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HAMILTON'S PRINCIPLE AND ERTEL'S THEOREM

Rick Salmon*
Scripps Institution of Oceanography, La Jolla, Ca. 92093

1. Introduction

Variation principles for the equations governing the motion of
perfect fluids are of two types. In the first type, which corre-
sponds to Hamilton's principle in particle mechanics, the positions

of marked fluid particles are varied at fixed times.l’2 In the
second type of variation principle, appropriately chosen field var-

jables are varied at fixed locations and times.3’4 The field var-
iables include a set of scalar potentials which represent the fluid
‘velocity. It has recently been shown that these two types of vari-
ation principle are really the same: they are related by canonical

transformations.s’6

This note has two objectives. The first is to demonstrate a
simple and particularly illuminating connection between variation
principles of the two types menticned above. The second objective
is to give a new and direct derivation of Ertel's theorem of hydro-
dynamics based upon a symmetry property of the fluid Lagrangian. @
The results reported here were noticed in the course of an applica-
t;on of Hamiltonian methods to a study of the ocean's main thermo-
cline.

2. Hamilton's Principle

Consider first a classical system composed of N discrete par-
ticles. Let i be a subscript index which identifies the particle,
and let m; and x (1) be the mass and the Cartesian position of the

i-th particle at time t. Let V(x ...,xN) be the potential energy
of the system. Then the Lagrang1an is
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N . -
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21 s M, X:0 X ) - V(xl,....,xN) (2.1)

and the dynamical equat1ons result from Hamilton's principle in the
form

L= (;

8fLdt =0 , (2.2)

where § corresponds to arbitrary variations 6§i(r) in the particle

trajectories, and 5§.(iw)=0. Alternatively, one can define the
conjugate momenta,

By = 3L/3X, (2.3)
and invoke Hamilton's principle in the "extended" form,
N .
> > e - :
§ sdv {35y pyrx; - Hpysxs)} =0, - (2.4)
where
H = y 3 ? L (2.5)
= 1’§1 Pi* .

and § now corresponds to arbitrary independent variations 631(1),
a?i(r) in the.momenta and positions of the particles. ‘

Consider next the fluid continuum. Let the positions §=§(3,t)
~of marked fluid partigles be considered as functions of curvilinear
1abe11ng coordinates a, amd the time r. The labeling coordinates
remain constant fo110w1ng fluid particles, and they are analogous to
the subscript i above. It is conven1gnt to assign these labeling
coordinates so that equal volumes in a-space contain equal masses.
Then

3(a,sa,5a,)
- 1°72°73 (2.6)
aixl,xz,x35 :
is the mass densitx of the fluid. It follows directly from (2.6),
~and the fact that & is conserved on particles, that
“3p/at + pvx-ﬁ =0 (2.7)

where




U= é}/BT ‘ (2.8)

and

x

is the gradient operator in X-space. Equat1on (2 7) is the usual
equation of mass conservation.

(a/axl,a/axz,a/ax3) (2.9)

Let the fluid Lagrangian be
L=J/rd { % Bx/a'r-ax/a'r - V(p) } (2.10)

where the potential V is a spec1f1ed function of the density p.
In (2.10) and below, the symbo] pis merely an abbreviation for the
Jacobian in (2.6). Hamilton's principle now states that

§/Ldt =0 (211)

wgere L is given by (2.10) and & corresponds to arb1trary variations
Gx(a,r) in the position of particle 3 at time v. Assume for conyen-
ience that the fluid is infinite and that &% vanishes at large |3|

and |t|. Then by the ordinary rules of variational calculus,
8Xg¢ 0=4&L dr =
=rdv 105dR (axy/5t a6x /ot + V' (p)p? 2(8X1%p0X3) 4
1 1 3(a,,a,,a,)
1°72°73
2y
srdv rrrdh (-a%x sac? - 20TV Xpax5) gy (2.12)
1 3(a,s8,,2,) 1
1°72°73
implies that
2y
a%x, /or” = - e R e WA Mar L %-a(pZV')/ax1

3(31932333) 3(X19xzsx3)

(2.13)
plus similar equations for 6x2 and 6x3. The definition

p = o dV/dp- (2.14) |




brings (2.13) and its counterparts into the familiar form

=1
au/ar = - > v P - (2.15)

If p is required to be the thermodynamic pressure, and the flow is
isentropic, then by (2.14) V(p) must be the internal energy per
unit mass. However, no such interpretation is actually required,
because the laws of particle mechanics do not depend on the axioms
of thermodynamics. The extended principle analogous to (2.4) is

sfdt{srrda U-ax/at - H} = 0 (2.16)
where . _
H= frrdag 5u-u + Vio)} . (2.17)

Independent variations su(a,t), &x(a,t) yield (2.8) and (2.15).

From a slightly different point of view, the fluid motion is
a time-dependent map,

-

X =%(,1) , | - (2.18)

from 3¥space into §lspace, and Hamilton's principle requires that
JL dv be stationary for arbitrary variations in this map. Since
each forward map (2.18) uniquely determines an inverse map,

3 = a(x,t) , ' (2.19)
from X- space into a- -space, it is obvious that variations in this
lnverse map would serve as well. Here t=1, but 3/3T implies that
3 is held constant, while a/st implies constant X. Rewrite (2.10)
as
L = srrdxp {5 Ustd - V(p)} (2.20)

and substitute for U from the identities

puy = - 3(ay.as,a5) i (2.21)

STt,xz,x3§

The result is




L=rrrdx L ( 1 Aagsa5533) 12 4y 00(3)525525) 42
P a(t,xz,x35 aixl,t,xzi

o, O{a,.a,,3,) 12 2
| + 3 Séiijigjfi— } -2 V(p) } . (2.22)

Hamilton's principle now requires that JfL dr be stationary with
respect to variations Sa(x,t) in the labeling coorginates. This
variation principle is Eulerian in the sense that x and t are the
independent variables. To obtain the extended form, define momenta
conjugate to a, viz.

T = sL/s(sa/at) , (2.23)

and eliminate 3a/at from (2.21). The result is
p Uy = - nl'aallax1 - 1, aaz/ax1 - 14 3a3/ax1 , etc. (2.24)

and the extended principle is therefore

§ rdt{srs dx Tea/at - H 3} =0 (2.25)

where now & corresponds to independent variations §T(X,t) and
sa(x,t). It is convenient to define

R=-% /o (2.26)

“which can be freely varied in place of . Then (2.25) takes the
form

& rdt{ frrdx pR-sa/ot + H} = 0 , (2.27)
where
H= frrdx p {540+ V(e)} . (2.28)
U=A + A + A

1 %1 5 V.8, 3 V33 s (2.29).




and § corresponds to variations sA(X,t) and sa(X,t). The variation

principle (2.27-2.29) was obtained by Seliger and wmtham4 by a
rather different approach. The present derivation emphasizes the
close connection between (2.27) and the Hamilten's pr1nc1p1e of par-
ticle mechanics, and it puts a clear interpretation on 2 and A. The
are mass labeling coordinates which can be assigned in numerous
ways to satisfy (2.6). But once the a; have been chosen, the Ai

are uniquely determined from (2.29) as the projections of U on the
-curvilinear basis vectors %a.. The v_a. form a basis provided
only that p is nonzero. Th d and A° 7 are always single-valued.
I note for future use that the reciprocal of (2.29) is

K‘=.u1 R f Uy U Xy + Uz V Xg (2.30)

where .
= (a/0a; , 3/33, , a/aa3) . (2.31)

is the gradient operator in d-space.

: 10
3. Ertel's Theorem

As remarked in section 2, the Lagrangian (2.10) is unaffected
by any transformation of the 1abe11ng coordinates which leaves the
Jacobian (2.6) unchanged. This symmetry property leads to a conser-
vation law discovered by Ertel? using wholly different methods.

The following derivation by way of Noether's theorem is considerably
more direct. Suppose that sa(x t) is indeed such that

s 2(a20033) _ g (3.1)
3ix1,x2,x3§
This implies that
acallaal + aaaz/aa2 + aaa3/aa3 =0 (3.2)

provided that ¢ is nonzero. Thus

83 = v, % T (3.3)




for some T=1(a,r). For such a variation,

8 rdv frrdd % ax/at-oX/aT
- Jdv frrda R e3d/an (3.4)

8L de

since it can easily be shown that

axX (3.5)

3sa, - ox 2sa
[
1 3t aaz aT 8a3 T

Q2

s(a%/at) = - aX 3sa; - 3
2a

The vector A is that given by (2.30). Substitution from (3.3) and
integrations by parts bring (3.4) into the form

& fL dr = fdr [frda Tea/at {v,_X% iy . (3.6)

-
But T is arbitrary and (3.6) must vanish by Hamilton's principle.
It follows that

30/t =10 (3.7)
where | | '
Q= vaxﬁ . ' (3.8)

The vector 0§ is conserved on particles. Now let ¢=¢(a ,a2,a3) be
any quantity which is also conserved on particles. Thén

q = ﬁ-va@ (3.9)
is also conserved. With help from (2.30), q may also be written
-1 . >
q=7= ve-(vxu) . (3.10)
The statement
39/at = 0 (3.11)

is Ertel's theorem. Since & is arbitrary (3.11) and (3.7) are
equivalent. With ¢=p (and assuming 3p/3t=0) the quantity q is
~called the potential vorticity.




The foregoing procedure extends to include rotating coordinates
and it provides an elegant unification for all forms of Ertel's theo-
rem which is lacking in the conventional derivations: for any conti-
nuum system, Ertel's theorem is simply the conservation law which
results from the most general transformation of labeling coordinates
that leaves every term in the Lagrangian unchanged. This approach
also provides a motivation for Ertel's theorem: the conservation
law is known to exist as soon as inspection of the Lagrangian reveals
a symmetry property. One need not depend on unguided manipulations.

If the potential in (2.10) is replaced by
V(p,S(a;sa,.35)) 5 (3.12)

where S is a function of the labeling coordinates only (usually
considered to be the specific entropy), then the results of section
2 generalize easily, but the general conservation law is destroyed.
‘This is obvious because, if S is completely arbitrary, as it must
be to accomodate arbitrary initial entropy distributions, then no
general transformation of the labeling coordinates leaves V un-
changed.

Eckart? derived the conservation law (3.9) using the energy-
momentum tensor formalism, which is related to the procedure followed
here, but he did not notice the connection with Ertel's theorem.

8,9

See also Bretherton for some closely related results.
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