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. ABSTRACT
The linear theory of the wind- and thermally-driven ocean circulation simplifies considerably
if the traditional Laplacian viscosity and thermal diffusivity are replaced by a linear-decay
friction and heat diffusion. Solutions of the simplified equations display all the physically
important features of the standard model.

1. Introduction

The standard equations governing the steady linear wind- and thermally-driven
ocean circulation are

fxu=— Vo + AVu + A,
0=—¢, — 0'8/po+ Ay V'W + AW,
wp, = Ky’ + Kipi,
v.-u+w,=0.

(1.1)

Here, (x, y, z) are Cartesian coordinates in the (east, north, up) direction, f is the
coriolis parameter (times the vertical unit vector), u = (u, v) is the horizontal velocity,
w is the vertical velocity, ¢ is the pressure (divided by a constant representative density
p,, in the Boussinesq approximation), v = (9, d,), A, and A, are horizontal and
vertical eddy viscosity coefficients, p(z) is the prescribed mean density, o' is the density
deviation from p(z), g is gravity, and K, and K, are eddy mixing coefficients.
Coordinate subscripts denote differentiation. The boundary conditions that accom-
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pany (1.1) are prescribed density flux at all boundaries, zero velocity vector at all solid
boundaries, and no normal velocity, plus prescribed tangential momentum flux (i.e.,
wind stress) at the ocean surface.

The general solution to (1.1) for asymptotically small A and K has been given in two
extremely important papers by Pedlosky (1968, 1969). These papers are, in a sense, the
culmination of a long search for understanding of the steady, linear ocean circulation
that began with the early work of Ekman. However, Pedlosky’s two papers are very
demanding. The no-slip and nonconduction boundary conditions typically require
three nested boundary layers at coastal boundaries.

The purpose of this paper is to draw attention to the fact that, if the standard
equations (1.1) are replaced by

fxu=—-vp—-—Au+r,
0=—¢,—pg/o, — Aw
wp, = — Kp' — Q
v.-u+w, =0, (1.2)

in which A and K are constant eddy decay coefficients, then the arithmetic simplifies
tremendously, but the solutions retain the important features discovered by Pedlosky.
The simplified equations (1.2) accommodate only the single boundary condition of no
normal flow. Therefore, the stress divergence r, and diabatic heating @ must be
inserted as prescribed functions of (x,y,z). The “body force” 7, represents wind
momentum at the point where it enters the steady large-scale circulation, after it has
been mixed downward through an “Ekman layer” of prescribed depth by small-scale
processes which are neither modelled nor parameterized by the other terms in (1.2).
Similar remarks apply to Q. The linear decay terms in (1.2) are certainly artificial, but
so are eddy transport terms in (1.1). The latter are frequently justified by an analogy
with molecular transports, but this analogy is extremely weak. In fact, the Reynolds
flux parameterization in both (1.1) and (1.2) is so lacking in fundamental justification
that we should probably discount any property of either solution that depends very
sensitively on the particular choice of parameterization. From this point of view, it is
wise to consider a variety of simple models, but with particular emphasis on the
simplest and most physically transparent models. The general strategy of choosing the
eddy flux parameterizations to facilitate analysis has been skillfully used by McCreary
(1981).

The analysis of (1.2) owes its simplicity to the fact that u, w and p’ are all expressible
as derivatives of ¢. Then substitutions into (1.2d) yield a second-order elliptic equation
for ¢. The no-normal-flow condition contributes boundary conditions that generally
contain both normal and tangential derivatives of ¢. The resulting ¢-problem is simple
enough that the boundary layer thicknesses and scalings can be easily deduced, almost
by inspection.

1 certainly agree with most physical oceanographers that models which neglect the
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advection of momentum and (especially) density cannot adequately explain the
general ocean circulation. However, 1 also share the sentiment of Gill (1983), that the
value of a nonlinear theory cannot properly be assessed without a complete understand-
ing of the linear results. The present note is offered in the same pedagogical spirit as
Gill’s recent paper.

2. Nondimensional equations

Consider a square ocean of side L and depth H, and suppose for simplicity that the
average density gradient in (1.2) is a constant. Then if all the variables in (1.2) are
re-scaled in the usual way, the resulting nondimensional equations are

—fv=- d)x;Gu - fvg
fu= —¢y—€V+qu

= — ¢, —dw + 0
Sw=— kb + Q0
u, +v, +w, =0 (2.1)

in0 <x,y,z<1.Heref=1 + By is the nondimensional coriolis parameter in units of
(representative value) f,, 8 is the nondimensional temperature deviation (proportional
to minus p’), 8 = H/L, and S = N?/N3 is the ratio of the constant (squared) Viisild
frequency N? to a value N2 that is typical of the real ocean. The interesting case is
S = 1, but we shall also briefly consider the case S = 0 of homogeneous fluid. The
nondimensional friction and diffusion parameters are

¢ = A/fyand k = (K/f,)(F2L/N2H?)

The prescribed Ekman velocity ug(x, y, z) represents a distributed source of wind
momentum that is significant only within the Ekman layer near z = 1. The boundary
conditions are simply no normal flow.

We seek solutions to (2.1) in the asymptotic limit

1»>8»¢0—0.

The smallness of 8 is inessential and merely convenient. However, the friction e must be
small if the flow outside the Ekman layer is to be in geostrophic balance. It is tempting
to assume that the diffusion coefficient k is also asymptotically small. However, we
shall see that (if S =1) k must be order one (in ¢ and &) or the entire flow is
unrealistically confined to the Ekman layer. For now we leave the size of k unspecified.
If the dependent variables are expanded in appropriate trigonometric series, viz.,

(U, 6, up)(x, ¥, 2) = ZO (U, . up)n(x, y) cOS (mr2)

o

w,8,0) (x,y,2) = 2 (w, 0, Q) (x, y) sin (mwz) (2.2)

m=1
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then the boundary condition on w is automatically satisfied and (2.1) are separable into
modes. The equations governing the subscript-m variables are

—fm = — Omx — €Un — fVEm
Stby = — Oy — Vo + figy
0 = mrd,, — W, + 0,
Sw,, = — kB, + Q.
Uy + Vmy + maw =0, (2.3)

From (2.3) it follows that

Up = — Py — &f s + Upm

Vi = f ' Omix — & TPy + Vim

w,, = (S + e’k)™" [mwk ¢, + Onl

0, = (S + ’k)™" [—mnS ¢, + g em (2.4)

for ¢ — 0. Then (2.3¢) and (2.4a, b, c) can be combined into a single general equation
for the pressure, viz.,

(662k + S) [6f_2 ¢m,x + €V - (fv2 V¢m) -V “Em] = mn [m7rk¢m + Qm] (25)

with no-normal-flow boundary condition
Opm/05 + ef ~' dbn/0n = fug, - n (2.6)

where n is the outward unit normal and s the unit tangent pointing counter-clockwise at
the coast.

An inspection of (2.5,2.6) reveals many properties of its solution. The most
important of these are:

(1) The depth-averaged (m = 0) motion obeys Stommel’s (1948) equation and is
independent of 8, k, S, and Q. The Stommel solution is briefly reviewed in
" Section 3.

(2) The internal (m # 0) motion depends critically on the size of S. If S « eb’k,
then there are coastal boundary layers of thickness e if either @ # O or the
Ekman transport impinges on the coast. These solutions are described in Section
4.

(3) If S » 8%k, then the internal (m # 0) motion has the same frictional boundary
layers as in the case m = 0. However, heat diffusion is everywhere important.
These solutions are described in Section 5.
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3. Depth-averaged flow
For m = 0 the modal equations (2.3) reduce to Stommel’s (1948) equations,
'—fvo = = d)o,x — €U, _fon
fuo = - ¢o,y — €&, +quo
Uy + Vo, =0 3.1)

in which u,, ¢,, ug, represent the vertical averages of u, ¢, ug. The solution to (3.1) is

u, = uS(xﬂ J/) = (—%’ ‘l’x) (32)
where y is the unique solution to
6¢x = - szll/ + V. (quo) (33)

and ¢ = 0 at the boundary. Then ¢, can be found from (3.1a, b). The well known
solution to (3.3) has an interior part

Y= — B_l[l v - (fug,) dx',

which is Sverdrup flow satisfying the boundary condition at x = 1. The other
boundaries generally require boundary layers to close this interior flow.

A western boundary layer of thickness ¢ is always present near x= 0. Let A denote
the boundary layer correction to any dependent variable 4. That is, let 4 = 4 + A.
Then near x = 0, ¥ obeys

BV = — s (3:4)

with boundary condition
(0, y) = — ¥a(0, ) (3.5)
and matching condition that ¢ — 0 as x — . The boundary layer solution is simply
¥ = — (0, ») exp [—Bx/e] . (3.6)

Unless the wind stress curl v - (fug,) iszeroaty = 0(y = 1) there must also be a
southern (northern) boundary layer of thickness ¢'/2. Near y = 0, ¢ obeys

B‘I’x = - 6‘l’yy (37)

and

¥(x, 0) = — ¥i(x, 0)
Y(x, =) =0. (3.8)

Since there is no boundary layer at x = 1, we must also require

¥(1,») = — %(1,») =0. (3.9)
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The solution of (3.7-3.9) is nontrivial, but its general character can be deduced by
analogy with a scalar diffusion problem. Let « = e/Bt=1—x,T(y,t) = Yl —t,y),
T,(1) = — $(1 — £,0),and T(y) = — (1, y). Then (3.7-3.9) transform to

T, = «T,, t,y>0
TO,t) =T,1t)., t>0
T(,t) =0, t>0
T(y,0)=T,(y) y>0, (3.10)

which are the equations governing the diffusion of 7'in a one-dimensional semi-infinite
medium with initial scalar concentration T;(y) and prescribed concentration 7,(¢) at
y = 0. From this analogy it is clear that Y is determined by (3.7-3.9) up tox = 0. The
boundary layer thickness at y — O is proportional to €/}(1 — x)"/2. The western
boundary layer extends inside this thicker layer to satisfy the boundary condition at
x = 0. A similar analysis applies at y = 1. The complete solution is summarized in
Figure 1.

The vertically-averaged horizontal motion is thus completely determined by the
wind curl v - ( fug,). However, the internal (m # 0) motion depends on ug,, itself, as
well as S, k, 8, and Q. We consider first the case when S = 6§ = 0=0.

4. Wind-driven homogeneous flow
If the density is constant, then the modal equations (2.3) and (2.5) reduce to

_fvm = - ¢m.x — €U,y _fvEm
fum = - (bm,y — €V, +qum
0 = mwe,, — W,

Upy + Vmy + maw =0 4.1)

and

B 2 by + €7 - (fT2VP,) — V clgy) = M Ty, (4.2)

with boundary condition (2.6).
The interior approximation to (4.1) and (4.2) simply drops all terms proportional to
¢. The interior solution is therefore

—-1__—1
u,,; = Wyug, ¢,,,1 = O, Wy =—m T V o« Ug, - (4.3)

[Note that in this paper the “interior” excludes only coastal boundary layers. The
Ekman layer, which has a prescribed thickness independent of € and 3, is a part of the
interior. There is no bottom boundary layer.] If the Ekman velocity ug, is nowhere
normal to the boundary, then the interior solution (4.3) satisfies the boundary
condition (2.6) and no boundary layers are required. However, if the Ekman transport
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Figure 1. The coastal boundary layers in the Stommel problem.

impinges on a coastline, then a boundary layer must exist to bring the normal velocity
to zero. The boundary layer thickness is easily inferred from (4.2). The boundary layer
correction pressure ¢,, clearly obeys

S (Bf e + €7 - (f V)] = M, (4.4)
in which (near x = 0, say) the terms are of relative size
8’ [B/Q /] =& (4.5)

where ® is the scale for ¢,, and £ is the sought-for boundary layer thickness. Again, only
e and é are asymptotically small. The only possible balance has R = €. It then follows
from (2.6) and (2.4) that

¢ = 0(5)
@, - n=0(1)
fi,, - s =0(")
W =0(e'67"). (4.6)

The correction pressure therefore obeys

E0°0%),, /) On* = f2mn’,, (4.7)
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with boundary condition
€3¢,/0n = f2ug, - n. (4.8)
The uniformly valid solution is
&m = Of/mm (ug - n)
x fexp [—A,x] + exp [\(x — 1)] + exp [\, ¥] + exp [A.(y — D]} (4.9)
where
Ap = maf/ed . (4.10)

The interior solution (4.3) easily transforms back into physical space. From (3.2),
(4.3) and (2.2) we find that

u =ug(x, p) + uglx, y, z) — ug,(x, y) (4.11)
and
Wy = — v-[fa’(uE_uE,,)dz'] (4.12)
where v = (3,, d,) and
U, (x, y) = /0‘ "ugp dz'. (4.13)

In (4.11) and (4.12) the terms containing ug and wug, comprise the sub-Ekman layer
flow, while the ug terms are important only within the Ekman layer. Thus w; depends
linearly on z below the Ekman layer. Note again that the depth average of u is ug.

The inverse transformation of (4.9) is not easy, but the boundary layer structure can
be deduced from the boundary layer approximations to (2.1). It follows from (4.6) and
the known boundary layer thickness ¢ that, near x = 0 (for example), the boundary
layer correction variables satisfy

>

fo -~ &,
Ju=—eb

0= — ¢, — W

i, +w,=0. (4.14)

Thus the correction flow is nondivergent in planes normal to the coastline and the
strong longshore boundary current is geostrophic.

Consider the situation shown in Figure 2, in which the wind blows into the page at a
constant speed. The interior Ekman transport is offshore and there is a weak
compensating flow at depth. In order to cancel the interior normal flow, the boundary
layer correction & must be strong and negative near the surface, and weak and positive
below. Then by (4.14b) the longshore boundary current must be strong and into the
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Figue 2. Internal coastal boundary layers in a homogeneous ocean. The offshore Ekman
transport creates an upwelling boundary layer with a surface-intensified longshore current.

page in the Ekman layer, and weak and outward below. For these signs of ¥, (4.14a)
requires that the pressure ¢ increase with depth. The upward pressure gradient force
balances the frictional drag on the vertical velocity in (4.14c).

5. Stratified flow

Now consider the case S = 0(1) of realistic stratification, but suppose for now that
Q = 0. We begin by showing that the thermal diffusivity ¥ must be order one, or the
circulation is unrealistically confined to the surface Ekman layer. This conclusion is
unsurprising because Q = k = 0 imply w = 0 by (2.1d). However, the case k— O has a
pedagogical value worth pursuing.

Let k be asymptotically small and expand all dependent variables 4 in power series
in k:

A(x, p, 23k, 6,8) = A, 9,2;68) + kA (X, p,2:60) + ... (5.1)

At the leading order in k, (2.1) reduce to
—fP = — 7 — e’ — fig

S = — ¢% — &° + fu
ul +v)=0
wl=0

8° = ¢7. (5.2)
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The first three of (5.2) are, at every level z, identical to (3.1). Thus

uO(x’ ¥, Z) = (_‘l/yv 1//):) (53)
where Y/(x, y, z) is the solution to “the Stommel problem at every z,” viz.
By, — — e + V - (fug) (5.4)

and ¥ = 0 at coastal boundaries. Again there is a western boundary layer of thickness ¢
and (generally) latitudinal boundary layers of thickness ¢'/2. However, the motion is
everywhere confined to the Ekman layer. At greater depths the powerful constraint
w® = 0 prevents vertical vortex stretching and keeps the deep fluid at rest. Since such
flow is very unrealistic, we conclude that k must be order one.

Once y is known, the pressure ¢° is determined by (5.2a, b) up to a function only of z.
We easily find that

¢ = f+ f [fus(1, ¥, 2) — (1, ', 2)]dy’
+ [ e 9, 2) — (s y, DX + G(2)  (5.5)

where
G(z) = ¢°(1,0,2) (5.6)

is the undetermined function of z. To determine G(z) (and the leading contribution to
w) we must proceed to the next order in k. However, a complete analysis is not
required. The important equation is

Swh= — "= — . (5.7)

Since

ﬂdx dyw' =0 (5.8)

at every z, we must have

Sfaxay g -o. (5.9)

Equation (5.9) determines G(z) up to an irrelevant constant.
The interior approximations to ¢ and ¢° are simply

Y= 67 [ - (fup) dx (5.10)

and

B=—p 'V ugdd v [P fus(ly, D dy + 6@ (G
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Figure 3. Circulation of a stratified ocean with k— 0, driven by the classical subtropical wind
gyre. Only the isobar corresponding tow = 0 is drawn.

The latter satisfies the “interior boundary condition”
3¢°/dy = fug atx = 1. (5.12)

It is easy to see that the interior region makes the dominant contribution to (5.9).
Therefore G(z) is determined by

dG/dz = [fax dylﬁ-‘ﬁ L1 usedx = [ fus 10 2) dy']. (5.13)

This completes the solution for K — 0.
Suppose, for example, that

fug = (0, F(z) cos my) (5.14)

with F(z) > 0, dF/dz > 0, and F(z) nonzero only near z = 1. Refer tc Figure 3. This is
the classical subtropical wind gyre. Note that v - (fug) = Qaty = 0, 1. The uniformly
valid solution,

¢° = B~ [x sinay (1 — x — e®/) — 11 F(2) (5.15)

(assuming @ « 1) has the familiar isobar pattern shown in Figure 3. The vertical
velocity is proportional to —3¢°/dz and has zero horizontal average at every z. Thus
the isobars are also contours of vertical velocity. There is downwelling in the center of
the gyre and upwelling everywhere on the periphery. The upwelling in the western
boundary layer has the same magnitude as in the interior, but it makes a negligible
contribution to the net vertical mass flux because the boundary layer is so thin. There is
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no “Ekman suction,” but none is needed, because the Ekman layer carries the full
Sverdrup transport.

Now suppose k = 0(1) and allow @ # 0. Since S = 0(1), a uniformly valid
approximation to (2.5) is

Bfﬁz (bm,x + €V - (f_2v¢m) - mz”rsz_l d’m =V - Ug, + mer/S (516)

with boundary condition (2.6). We assume for convenience that the right-hand side of
(5.16) vanishes for m greater than some finite m,,, This assumption does not
excessively restrict ug, but it does require that Q = 0 at top and bottom boundaries. We
return below to the case of general Q(x, y, z). For finite m,,,, there are ¢ or /2
Stommel boundary layers everywhere except x = 1. The interior pressure ¢,(x, y, z)
can be written explicitly in the form of a vertical convolution integral that reduces to
(5.11) in the limit £ — 0. However, it is more illuminating to consider the interior
(e = 0) limit of (2.1), viz.

U= —f ', +ug

vi=f o1+

Swi= k¢, +Q (5.17)

which on substitution into (2.1e) yield

b1 +hfBTIS T pp = BT (Voug +0./8) (5.18)
with boundary conditions
k¢, =Q atz=0, 1. (5.19)
Since there is no boundary layer at x=1, ¢; must also satisfy
A /Ay =0 atx=1 (5.20)

where we have assumed (for convenience) that uz(1, y, z) = 0.

The general character of ¢; can be deduced by analogy to a scalar diffusion problem
very similar to that of Section 3. Lett =1 — x, T(z, t; y) = (1 — 1, », z), x(y) =
kf?/BS and

qg=—B87f(V-up +0./5). (5.21)
Then (5.18 — 5.20) transform to the diffusion equation,
T,=«T,,+q, t>0, 1>z>0 (5.22)
with boundary conditions

T,-Q/k atz=0,1 (5.23)
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and initial condition
T(z,0; ) = Ty(z2) (5.24)

where the initial scalar concentration T,(z) remains to be given. The latitude y enters

(5.22-5.24) only as a parameter. Obviously 7'(z, z; y) is determined once 7,(z) is

given.

~ To determine T,(z), we note (from (5.17¢), which applies uniformly in x, y, z) that
the vertical velocity has the same magnitude throughout the flow. The coastal

boundary layers thus make a negligible contribution to the requirement

[[dxdyw=0 (5.25)

which therefore reduces to

[[dx dy ¢, = [[dx dy Q/k, (5.26)

that is,

djdz [[drdyT - [fdx dy gk (5.27)

at every z. Equation (5.27) determines 7(z) and closes the problem.

To see how, suppose (for example) that ¢ = 0 and v - ug is negative and independent
of x corresponding to a simple subtropical gyre. Then g > 0 in (5.22). Suppose further
that the y-dependence of «(y) is negligible (i.e., that 8 « 1). Then T and ¢; are
independent of y and (5.27) reduces to

f‘ dt T -0. (5.28)
1]

The source ¢ is independent of time and acts only near z = 1. By time ¢, this source has
penetrated a vertical depth (x2)'/2. To satisfy (5.28) the initial scalar concentration
T.(z) must be large near z = 0 and small near z = 1, so that 7 has opposite signs near
t = 0and t = 1. The isolines of T must be as in Figure 4a, which shows the solution to
(5.22,5.23,5.28) with 0= 0,9 = .1 x exp [(z — 1)/.15] and x = 1/16 (corresponding
to representative oceanic values). Note that the lowest T'is found at z = 1 up until some
time ¢, at which the source g overcomes the initial T gradient. At time ¢, 87/dz
changes sign.

To translate these results to the circulation problem, it is only necessary to recall
that¢ = 7,8 = T,,and w = —kT,/S. The thermocline depth at longitude x is

D(x) = (xkt)'/* = {kf*(1 — x)/BS}". (5.29)

The geostrophic velocity is concentrated above the thermocline and is predominantly
southward. The geostrophic velocity increases with increasing x, as the constant
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Figure 4. (a) The solution to the scalar diffusion analog (5.22, 5.23,5.28) withQ =0,9 = .1 x
exp [(z — 1)/.15] and k = 1/16. Darker isolines correspond to larger T. The scalar T is
analogous to ¢. The dashed line is at depth D(x). (b) The corresponding ocean tempera-
ture 4.

-1

Sverdrup transport is confined to a layer of decreasing thickness. The vertical velocity
is negative west of longitude x; = 1 — ¢,, and there is relatively strong upwelling to the
east. The corresponding ocean temperature § is shown in Figure 4b. This temperature
includes a mean 6(z) whose vertical gradient is near the minimum required to maintain
static stability at x = 1.

The temperature equation (5.22) has a similarity solution analogous to that found
by Gill (1985) for the standard model. However, the similarity solution applies only to
the region west of x,. The region east of x, is misrepresented by an artificial
singularity. The singularity has nothing to do with the neglect of boundary layers
(there is none at x = 1) and is a defect in the similarity solution itself. Since the region
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east of x, is an important part of the interior flow, the similarity solution has a very
limited value.

Pedlosky (1969) showed that the complete interior solution of the standard model
(1.1) contains a function analogous to T.(z) above that is also determined by the
vertical mass flux condition (5.25). In Pedlosky’s solution, the interior vertical velocity
makes the dominant contribution to (5.25) except very near z = 1, where contributions
from the boundary layers at y = 0, 1 must be included. This is logical because (5.25)
would otherwise contradict the standard model result that the “Ekman suction
velocity” depends solely on the wind stess curl. In the present example, the interior
vertical velocity actually overwhelms the Ekman downwelling east of x,. This is
possible because, in the simplified model, the asymptotic limit e — O does not affect the
Ekman layer thickness. The Ekman layer can therefore carry a significant share of the
Sverdrup transport. In Pedlosky’s solution, this transport is carried below the Ekman
layer, but, on the other hand, the Ekman layer is infinitesimally thick. There is no real
contradiction between the two solutions.

As a final example, suppose that ug = 0 and

0=-1/2—y (5.30)

corresponding to a depth-independent heating (cooling) in the southern (northern) half
of the ocean. Now, because @ # 0atz =0, 1, (5.19) contradicts (5.20) at the corners
(x, z) = (1, 0) and (1, 1). In this case, tiny corner regions of horizontal thickness e and
vertical depth ¢/ must be present. These corner regions, which play no role except to
remove the contradiction between (5.19) and (5.20) at the corner, are absent if only the
sine expansion (2.2b) of @ truncates at some arbitrarily large but finite M, In that
case the “fux” (5.19) is replaced by an equivalent “source” (cf. Eq. 5.18) within an
arbitrarily small distance Mopa | Of the top and bottom boundaries, and the solution ¢
is negligibly affected.

In the scalar diffusion analog, (5.30) corresponds to g = 0. If the y-dependence of «
can again be neglected, then the initial condition T(z, 0; y) — constant satisfies (5.24)
and (5.27) by symmetry. The scalar diffusion analog is therefore driven solely by the
surface and bottom fluxes of T given by (5.23). These correspond to surface
influx /bottom efflux of T on y < ' and surface efflux/bottom influx of T ony > .
The solution must resemble the sketches in Figure 5. Remember that 7 is analogous to
the pressure ¢. The boundary fluxes of 7' cause top and bottom thermocline layers of
vertical thickness D(x) (cf. Eq. 5.29). The horizontal fluid motion is confined to these
layers. South of y = 1%, the horizontal velocity is southward in the surface thermocline
layer and northward at the bottom. The vertical velocity is positive, as is most easily
deduced from the vorticity equation,

wi. = Bvi/f. (5.31)
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Figure 5. The circulation resulting from a depth-independent heating (cooling) in the southern
(northern) half of the ocean. The curves in the lower panel are analogous to isobars. The
symbol g represents the surface flux in the scalar diffusion analog.

All velocities change sign north of y = 5. Stommel boundary layers of thickness ¢ and
¢'/? close the horizontal flow at every z. Again, these boundary layers make a negligible
contribution to the vertical mass flux.

Outside the thermocline layers, T and hence ¢ is uniform, 6 is zero, and the
dominant balance in the heat equation (5.17¢) is between the diabatic heating Q and
the vertical advection of the mean temperature gradient. The vertical velocity has the
z-independent value w = Q/S. Within the thermocline layers, w adjusts to meet the
boundary conditions w = 0 at z = 0, 1. The resultant vortex stretching causes
horizontal motion by the Sverdrup relation (5.31). Since w changes by @ /S across both
thermocline layers, the Sverdrup transport of both layers is independent of x. Within
the thermocline layers (and particularly near z = 0, 1 where w = 0) the balance in the
heat equation is between the diabatic heating and the temperature diffusion k6.

The stratified solutions of this section are all strongly controlled by the temperature
diffusion parameter k. Unlike ¢, k must be order one, and temperature diffusion is
therefore important both near and far from boundaries. However, the temperature
equation (2.1d) reveals that the important dynamical role of temperature diffusion is
an artifact of linear theory. If @ = O there can be no vertical motion, and hence no
vertical vortex stretching, without a compensating temperature diffusion. But this
tight connection between diffusion and vertical velocity would disappear if the
horizontal temperature advection terms had been retained in (2.1d). Thus it is the
linearization of the heat equation about a state with flat isopycnals that is really
responsible for the unrealistically diffusive character of the present solutions.

A sequel paper will report numerical solutions of the “nonlinear thermocline
equations” analogous to (2.1), in which the linear heat equation (2.1d) is replaced by
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the nonlinear equation
DO/Dt = Q + K,V + K.,0,,. (5.32)

Eq. (5.32) steps 0 forward in time, and the velocity at the new time is determined from
6 and the remaining equations (2.1a, b, ¢, €). The latter combine to yield an equation
analogous to (2.5), viz.,

eaz[ﬁf-zd)m,x + €V - (f—2 vd)m) - V. uEm] = mw[m”rd)m + Bm] (5'33)

with boundary condition (2.6). In (5.33) ,, is a forcing term analogous to Q,, in (2.5).
The vertically-averaged (m = 0) velocity is the same as in Section 3. For m # 0,
coastal boundary layers occur wherever the interior solution

Omt = _Om/ mm (534)

fails to satisfy (2.6). Eq. (5.34) is a statement of hydrostatic balance. The coastal
boundary layers have the same thickness €5 and the same physical balances as the
nonhydrostatic upwelling layers described in Section 4 for the unstratified linear
model. The dominant balance in the boundary condition (2.6) is

e.f_l("‘::i’m/an =f“Em - n— a¢ml/as
= fug, -n+ m'77'86,,/0s (5.35)

where ¢ is the boundary layer correction pressure. Thus an upwelling boundary layer
exists wherever either the Ekman flow or the geostrophic thermal wind impinges on a
coastline. Preliminary numerical experiments suggest that these nonhydrostatic
upwelling layers are important components of the large-scale circulation even in cases
where the horizontally-averaged Ekman suction is zero and there is no Ekman flow
into any coast.
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