceases to be
quasi-geostrophic; the equilibrium wavenumber energy transfer must be as
indicated by the solid arrows in Figure 1. The dashed arrows in the same
figure indicate the direction of sum potential enstrophy flow. The argu-
ment that leads to Figure 1 leans heavily on the selection rule (3.2) and
therefore applies strictly to homogeneous flow. However, it generalizes
easily to flow on a spherical surface by the analogous selection rules of
surface harmonics. For details, refer to S78.

WIND OR
SOLAR
NET INPUT
4
Baroclinic Energy -7
= | e SCATTERING
; INTO
3-d
e TURBULENCE
/ Barotropic Energy N
NET LOSS
TO BOUNDARY
LAYER FRICTION
FIGURE 1 Energy (solid arrows) and sum potential enstrophy (dashed arrows) flow in

wavenumber space. For an explanation, see the text.

+Note therefore that U (k) has, in general, a different value in (3.3) than it does in (3.4).
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In the viewpoint adopted here and in S78, baroclinic instability is an
extremely nonlocal interaction governed by (3.4) with p=0 and k=gq.
Elimination of E(p) between (3.4a) and (3.4b) gives

(k3 — k*)U (k)= k*E(k), (3.6)

which incidentally agrees with (2.13, 2.14). Now if U(k) and E(k) are
infinitesimal at some initial time, then neither U(k) nor E(k) can become
appreciably negative. But U(k), E(k)>0 violates (3.6) unless k< kg. Thus
the detailed conservation laws provide an “explanation” for the stability of
waves smaller than the deformation radius. If friction is present at the
lower boundary, then some k> k, can be unstable even though U(k)>0
implies E(k)<0 by (3.6). Analysis shows that the instability occurs
because friction increases baroclinic energy fast enough to offset the loss of
baroclinic energy from interaction with the mean flow.

The non-localness of baroclinic instability suggests that it might be
very susceptible to distortion by other motions with horizontal length
scales between those of the mean flow and the unstable wave. For
instance, local solid rotation of the whole unstable wave configuration
would reduce k, in (2.14), turn the eddy heat flux away from north, and
shut off the instability. The evident source of intermediate scale energy is
the leftward transfer of barotropic energy on k < kg.

Imagine an initially supercritical mean shear which has been built up by
solar heating. To fix ideas, let the periodic flow be infinitesimal, so that
linear theory describes its initial evolution. Now obviously the exponential
growth of unstable waves cannot occur indefinitely, and statistical equilib-
rium will somehow be reached. There are apparently at least three distinct
mechanisms which can stop the exponential growth and equilibrate the
flow.

First, since the energy gain of the amplifying wave represents energy
lost from the mean flow, the mean shear will decrease. The rate at which
solar heating replenishes the mean flow actually depends in a complicated
way on the flow itself, but it must certainly be finite, and mean flow
adjustment is therefore sufficient by itself to arrest the growing waves.

Second, the growing waves may eventually become large enough so that
the nonlinear terms in (2.8, 2.9) are important. Then nonlinear interactions
can transfer energy from the most unstable wavenumbers to stable (or less
unstable) wavenumbers where dissipation occurs. The flow equilibrates
when the energy input from the mean flow to the unstable waves just
equals the loss by interaction with other wavenumbers.

Third, the nonlinear interactions between growing waves can reduce the
correlation between northward flow (¥;) and warm air (r) required by
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(2.12) to maintain instability. The flow equilibrates when the correlation
between Y, and 1, in every k is reduced to the point where the average
production of turbulent energy just equals average dissipation. No actual
transfer of energy between different scales is required.

The following simple stochastic model transparently exhibits an equilib-
ration mechanism similar to the one proposed in the preceding paragraph.
The model equations are:

Y+ T+ =w (t)—mp, T+VY+ir=w,(t)—yt (3.7)

In (3.7) ¥, A and »n are constants and the w;(¢) are Gaussian white noise
processes with covariances

{wi(w;(t')> =2D3;;6(t—t'). (3.8)

Equations (3.7) are (real) analogs for the equations for , and 1, obtained
by Fourier transform of (2.8, 2.9). The right sides of (3.7) model nonlinear
interactions with all other Fourier modes as a white noise forcing and
stochastic damping. “Linear stability analysis™ of (3.7) sets the right sides
to zero and discovers instability,

W, tocexp [+ (V—A)], (3.9)

if V>i. The instability is characterized by a correlation coefficient
between ¥ and t of minus unity. The Fokker—Planck equation governing
the probability density f(y,t,r) provides the complete statistical de-
scription of the fully “nonlinear” model. It is

ift=€% [(Ve+up)f] +(% (VY +ut)fl+ D[:;J; +;Z} (3.10)
where
w=A+n.
One finds equilibrium solutions with “energy”
PP+ =2D/u(1 = V3/p?), (3.11)
and correlation coefficient,
p=Prydyty AT = =V, (3.12)

provided
u>Vv. (3.13)
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Note that (3.13) includes shears which are unstable according to “linear”
theory. Of particular interest is the case

n=(V:—-i%)/4, (3.14)

in which the turbulence contributes no average energy to ¥, t.
Equilibration then occurs solely because the correlation between  and 7
is reduced by the white noise scrambling. If y <V, then the scrambling is
too weak and the system eventually blows up. A more faithful analog (e.g.
the turbulence model introduced below) would have built in that the
strength of nonlinearity increases, on average, with the energy in v, 7.

Certainly each of the three “mechanisms” discussed above plays a role
in atmospheric dynamics. [ suggest, however, that the second and
particularly the third have not received the attention they deserve. It is
conceivable, of course, that nonlinear interactions reinforce rather than
inhibit instability. However, other ideas suggest that the effects of strong
nonlinearity on baroclinic instability are destructive on average, and can
be very efficient.

Suppose that forcing and damping are omitted from the two-layer
equations so that the flow conserves energy and enstrophy exactly.
Statistical equilibrium cannot then be reached. In such flow the enstrophy
spreads toward higher wavenumbers indefinitely. However, if the equa-
tions of motion are artificially truncated (as always necessary in practice)
by removal of all triad interactions that involve at least one wavenumber
k with k>k,, say, for some cutoff wavenumber k., then the truncated
equations approach a special, “thermal” equilibrium which may be
predicted by classical methods. The underlying theory has been discussed
elsewhere (Lee, 1952; Salmon et al., 1976; Kriachnan and Montgomery,
1979).

Thermal equilibrium is the final state towards which nonlincar in-
teractions acting alone would drive the flow. The two-layer thermal
equilibrium states (with periodic geometry) are all horizontally isotropic,
and nearly barotropic on scales larger than the internal deformation
radius. The latter fact suggests that an unstable baroclinic current does
not stop losing encrgy when its vertical shear drops below the critical
value predicted by linear theory, provided that the growing waves have
reached sufficient amplitude for the flow to become turbulent. Numerical
experiments, particularly those of Rhines (1976), confirm that unre-
plenished large-scale baroclinicity virtually disappears in a turn-over time.
However, in the strongly forced numerical experiments described below,
the equilibrium mean flow is always supercritical for some k. This implies
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that baroclinic instability in these wavenumbers is arrested primarily by
processes other than the depletion of the mean flow. Interestingly, if the
mean shear is held constant at an arbitrary supercritical value, then
similar experiments show that the periodic flow still equilibrates, despite
the lack of any bound on energy.

Consider next the possibility of energy transfer out of the band of
unstable wavenumbers (mechanism two). If f=0, then (neglecting friction)
all wavenumbers k with k< kg are unstable. The invariants of the motion
trap most of the energy within this band so that energy transfer to the
stable wavenumbers greater than kg is ineffective. (However, there is no
constraint against transfer from modes with larger to smaller k, that
occurs if the elongated eddies associated with instability become isotropic
without a change in scale.)

In thermal equilibrium F(k)=0, and it is therefore plausible that
nonlinear interactions reduce the correlation between warm and north-
flowing air (mechanism three). Since F(k) is absent from (3.1), no
fundamental conservation principle directly inhibits this reduction. Unlike
energy, which disappears at one wavenumber only by appearing at
another, the correlation quantity F(k) can simply vanish.

If B#0 there is a stable band at low k. However, no fundamental
conservation principle like (3.6) prevents direct energy transfer from the
mean flow into these wavenumbers in the finite-amplitude case. The
numerical experiments reported in the next section show that the effects of
B on two layer flow are actually quite subtle.

4. SIMULATION EXPERIMENTS

This section reports three numerical experiments in which (2.1-2.3) were
first stepped to equilibrium and then integrated for a time (twenty weeks)
judged long enough to yield accurate low-order statistics. The experi-
ments, which are summarized in Table IL, differed only in their values of
and A. In all four experiments, V was computed from

d
—E,=—P+38, 4.1
B + (4.1)
where
Ey=(1.4x10° joule sec ™2 m~*)}2 (4.2)

is the available energy (per unit area) in the mean flow, P is the rate of
turbulent energy production given by (2.12), and

S=3.00 watt m~> (4.3)
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TABLE II

Summary of simulation and closure experiments

Experiment A B C AA CC
Simulation (S) or closure (C) S S S C C
Duration (weeks) 20 20 20 — —
kg 8 8 8 8 8
B0 ¥em”isec™t) 0.0 1.0 1.0 0.0 1.0
4! (days) 1.85 1.85 37 1.85 37
(V> (msec™ ) 2.36 4.88 4.68 2.41 4.53
Energy (10°jm™2):

Barotropic 9.57 12.92 16.41 9.24 15.40
Baroclinic kinetic 3.01 3.36 2.99 2.84 3.15
Available potential 13.40 10.33 10.02 12.17 9.39
Total baroclinic 16.41 13.69 13.01 15.01 12.54
Total mechanical 25.98 26.61 29.42 24,25 27.94
Ratio of kinetic energy in the

bottom 500mb to that in the top 0.228 0.183 0.286 0.227 0.266

is a prescribed constant rate of solar input to the mean energy. The
coefficient in (4.2) is such that a representative equilibrium shear of
V=4msec ! gives Ey=22x 10°joulem™ > In equilibrium, the size of the
coefficient serves principally to control the variance of V. The prescribed
energy input (4.3) corresponds to strong winter circulation.

The equations of motion were solved spectrally by expanding the
dependent variables in truncated Fourier series,

Wt)= Y (Pete™ ™ (4.4)

k| <16

and then solving the resulting set of coupled ordinary differential equa-
tions using Orszag’s (1971) staggered-grid algorithm. The finite truncation
in k requires that enstrophy be removed from the vicinity of k=16 by an
eddy viscosity. The eddy viscosity is similar to that used in S78:

({)=other terms — (2,):({ ;)i (4.5)
(K~ k)2
il k277 ’
(dk)l: ‘0 c (kf_kIZ{)zv 1‘>kR
0, k< kg
() =7(), 7=02,
k=15,

vo=5.4x10"*days.
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The numerical constants that appear in (4.5) were chosen simply to give
the wavenumber spectra a smooth appearance near k.

Figure 2 shows the wavenumber spectra for experiments A, B, and C.
The kinetic energy spectra (Figurcs 2a-b) all have peaks at wavenumbers 3
or 4. I believe that these peaks may agree with atmospheric observations.
Remember that the model mean flow has a delta function spectrum at
k=0 which does not appear in Figurc 2. The analog of k on the spherical
earth is the degree n of surface harmonic function Y,,. In the real
atmosphere the "mean flow”, that is those scales directly forced by solar
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FIGURE 2 The energy spectra (a) U(k), (b) T(k), (c) E(k) and (d) F(k); and (c) the ratio
of lower to upper layer kinetic energy in wavenumber k: for experiments A, B, and C. The
vertical scale is arbitrary. The maxima in (¢) near k=16 are an artifact of the choice of v.
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heating, rtesides primarily in n=1, and the present experiments would
suggest a spectral gap in kinetic energy between n=1 and n=3,4. Figure
3 shows the kinetic energy spectrum based on n calculated by Chen and
Wiin-Nielsen (1978) from 14 months of northern hemisphere data. This
spectrum supports a gap between n=1 and 4.

The most striking differences in Figure 2 are between experiments with
and without beta. The experiment with =0 has lower barotropic energy
and a higher baroclinic energy, which resides primarily in wavenumbers 1
and 2 (Figure 2¢). The higher baroclinic energy is obviously related to a
higher production F(k) on these wavenumbers (Figure 2d). The simple
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FIGURE 3 The vertically integrated kinetic energy as a function of n, the degree of surface
harmonic. After Chen and Wiin-Nielsen (1978).
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ideas of the previous section can explain these differences. From (3.6),
which governs baroclinic instability whether or not beta is zero, it follows
that the ratio of production by instability of baroclinic energy to the
production of barotropic energy decreases with increasing k on k<kg.
This ratio is unity for

k=2 12k,=56 (4.6)

Thus experiments B and C with non-zero beta and dominant transfer of
mean flow energy into k=3,4 have a larger equilibrium ratio of baro-
tropic to baroclinic energy than does experiment A with no beta and
significant production in k=1,2. Whether beta is zero or not, the
direction of baroclinic energy transfer is toward still larger k on k<kg.
and the anticipated “final state” with nonlinearity acting alone would be
nearly barotropic flow irrespective of beta. (Note that beta does not
appear in the quadratic integral invariants and therefore does not
influence thermal equilibrium in this geometry.) However, apparently
because of the shorter initial “cascade step”, much less energy actually
reaches barotropic mode in the case f=0 before it is wiped out by
friction. Curiously then, although beta stabilizes the flow, it also moves
the system more quickly toward the endpoint of Figure 1 by forcing the
rightward transfer of energy on k<ky to be more nonlocal in k than if
f=0. Note the contrast with leftward energy transfer in purely (wo-
dimensional flow, in which beta always slows wavenumber encrgy transfer
(Rhines, 1975; Holloway and Hendershott, 1977).

The evident source for very large scale (k=1,2) baroclinic energy in
experiment B and C is back-transfer of energy in baroclinic triads. The
baroclinic energy on these scales is in fact so small that J(z,V?t) scales
out of (2.8). Thus the dominant nonlinear tendencies in (2.8, 2.9) on k<3
with f#0 are

V2, +J(, V) =0, (4.7)
and

7, +J (), 1)=0, (4.8)

which are the equations for advection of a passive scalar in two-
dimensional flow. The thermal equilibrium state corresponding to (4.7,
4.8) has equipartition of <\rk|2> in every k. By (2.21) and (2.24) this
corresponds to a baroclinic kinetic energy spectrum T (k) proportional to
k*3. Interestingly, T(k) in experiments B and C is indeed very close to
k*3 on k=1 to 3. The back-transfer of baroclinic energy has therefore
apparently saturated low wavenumbers.
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Leftward transfer of barotropic energy is slowed by the beta effect and
attenuated by ground friction which destroys barotropic more efficiently
than baroclinic energy on large scales. However, the shape of U(k) is
remarkably invariant to changes in f§ and A. The explanation is that
Ekman friction removes energy from wavenumber k at a rate which is
independent of k, whereas any reasonable estimate for the time required
to move energy from some k to, say, k/2 gives a time that increases with
decreasing k.

In all three experiments, the peak in kinetic energy occurs slightly below
the wavenumber of fastest growth predicted by linear stability analysis on
the time-averaged shear (V> (Table III). However, the average shear is
highly supercritical on 0<k <k, when =0 and on 4 <k <k, when 0.
Note from Table III and Figure 4 that the shear fluctuates by less than
109, of its average value in all three experiments so that the above
statements are true also for the instantaneous shear. The stability analysis
summarized in Table III includes the ground friction.

TABLE TII

Mecan flow supercriticality

Experiment A B C
{V>»+standard deviation 2364015 488+0.14 4.68+0.15msec”’
Minimum critical ¥V 21x1073 178 1.75msec™ !
Wavenumber of minimum critical V 6.3 8.4 8.3
Wavenumber of fastest growth at
experimental average (V) 4.0 5.6 5.7
Critical V at the latter wavenumber 22x1072 251 243msec”!
Wavenumber of maximum F(k) 2 4 34
Wavenumber where (V> would be
critical — 3.7 38

In all three experiments, motion at wavenumbers higher than the peak
in kinetic energy (k=3) is nearly isotropic (Figure 5). In experiment A,
positive anisotropy associated with instability appears only on k=1,2.
This gives the largest scale motions an advantage over smaller scales in
tapping energy from the mean flow. Remember that U,(k), T,(k)>0
correspond to elongation of streamfunction fields in the north-south
direction. In the two experiments with f#0, negative anisotropy appears
in barotropic mode at the lowest wavenumbers because leftward transfer
of barotropic energy favors zonal flow (Rhines, 1975; Holloway, 1976).
The negative anisotropy in baroclinic mode in experiments B and C must
come from straining by the zonal barotropic flow through (4.8).
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The biggest discrepency between the fully nonlinear experiments and
linear theory is the high supercriticality of the experimental mean flow
with respect to the higher unstable wavenumbers and the fact that these
wavenumbers contribute little to the total production of energy from the
mean flow. U, =T,=0 in these wavenumbers has the effect of lowering the
linear growth rate (2.14), but does not change the exponential nature of
the instability. The primary task of the closure analysis begun in the next
section will be to isolate as far as possible the mechanism of nonlinear
equilibration.

5. THE CLOSURE

Turbulence closure models of the direct interaction (DIA) family model
the true flow as a Gaussian random field and then make corrections to
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preserve quadratic invariants and relaxation to thermal equilibrium.
Alternatively, these closures can be “derived” by a variety of perturbation-
like procedures, none of which pretends to mathematical rigor. Two of the
most physically appealing procedures are Kraichnan's (1959) original
derivation of the DIA and Orszag’'s (1970) eddy-damped Markovian
(EDM) model. In this paper I use a slight extension of the Markovian
random coupling (MRC) model of Frisch et al. (1974). 1t is much simpler
than either DIA or EDM in the present case. The extension consists of
replacing the constant time factor which appears in MRC by the triad
relaxation time factors prescribed by the test field model (Kraichnan,
1971a). This section provides a technical description of the closure. Readers
who are uninterested in these details should skip ahead to Section 6.
Let

Vi=Lyyi+ A Ve (5.1)

represent an arbitrary dynamical equation with quadratic nonlinearity. In
(5.1) L;; and A;; are constant factors, the subscripts identify modes, and
the summation convention is in effect. The MRC provides a closed set of
equations for the evolution of second moments {y;y;>. The closure
equation is exact not for (5.1), but for the related set of model equations

¥i=Ljyj+N~ ! W/;]hc(t)Aijky_l;yis (5.2)

in the limit N—=oo. In (5.2) the superscript summations extend from 1 to
N and the W, (r) are independent white noise processes with identical
covariance factors. The summation over b and c in (5.2) can be viewed as
an arbitrarily imposed random coupling between N realizations of the
flow. Note the curious analogy between the dynamical model (5.2) and a
common assumption of spectral estimation theory that different modes of
a single realization may be treated as independent estimates. For the
details of the derivation of the moment equation from (5.2) refer to Frisch
et al. (1974).

In practice, the MRC moment equations are most easily obtained by
the following formal procedure which I illustrate by application to (2.8,
2.9). Write the Fourier transform of (2.8, 2.9) in the compressed form

Yi=Ciyl+ Y AGede (5.3)

pra=k

where /4 is defined by (2.17),

A =4(pd, — 4P NG = P2 )Din/ K (5.4)
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and

EZ

li

k2, if i=0,
(5.5)

K2+ k3, i i=l1,

and similarly for p and §. The summation convention applies to super-
scripts only. In (5.3) C{ are constant coefficients that depend on V, f, and
+. Here V will be treated as a constant. In (5.4) A,,,=1if i=m=n=0 or if
exactly two of i, m, n are unity. Otherwise A,,, =0.

The formal procedure consists of the following steps:

1) Omitting temporarily the linear terms, expand the solution to (5.3) in
a Taylor series in time about t=0, and truncate the series after order ¢2:

WO =Yi(0) + 0fi(0) + 12 §i(0), (5.6)

ii) Regard the intial conditions as Gaussian with zero mean.

iii) Form the Taylor series expansion of R¥(t) about t=0 by multiply-
ing (5.6) and averaging. Use the factorization property of Gaussian
variables.

iv) Differentiate the result with respect to time, replace the factor t by a
constant (say f,), and restore all arguments to f.

v) Re-insert the linear terms as they would occur in the exact second
moment equations.

The extension of MRC referred to above consists of the following final
step:

vi) Replace ¢, by 6, defined below.

The result of steps (i—vi) is:

R{=C{R{+CLRU+ Y 40, ALn AL RIRY
p-q=k
+ AR AR R RY + Afn ATee RU R (5.7)
In the full EDM, the triad relaxation time ka carries six modal
superscripts and there would be seven (instead of four) superscript
summations in (5.7). Note that many terms in (5.7) are zero. The

nonlinear part of (5.7) conserves all quadratic invariants and satisfies the
realizability conditions

Uk), T(k)=0, (5.8)
Uk)+T(k)z2D(k), (5.9)
and

Uk) T(k)=D(k)*+F (k). (5.10)
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This follows directly from the fact that (5.8-5.10) hold for arbitrary
truncations of the Taylor series.
In this paper I set

nk+’7p+nq _
Mo+, +1)° + (@, + o+ )

n = (5.11)

which has the form proposed by Holloway and Hendershott (1977). In
(5.11),

o= — Bk /k? (5.12)

is the dispersion relation for barotropic Rossby waves and 7, is the
decorrelation rate prescribed by the test field model (Kraichnan, 1971a)
for two-dimensional flow with the same velocity spectrum as the 500mb
horizontal velocity field. (The order one constant that appears in the test
field model is set equal to unity.) The above prescription for 8, in two-
layer flow is obviously quite arbitrary. However, experience has shown
that equilibrium solutions to closure equations like (5.7) are rather
insensitive to the specific choice of relaxation factor.

The next section compares equilibrium solutions of (5.7) and (4.1) with
the spectra obtained by averaging the direct simulations.

6. CLOSURE EXPERIMENTS

This section reports two closure experiments, AA and CC, which were
performed with the same parameter settings as simulation experiments A
and C (the two most different experiments). Figures 6 to 9 compare steady
equilibrium solutions to (5.7) and (4.1) with the spectra obtained by time-
averaging the simulations. Table II compares gross energy levels. The
overall agreement between the simulations and closure is very good. This
agreement is by itself significant because it means that the closure model,
despite its arbitrariness and lack of fundamental justification, successfully
mimics the behavior of the nonlinear terms in the exact equations of
motion at least to the extent of producing accurate second moment
statistics. Unlike (2.8) and (2.9), (5.7) is amenable to analytic simplifi-
cation. An example will be given below.

I next examine the equilibrium balance of terms in the closure equation
for F(k). To aid the subsequent analysis it is convenient, at the same time,
. to write the sums in (5.7) as integrals. The equation is

F(k)=0=linear terms + nonlinear lerms. (6.1)
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g gi0°
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where
linear terms = — [k, pk%/k*(k* + kz)1D(k)
bk VTK) 4k V(K2 — k) (K + k) U (K)+friction,  (6.2)
and
nonlinear terms = [dp [dq 0(k,p,q)sin*K 3(p+q —k)U(q)
< (g2 p G — PP — k) (K + k)T F(p)— (g7 —pP)a* — KK TPF (k)
PG — PP — kg — K — kp) (kP + k)T (P* + k)~ F(k)j

+ other nonlinear terms from (5.7). 6.3)
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In (6.3) K is the angle opposite the side of length k& in the triangle with
sides of lengths &, p, g. The other symbols have been previously defined.

It can be shown from the closure experiments that the three nonlinear
terms written out explicitly in (6.3) comprise nearly all of the nonlinear
contribution to F(k) on the linearly unstable wavenumber range. Figure 10
shows the total nonlinear contribution to F(k_,0) in experiment CC and
the contribution to the same from the three terms in (6.3) and from the
sum of all remaining nonlinear terms. (The results for experiment AA are
qualitatively similar and will not be shown.) Figure 11 graphs the three
nonlinear terms individually for the same experiment. In Figures 10and 11 solid
lines denote positive values and dashed lines denote negative values. Note
from Figure 11 that the third term in (6.3) dominates the sum at the
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wavenumbers of maximum production F(k), but that at the higher
unstable wavenumbers there is near cancellation between the three terms.

In (6.3) assume that k* < ki and that the dominant contributions to the
integrals come from p?, g*> < k}. Assume further that

Uk)=U/(k), (6.4)

and
F(k)=F(k)cos®f. (6.5)

which amounts to a truncation of (2.22) and (2.23). This truncation is
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FIGURE 10. The total nonlinear contribution to the change in F(k) and the contribution
to same from the three terms written out explicitly in (6.3) and from the remaining nonlinear

terms.
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justified by both the simulations and closure, except perhaps at k=1.
Substitute (6.4, 6.5) into (6.3) and change the integration variables from p,
qtop, 0, q, 8, where

p=p(cosf,sinf,) and q=q(cosf,sinf).

If, for convenience, O(k,p,q) is assumed to depend on the wavenumber
magnitudes only, then the integration over 6, and 6, can be performed.
One finds that

J"dpjdqé(p-i—q—k)=2ﬁdpdqsin”K, (6.6)
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FIGURE 11. The contribution to the change in F(k) from each of the three terms written
out explicitly in (6.3).
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and
1 231: A
—2—j d0 [dp[dqd(p+aq—k)cosOcost,=2fdpdgcos Qsin” 'K, (6.7)
T o »

where A is the region of the positive p—g quadrant for which a triangle
with sides k, p, ¢ can exist. Then (6.3) becomes

F(k)={[dpdq0(k,p,q)sinK U(q)

{4(p? —g*)cos Q F(p)—2(q*>—p*)(q* —k*)k *F(k)—2p*F(k)} +...
(6.8)

The assumption that k%, p?, g*> < kg assures that (6.8) has the same form
as if the governing nonlinear dynamics had been (4.7) and (4.8), the
advection of passive scalar t by a two-dimensional velocity field with
stream function  and spectrum U(g). It is then easy to verify that the
third term is the only term of (6.8) which survives if (4.7) is dropped and
the barotropic field treated as a random time-invariant flow. This means
that the third term in (6.8), which balances linear instability near k=4,
results solely from the advection of the temperature field by barotropic
flow and that changes in the barotropic flow itself, which contribute to the
first and second terms in {6.8), have secondary importance at k=4.5. The
third term in (6.8) is in fact proportional to the “damping” term in the
corresponding equation for the spectrum of a passively advected scalar in
isotropic two-dimensional flow. Thus the nonlinear attenuation of the
correlation quantity F(k) near the peak of F(k) must result primarily from
scattering of baroclinic energy from the peak wavenumbers to other
(chiefly higher) wavenumbers by the barotropic advecting field.

Figure 12 shows a four-day sequence from experiment C during which
the total production declined from a maximum of 5.31 watts m™> at record
207 to a minimum of 1.83 wattsm ™2 at record 214 and then rose again to
3.59wattsm™2 by record 217. A number of such sequences have been
examined. The beginning of the sequence corresponds to the maximum of
production near week 13 in Figure 13. Note that this size variation is
typical of the whole record. The lower pictures in Figure 12 shows the
total 500mb streamfunction,  —1.6Vy, in solid lines and the 500mb
temperature T — Vy in dotted lines. Darker contours correspond to higher
values. The upper pictures contour the product .t of the northward
velocity and the perturbation temperature. The spatial integral of the
upper pictures is proportional to the total production. At the beginning of
the sequence the largest contribution from the production comes from the
strong feature in the upper center of the picture. The positive correlation
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FIGURE 13. The total cnergy (upper solid curve), total barotropic energy (upper curve
with symbols), total baroclinic energy (middle solid curve), production (lower solid curve),

and dissipation (lower curve with symbols) in experiment C. Units of 10° joulem™ 2, and

wattm ™2,

between temperature and northward flow is easy to see. Note that both
fields have closed contours. In the following pictures the warm center
to the west of the closed high moves clockwise around the high and
production decreases. The streamfunction perturbation weakens and
moves westward. When sites of strong production again develop in the final
picture of the sequence, they do so in another region of the flow. More
than anything perhaps, Figure 12 illustrates the difficulty of separating out
“processes” from individual realizations of complicated flow patterns.

Figure 11 shows that all three terms in (6.8) are important for the
higher unstable wavenumbers (k=6) and that the second and third terms
tend to cancel the first. The physical interpretation of these terms is now
more difficult, but it is of interest because the low production rate F(k) in
these highly supercritical wavenumbers is perhaps the biggest discrepancy
between the linear theory and the fully nonlinear experiments.

I begin by deriving an approximation to (6.8) assuming that the
dominant contribution to the integrals comes from g<k’ where k'/k is
small. In (6.8) restrict the integration region to g<ek, change the
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integration variables to
p'=(p—k)/ek,
and (6.9)
q'=aqfek,

and expand the entire right side of (6.8) in powers of &, performing all
quadratures. The arithmetic is tedious but straightforward. At the first
order, terms two and three in (6.8) are equal and precisely cancel term

one, in encouraging agreement with Figure 11. At the first non-vanishing
order the approximation gives

; 1 ¢ oF
~ LoQd - - 377 -
F(k)~0(k, k,0)m {K 8k(k 5k> 3F(k)}, (6.10)
wnere
gk
Q= (3) dqU(q)g® (6.11)

and possible k-dependence of 6(k, k,0) has been neglected. In the next
section T will obtain (6.10) without the use of closure (but with a strong
assumption about the velocity field). The goal of this exercise is additional
physical insight.

7. THE MECHANISM OF NONLINEAR EQUILIBRATION

Before proceeding, it will help to review related other work. Equation
(6.10) without the term 3F (k) is identical to the equation for the spectrum
of passive scalar ¢ advected by a two-dimensional white-noise isotropic
straining field ¢ in which motions on scale k! make a negligible
contribution to the straining (Kriachnan, 1974). The equations are

3ot +J (W, ) =0, (7.1)
S(k)=<px¢ x> (7.2)
Uk)= k> (7.3)

and

, 1¢(,,08
S(k)=0(k, k,0¥nQ . | k3— _
(k)=0( Yeml2 ak<k Uk) (7.4)
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where Q is given by (6.11). The steady solutions to (7.4) are the viscous-
convection range, kS(k)~k™! of Batchelor (1959) and thermal equilib-
rium, S(k)=constant. Note that (7.4) conserves scalar variance, (kS(k)dk.
According to closure, Eq. (7.4) with S(k) replaced by KU (k) also
governs the energy spectrum in the enstrophy inertial range of two-
dimensional turbulence (Kraichnan, 1971).

The diffusion-like form of (7.4) can be related to random stretchings of
¢ by the large scale straining motion (Kraichnan, 1974). The following
analysis will show that the 3F (k) term in (6.10) results from rotations of
the advected structures about a local vertical axis, and that rotation is
typically three or more times as important as stretching because both
strain and vorticity contribute to local rotations,

Let the scalar field ¢ be a local sinusoid of wavevector k in the vicinity
of x=y=0, Then the change in k following a fluid particle is given by

dk;/dt= — k,A,,, (7.5)
where

Ajj=0Cu; /0x;. (7.6)

The summation convention is in effect. Equation (7.5) is in a sense the
reciprocal of a more familiar equation for the rate of change of an
infinitesimal line element r,

dryjdt=A;r,. (7.7)
Note that

d
—(rk)=0. (7.8)

Regard the advecting field Y(x, y,t) as given. Equation (7.5) is still difficult
to solve because the right side must be continually re-evaluated along the
trajectory of the particle. However, exact results are obtainable if y is
white noise in time.

Let the spatial correlation scale of Y be large compared to k! Then

V=200 (% +37) +18, (x> — y2) + 6oy, (7.9)

locally in the vicinity of x=y=0. Here {(x,y,t) is the vorticity and
S(x,y,t) and o(x, ¥, ) the strain rates, and

{6=0(0,0,1), So=25(0,0,1), g, =0(0,0,1). (7.10)
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If i is isotropic then £, S, and ¢ are independent and

(2 =2(8%)=2{c?) =37, (7.11)
where

Q={Kk3U (k) dk. (1.12)

In (7.9), let {,, So 0, be independent Gaussian random variables with
covariances

Lot o(t))=2Do(1—1"), (7.13)
and
{So(t)So (1)) =<0 (t)ao(t')) =2Dso(t—1'), (7.14)
where
D, =2Dg=nQ0,. (7.15)

The constant 6, (units of time) may be interpreted as the “effective half-
width” of the covariance functions. It will eventually identify with 6(k, k,0)
above. With (7.9), (7.5) becomes

dk,jdt = — Spk, + ook, —Lok,, dky/dt= —Soky —ooky +{ok,. (7.16)
The Fokker-Planck equation governing the joint probability

distribution f(ky, k,,t) of the components k;, k, follows from (7.13-7.16)
by standard methods. (See, for example, Soong (1973), page 182.) It is

o . 10/ .0f o
— f(k,0)=Ds— —| k= D ¢ 7.17
) Dskék( ak>+( s+ Do) (7.17)

where the independent variables have been changed from k;, k, to k, 0
defined by

k = k(cos 6, sin 0).

Not surprisingly, (7.17) is a diffusion equation in both wavenumber
magnitude k and direction 0. The k-operator is identical to that in (7.4)
and comes solely from straining, but both straining and vorticity contri-
bute to the diffusion in direction of k. However, since D.=2Dj local solid
roation is twice as important as the rotations that accompany straining.
Equation (7.17) governs the probability distribution of an ensemble of
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passively advected wavevectors. It also governs the evolution of any
averaged quantity, expressed as a function of k and t, which is conserved
on particles. In particular, (7.17) governs scalar variance S(k,6.¢) and it is
the generalization of (7.4) to anisotropic scalar distribution. In the present
limit (7.17) also governs F(k,t). This follows from the definition (2.21d)
and the conservation of the vorticity and temperature wave amplitudes
and their phase difference. Substitution of (6.5) into (7.17) gives

oF 12 <k3§5

= 6k>—(DS+D;)F, (7.18)

Do— —
ot Sk ok

which agrees exactly with (6.10) il 8, =0(k, k,0).
It is easy to show that both stretching and rotation typically reduce the
production {F(k)dk. Integration of (7.18) between k,; and k, gives

dP,/dt=[Q(k,)—Q(k,)—DsP;]— (Ds+D;)P;, (7.19)
where
ka , 0F
PIZEfF(k)dk and Q(k)=k a—l—kF.
k1

The square brackets in (7.19) enclose the contribution of the k-operator
term. Obviously the Q terms represent the flux of F(k) from outside the
region [k,, k,] of applicability of (7.18). Inspection of the remaining terms
in (7.19), and use of (7.15), shows that rotation is asymptotically three
times more efficient than stretching in reducing the production. If higher
angular harmonics (cosn0) are present in the expansion (2.21d) of F(k)
then the ratio of the rotation to the stretching terms is even greater
(increasing as n?).

Finally, if I relax the assumption that k%, p?, ¢* <k in (6.3), then (6.10)
generalizes to

(k) ol b 00 _
F(k) e(k,k,ohng{k(qui)ak[mak[(k +k§)F]] 3F}, (7.20)

which has the same form as if the governing nonlinear dynamics had been
(4.7) and (4.8) but with 7 replaced by V?t—kzr. As expected, (7.20) is
equivalent to (7.17) with

£(k,0)=(k*+ kZ)F (k) cos 6. (7.21)

The previously stated conclusions are qualitatively unchanged.
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8. FINAL REMARKS

This study has addressed what seemed to me to be the most fundamental
question about the general circulation whose answer lies wholly outside
the realm of linear mechanics. The two-level model with uniform mean
flow is probably the simplest model which might have been used.
However, its deficiencies as a general circulation model are many. Here I
shall mention only those which seem to me to be the most distressing.

The climatological mean jet stream—probably the most distinctive
feature of the general circulation besides the westerlies themselves—has
been spread out over the entire flow domain and the mean vertical shear
correspondingly reduced. My use of solar mechanical energy input ap-
propriate for January is perhaps a partial compensation, but it is not
really clear, for example, whether the model statistics ought to be
compared to winter hemispherical averages or annual averages over the
vicinity of the jet. There is no gradient of mean westerly momentum.

The imposed periodicity enforces an infinite horizontal scale separation
between the average flow and the transient waves which is particularly
unrealistic for the lowest nonzero wavenumbers. That is, model wavenum-
ber 1 “sees” a mean flow which is infinitely broader than itself whereas no
such infinite separation is possible on the finite globe. I can say, however,
that there is apparently nothing anomalous about the model inviscid
statistical mechanics: when solar heating and friction were suddenly
switched off in experiment C, the mean flow decreased steadily below the
minimum critical value according to linear theory.

Gall et al. (1979) have considered some factors which affect the
wavelength of maximum northward heat transport in the NCAR primitive
equation general circulation model. Linear stability analysis on the model
predicts fastest growth at a wavenumber higher than 12, but the maxi-
mum transport in his experiments occurs at wavenumbers nearer 7. Gall
appeals to rapid increases in the low-level static stability to explain why
“intermediate scale” waves eventually reach a greater amplitude than the
“short” waves. In my study, the static stability is held constant, and
shallow high-wavenumber instability cannot occur because of the simpler
mean flow and dynamics. Here, the primary focus is on “intermediate”
and “very long” wavelengths.

Stone (1978) finds that the real atmosphere is baroclinically stable south
of the mean jet stream when the observations are analyzed with a “local”
two-level model. However, my highly supercritical mean flow apparently
disagrees with his findings that the observed flow north of the jet is near
critical. Stone (personal communication) suspects that the increase in local
static stability (decrease in kg) that accompanies baroclinic instability may
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be the most important mechanism of adjustment, and might explain the
high supercriticality in the present study. The critical mean shear is in fact
very sensitive to kg (V. =B/k%). However, it is not easy to decide what
value of kg (or what parameterization for change in kg) best fits the real
atmosphere to the two-level dry model. It may be that questions about
criticality can only be answered within the context of a model with
prescribed dynamics.

Acknowledgement

This study was supported by the National Science Foundation (grant No. ATM-7818388).

References

Batchelor, G. K. “Small-scale variations of convected quantities like temperature in turbulent
fluid,” J. Fluid Mech., 5, 113 (1959).

Charney, 1. G. and Phillips, N. A. “Numerical integration of the quasi-geostrophic equations
for barotropic and simple baroclinic flows,” Journ. Met., 10, 71 (1952).

Chen, T.-C. and Wiin-Nielsen, A. “On nonlinear cascades of atmospheric encrgy and
enstrophy in a two-dimensional spectral index.” Tellus, 30, 313 (1978).

Frisch, U., Lesieur, M. and Brissaud, A. “A Markovian random coupling model for
turbulence,” J. Fluid Mech., 65, 145 (1974).

Gall, R., Blakeslec, R. and Somerville, R. C. J. “Baroclinic instability and the selection of the
zonal scale of the transient eddies of mid-latitude,” J. Atmos. Sci., 36, 767 (1979).

Haltiner, G. J., Numerical Weather Prediction. Wiley, New York (1971).

Held, 1. M. “The vertical scale of an unstable baroclinic wave and its importance for eddy
heat flux parameterization,” J. Atmos. Sci,, 35, 572 (1978).

Holloway, G. “Statistical hydromechanics: applications in mesoscale ocean circulation,”
Ph.D. thesis, Univ. Cal. San Diego (1976).

Holloway, G. and Hendershott, M. C. “Stochastic closure for nonlinear Rossby waves,” J.
Fluid Mech., 82, 747 (1977).

Kraichnan, R. H. “The structure of isotropic turbulence at very high Reynolds numbers,” J.
Fluid Mech., 5, 497 (1959).

Kraichnan, R. H. “Inertial range transfer in two- and three-dimensional turbulence,” J. Fluid
Mech., 47, 525 (1971).

Kraichnan, R. H. “An almost-Markovian Galilean-invariant turbulence model,” J. Fluid
Mech., 47, 513 (1971a).

Kraichnan, R. H. “Convection of a passive scalar by a quasi-uniform random straining field,”
J. Fluid Mech., 64, 737 (1974).

Kraichnan, R. H. and Montgomery, D. “Two-dimensional turbulence,” submitted to Rep.
Prog. Phys., 1979.

Lee, T. D. “On some statistical properties of hydromechanical and magneto-hydrodynamical
fields.” Q. J. Appl. Math., 10, 69 (1952).

Moura, A. D. and Stone, P. H. “The effects of spherical geometry on baroclinic instability,”
J. Armos. Sci., 33, 602 (1976).

Orszag, S. A. “Analytical theories of turbulence,” J. Fluid Mech., 41, 363 (1970).

Orszag, S. A. “Numerical simulation of incompressible flows within simple boundaries,” Stud.
Appl. Math., L, 293 (1971).




GEOSTROPHIC TURBULENCE 211

Pedlosky, J. “The stability of currents in the atmosphere and ocean,” J. Atmos. Sci., 21, 201
(1964).

Rossby, C. G. “Relation between variations in the intensity of the zonal circulation of the
atmospherc and the displacement of the semi-permanent centers of action,” J. Mar.
Res., 2, 38 (1939).

Rhines, P. B. “Waves and turbulence on a beta-plane,” J. Fluid Mech., 69, 417 (1975).

Rhines, P. B. “The dynamics of unsteady currents,” in The Sea, vol. VI, John Wiley and
Sons, New York (1976).

Salmon, R., Holloway, G. and Hendershott, M. C. “The equilibrium statistical mechanics of
simple quasi-geostrophic models,” J. Fluid Mech., 75, 691 (1976).

Salmon, R. “Two-layer quasi-geostrophic turbulence in a simple special case,” Geophys.
Astrophys. Fluid Dynam. 10, 25 (1978).

Smagorinsky, J. “General circulation experiments with the primitive equations. [. The basic
experiment,” Mon. Wea. Rev., 91, 99 (1963). :

Soong, T. T. Random Differential Equations in Science and Engineering. Academic Press, New
York, 1973,

Stone, P. H. “Baroclinic adjustment,” J. Atmos. Sci., 35, 561 (1978).




