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The equations for a relativistic perfect fluid result from the requirement that the total
mass-energy be stationary with respect to variations 8x*(a, b,c,s) in the space-time
location of the fluid particle identified by Lagrangian labels (a, b, ¢) at the point s on
its world-line. By considering variations of the Lagrangian labels that leave the
specific volume and entropy unchanged, we obtain a general covariant statement of
vorticity conservation. The conservation laws for circulation, potential vorticity, and
helicity are simple corollaries. This Noether-theorem derivation shows that the
vorticity laws have no analogues in particle mechanics, where the corresponding
particle labels cannot be continuously varied.
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1. INTRODUCTION

In the simplest Hamiltonian formulation of ordinary nonrelativistic
fluid mechanics, the independent variables include a set of Lagrangian
labels a=(a, b, c), which vary continuously in space and time, and
remain constant following the motion of the fluid. The dependent
variables are the Cartesian locations x(a,f) at time t of the fluid
particle labeled by a. The Lagrangian labels can be arbitrarily
assigned. However, the choice

dadb dc = d(mass) (1.1)
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is especially convenient; then

p=20(a, b, )/, y,2) (1.2)

is the mass density, and time-differentiation of (1.2) yields the mass
conservation equation

dp/dt=— pV-u. (1.3)

Here, ¢/0t (with a held fixed) is the convective derivative, u=0x/0t is
the fluid velocity, and V=(d,,0,,0,) at fixed t. Thus, mass conser-
vation is implicit in the labeling of fluid particles.

The momentum equation results from Hamilton’s principle in the
form

5 { de [[f da{} ox/ot - ax/ot — E(a, S(a))} =0 (1.4)

for arbitrary variations &x(a,?) in the fluid particle locations. The
internal energy E(x, S) per unit mass is a prescribed function of the
specific volume a=p~' and the specific entropy S. External forces,
including the effects of boundaries, are easily included.

The internal energy in (1.4) is unaffected by particle label vari-
ations da(x,t) that leave the Jacobian (1.2) and entropy S(a)
unchanged. This symmetry property corresponds, by Noether’s
theorem, to a general statement of vorticity conservation. For
homentropic flow the general vorticity law is

(3/08)[V, % A(a, 1)] =0, (1.5)

where V,=(8,, 0, 6.) is the gradient operator in a-space, and A is
defined by

A-da=u-dx. (1.6)

The well-known conservation theorems for circulation, potential
vorticity, and helicity follow directly from (1.5). However, the general
vorticity law (1.5) cannot be stated without the use of the Lagrangian
labels. For a review of the nonrelativistic theory, including the
results quoted above, refer to Salmon (1988).
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As shown in Section 2, the equations for a relativistic perfect fluid
result from a generalization of (1.4) in which the independent
variables include the same Lagrangian labels (a,b,c) as in the
nonrelativistic limit. By considering variations in these labels that
leave the specific volume and entropy unchanged, we obtain in
Section 3 the covariant generalization of (1.5) and its counterpart
for nonhomentropic flow. The relativistic conservation laws for
circulation, potential vorticity, and helicity are simple corollaries. As
explained in Section 4, these vorticity laws have no analogues in
particle mechanics, because the discrete particle labels analogous to
(a, b, ¢) cannot be varied continuously.

The action principle for a relativistic perfect fluid has been given
in many forms. See, for example, Taub (1954), Schutz (1971),
Hawking and Ellis (1973), and Moncrief (1977). The particular form
(2.15, 2.18) given below is not new (except in details), but the
particle-relabeling symmetry property is strikingly evident in the
form (2.15), and this provides the motivation for the general vorticity
law. The fundamental new results are the general vorticity laws
(3.10-3.11) or (3.17-3.18), the motivated way in which they are
derived from (2.15), and their relationship to the more familiar
conservation laws for potential vorticity, circulation, and helicity.

2. RELATIVISTIC HYDRODYNAMICS

We assume that spacetime is flat, and scale time such that light
moves at unit speed. Let (t,x,y,2)=(x%x",x? x%) be arbitrary
Lorentz coordinates. If (f,x’,y,z) is any other set of Lorentz
coordinates then

Nap dx* dxP = dx, dx*=dx; dx" (2.1

and
o, x', ', 2)e(t, x, y, 2) =1, (2.2)
where n=diag(—1,1,1,1) is the metric in flat spacetime. Here and

below, Greek indices take values from 0 to 3, Latin indices from 1 to
3, and repeated indices are summed.
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Let x*(s, a, b, c)=x%a’ a*, a% a®) be the spacetime location of the
fluid particle identified by Lagrangian labels (a, b, ¢) at the point on
its world-line parameterized by s. We assume that (s, a, b, ¢c) depend
smoothly on (t,x,y,z), and that all world-lines are time-like,

(0x,/0s)(dx*/0s) < 0. (2.3)

As in the nonrelativistic case, the Lagrangian labels (a, b,c) can be
arbitrarily assigned. However, the choice

da db dc =d(rest mass) (2.4)
is again convenient; then
p=20d(t,a,b,c)/dt, x,y,z) (2.5)

is the (rest) mass density measured in the (¢, x, y, z) frame. Define

R, ={—(0x,/0s)(0x*/0s)}'* (2.6)
and
J,=t, %, y,2)/d(s, a, b, ©). (2.7)
Then
Po=Ry/J; 2.8)

is the proper mass density—the mass density measured in a Lorentz
frame in which the fluid is locally at rest. Note that the quotient in
(2.8) has the same value no matter how s is defined. A sensible
choice is s=1, where the proper time 7 is defined as the integral

1=[[—dx,dx*]"? (a,b, ¢ fixed) (2.9

along world-lines, from a three-dimensional hypersurface that all
world-lines intersect exactly once. Then, since R,=1, we have

Poza(T, a, b’ C)/a(t’ X, ¥, Z)' (210)
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However, it is often useful to leave the parameter s unspecified. By
(2.10)

po=L[0(t a,b,c)/o(t, x, y, 2)1[0(z, a, b, ¢)/6(t, a, b, )] =p/y, (2.11)
where
y={1—u-u}"1? (2.12)
represents the effect of a Lorentz contraction in the direction of the
local fluid velocity u. Equations (2.11-2.12) establish the validity of
(2.10) [and hence of (2.8)]. A direct application of ¢/t to (2.10)
yields the familiar mass conservation equation
ApoU%/0x*=0, (2.13)

where

U*=0x*/dt (2.14) -
is the fluid four-velocity. The covariance of all these results is
manifest from (2.1) and (2.2).

The Lagrangian for a relativistic fluid of fixed composition is
simply
L={{{{dsdadbdc R,W(J /R, S(a,b,c)), (2.15)

where W(x,, S), the total proper energy per unit mass, is a prescribed
function of the proper specific volume a,=p;! and the specific
entropy S. The entropy S(a,b,c) depends only on the particle
identity, in a manner determined by initial conditions. Thus

08/0t=0. (2.16)
By definition

W(ao, S) =1+ E(xo, S), (2.17)

where E(ay, S), also a prescribed function, is the internal energy in a
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comoving frame. Hamilton’s principle states that
oL=0 (2.18)
for arbitrary variations 0x%(s,a,b,c¢) in the spacetime locations of
fluid particles. In the presently considered case of an infinite flmd, all
variations vanish at infinity. Choosing s=t we find that
SL=[{{{dvdadbdc{[W —(0W [6ay)J /R ISR +(OW [duy)dJ }
={{{{dtdadbdc{h R ,—pdJ.}, (2.19)
where
p= —JE(ay, S)/0ay (2.20)
is the pressure and

h=W +p/p, (2.21)

is the enthalpy. Note that R,=1, but we do not set R,=1 until after
the variations. Now

O0R,=—-U,0U*=—-U,86x*/dt (2.22)
and
oJ,=3a(dt, x, y, 2}/, a, b, )+ A(t, Ox, y, 2)/ (1, a, b, c) + -+ (2.23)

plus two similar terms. Substituting (2.22-2.23) into (2.19) and
integrating by parts, we finally obtain

0={{[[drdadbdc[(hU /0t + xy Op/0x*]6x*. (2.24)
Since Jx* is arbitrary
o(hU )/ 0t + o Op/0x*=0. (2.25)
But

8/8t = (8x%/d1)(8/0x") = U* 8/6x". (2.26)
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Thus, after multiplication by p, and use of (2.13), (2.25) is equivalent
to

(8/2xP) [ pohU*U* + py*#] = 0. (2.27)

Equations (2.13), (2.16), (2.20), (2.27) are the standard equations for a
relativistic perfect fluid. The present derivation emphasizes that,
apart from definitions, these equations result solely from Hamilton’s
principle (2.15, 2.18) and the choice of E(x, S).

The nonrelativistic limit of (2.15) is interesting. For this we choose
s=t. Then, since R,=y ! and

E<l, wu<l (2.28)
in nonrelativistic flow, we find that
L={[[fdrda(1+E)(1—u-u)'?
~((ffdtda{l +E(x,S) —iu-u) (2.29)

so that (2.15) reduces to (1.4). Thus, as in particle mechanics, the
Lagrangian is the difference between kinetic and potential energy
only in the nonrelativistic limit. The exact relativistic Lagrangian is
the exact total energy—an even simpler quantity.

3. RELATIVISTIC VORTICITY LAW

The fluid motion x*a”) is a map from a-space into x-space, and
Hamilton’s principle (2.18) requires that the action be stationary for
arbitrary variations dx*(a”) in this map. Since each forward map
x*(af) uniquely determines an inverse map a*(x?), Hamilton’s principle
is obviously equivalent to the statement

S [§ff dx W(Q,, S(a', a*, a%)/Q,=0,  Q,=J/R, 3.1

for arbitrary variations da*(x®) in the inverse map.

The mass labels (a', a?, a”) enter (3.1) only through the Jacobian J,
and the entropy S(a', a?, a%). We therefore consider variations da'(x*)
for which 6J;=0 and 6S=0. As in the nonrelativistic case, these
variations correspond to a continuous relabeling of fluid particles
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that does not affect the specific volume or entropy. The resulting
conservation law turns out to be the most general statement of
vorticity conservation.

First suppose that the fluid is homentropic (i.e. S =constant). Then
Hamilton’s principle reduces to the simple form

8§fffdx W(J/RYRJJ,=O. (3.2)

If 6J,=0, this is
§{§faxt(wiJ+p(J/R)/RIOR,=0, (3.3)
where
SR, = —(0x,/05)0(8x%/8s) = (0x,/0s)(0x*/da’)[0(6a))/s).  (3.4)
Again, repeated Greek indices are summed from O to 3, and Latin
indices from 1 to 3. But §J,=0 implies that
2(6a')/éa'=0 (3.5)
and thus that
da' =™ 0T, /oa’, (3.6)
where ¢/ is the permutation symbol, and Ti(a%) is arbitrary but
vanishes at infinity. Setting s=1 and substituting (3.4) and (3.6) into
(3.3), we obtain
0={[ffda hU, (8x*/0a’) d(8a’)/ot
=[{[fda hU, (9x*/0a")e" (& T,/ 0t 8a’)
=—(ff(@Q"/on)T, (3.7
where

Q'=¢*[8(hU )/0a’}(6x*/8a"). (3.8)
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Since T; is arbitrary,
40! /0t=0 (3.9)

and Q' is constant along world-lines. All of the vorticity laws for a
relativistic perfect fluid are easy corollaries of (3.9) and its counter-
part for nonhomentropic flow.

The homentropic vorticity law (3.9) can also be written in the
apparently more general form

00*/6t =0, (3.10)
where

0" = e[ 3(hU ,)/0a1(0x"/0a’). (3.11)

The form (3.10-3.11) is easily obtained by considering variations
Sa%(x?) of all four labeling coordinates for which 6J,=0 (still
considering homentropic flow). In this case, 8J,=0 implies that

d(éa%)/0a*=0 (3.12)
and thus that

da* =P T, ;/0aP (3.13)
for some T s(a*). Substitutions into (3.3) now lead to

0=[{{[ da(6Q*/ov) T, (3.14)

and (3.10) follows. However, it is easily shown that Q'=Q° and
[using (3.15)] that QY=0, so that (3.9) and (3.10) have precisely the
same physical content. This is expected because the variations da*
differ from &a' only in that the former include world-line parameter
variations Js, and, as previously noted, the Lagrangian (3.1) is
unaffected by Js because J; and R, always occur as a quotient.
However, the fully four-dimensional form of (3.10) is a convenience
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for transferring results out of label-space. Both (3.9) and (3.10) can
be verified directly from the homentropic form of (2.25), viz.

d(hU ,)/0t+ Oh/ox* =0. (3.15)
If the flow is nonhomentropic (i.e. VS#0), we let the entropy S be
one of the particle labels (a*=S$, say) and consider variations &a’,
da® that leave the Jacobian (2.7) unchanged. These variations
correspond to a relabeling of fluid particles within surfaces of
constant entropy. Then
da'= —0T/da?, da*=0T/ea’ (3.16)
for some T(a%) and, omitting easy steps, we find that
0Q[8]/0t=0, (3.17)
where the potential vorticity Q[S] is defined by
Q0] =c"[8(hU,)/0a"](8x*/da’)(86/0a"). (3.18)
Choosing a®=s=t, this is
Q6] =p ™' [8(hU ,)/0x"J(2x™/0x)(06/0x*)
=p [V x(yhu)] V0. (3.19)
Holm (1985, p. 15) derived the potential vorticity law in the form
(3.17, 3.19) without the use of Noether’s theorem.
Now let 6(a',a? a’) be an arbitrary conserved scalar,
06/d7=0. (3.20)
If the flow is homentropic, then (3.9) and (3.20) imply that

0Q[607/6t=0. (3.21)

Since 8 is arbitrary, (3.9) and (3.21) are actually equivalent. Thus all
of our results are summed up by the general potential vorticity law
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(3.21) in which 6 is an-arbitrary conserved scalar if the flow is
homentropic, and 6 is the entropy itself if the flow is non-
homentropic.

The definition (3.18) can be rewritten as

Q[O1=e*"°[a(hU )/0a)(0x"/0aP)(86/ba”). (3.22)
Multiplying (3.22) by the constant U,U?=U,dx"/0a’, and noting
that (3.22) must be covariant with respect to transformations of the
labeling coordinates, we obtain the four-dimensional equivalent,
Q[0]=¢*"°[2(hU )/0a"](0x*/6aP) (0x*/0a?) (86/2a’)U ,
=[a(hU ,, x*, x*, 0)/é(z, a, b, 0)]U,,
=po '[(hU,, x*, x*, §)/8(, x, y, 2)]U,,
=po e [A(hU 5)/ox"]U (260/6x°). (3.23)
This is the covariant form of the potential vorticity discovered by
Katz (1984). Katz showed that (3.21, 3.23) is related to Kelvin’s
theorem. We next show that Kelvin’s theorem, like (3.21), follows
immediately from (3.9) or (3.17).
For homentropic flow (3.8-3.9) can be rewritten
(8/0s)[ V., x A(a, 5)]=0, (3.29)
where

A, =hU, 3x*/0d! (3.25)

is the relativistic generalization of (1.6). Consider any loop fixed in
a-space. By (3.24-3.25) and Stokes’ theorem,

(d/ds) § A~ da=(d/ds) § kU, dx*=0. (3.26)

This is Kelvin’s theorem. For nonhomentropic flow, (3.17) can be
rewritten

(d/ds)[VaS - V. x A(a, s)] =0, (3.27)
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so that (3.26) holds only for loops within surfaces of constant
entropy.

Next consider any fixed volume V in a-space with boundary
everywhere tangent to V,x A. It follows from (3.24) that

0A/0s =V ¢(a,s) (3.28)
and thus that
(d/ds) jjj da[A -V, x A]=0. (3.29)

This expresses the conservation of helicity (Carter, 1978). If s=¢ then
(3.29) is equivalent to

(d/ds) {§ dx[hu-V x (h)] =0, (3.30)

where V', the corresponding volume in x-space, is a material volume
of closed vortex tubes.

4. CONNECTION WITH PARTICLE MECHANICS

The Lagrangian for a system of non-interacting particles is (Landau
and Lifshitz, 1975)

L=[ds Y, moRsw, (4.1)
where my;, and x¢, are the mass and location of the ith particle, and
Ry = { —(dx,p/ds)(dxgy/ds)} ' 2. (4.2)

Clearly, (2.15, 2.17) is the generalization of (4.1) to the case of
particles distributed continuously in spacetime. The proper energy W
per unit mass includes a contribution E from the motions of
“microscopic constituents” with respect to the local center of mass.
This internal energy E depends on only two local properties of the
macroscopic motion—the proper mass density po and the comoving
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entropy S. This special dependence is the essence of the perfect fluid
approximation.

In the analogy between (2.15) and (4.1), the Lagrangian labels
(a,b,c) are analogous to the discrete particle labels i. The general
vorticity laws are therefore a result of the continuum approximation.
They have no analogue in particle mechanics, where the integers i
cannot be continuously varied.
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