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ABSTRACT

In this paper, we show that numerical solutions of the single-layer quasigeostrophic equation
in a beta-plane basin approach the state predicted by equilibrium statistical mechanics when the
forcing and dissipation are (unrealistically) zero. This equilibrium state, which we call Fofonoff
flow, consists of a quasi-steady uniform westward interior flow closed by inertial boundary
layers. When wind stress and bottom drag are switched on, we find that the nonlinear terms in
the quasigeostrophic equation still try to drive the flow toward Fofonoff flow, but their success at
this depends strongly on the geometry of the wind stress. If the prescribed wind stress exerts a
torque with the right sign to balance the bottom-drag torque around every closed streamline of
the Fofonoff flow, then solutions to the wind-driven quasigeostrophic equation are energetic,

" Fofonoff-like, and nearly steady. If, on the other hand, the wind opposes Fofonoff flow, the
wind-driven solutions are turbulent, with small mean flows, and much less energy. Our results
suggest that integral conservation laws (on which the equilibrium statistical mechanics is solely
based) largely define the role of the nonlinearities in the quasigeostrophic equation. To support
this viewpoint, we demonstrate a resemblance between the solutions of the quasigeostrophic
equation and the solutions of a stochastic model equation. The stochastic model equation, in
which the advected vorticity is replaced by a random variable, has only gross conservation laws
in common with the quasigeostrophic equation.

1. Introduction
Equilibrium statistical mechanics predicts that numerical solutions of the equation

VA, + J (§, V) + By, = wind curl + friction (1.1
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for a single-layer quasigeostrophic ocean approach a thermal equilibrium state when
the right-hand side of (1.1) is (unrealistically) zero. (Here, { is the streamfunction for
the flow and the other symbols have their conventional meanings, defined fully below.)
These thermal equilibrium states (e.g. Salmon et al., 1976) are characterized by a
mean flow (') that satisfies

V) + By — yo) = v (¥, (1.2)

where y; and v are constants determined by the initial energy, total potential vorticity,
and potential enstrophy. For realistically small initial energy, v is positive, and
solutions of (1.2) have a constant westward interior flow closed by inertial boundary
layers at the coasts, similar to Figure 5a. We call such mean flows Fofonoff flows after
Fofonoff (1954). The thermal equilibrium states also contain time-dependent motions,
but these are confined to relatively small spatial scales.

This paper assesses the relevance of thermal equilibrium theory to models with
realistic forcing and friction by examining square-basin numerical solutions of (1.1)
with a variety of wind-stress patterns. Section 2 provides the theoretical background.
In Section 3 we confirm that unforced, undamped solutions of (1.1) do indeed
approach solutions of (1.2). Section 4 examines solutions of (1.1) with realistic forcing
and damping.

We find that when wind stress and friction are switched on, the nonlinear terms in
(1.1) still try to drive the solution toward a quasi-steady Fofonoff state, but their
success at this depends strongly on the geometry of the wind stress, as the following
simple argument anticipates. Let

W=ff-r-udxdy (1.3)

where u = (—¢,, ¥,) is the fluid velocity and 7 is the wind stress. If W > 0, then the
wind does work on the flow. However, the geometry of 7+ may be such that # cannot be
positive for mean states resembling Fofonoff flows. For example, the wind might be
westerly over the whole interior ocean and zero near latitudinal boundaries. Then
quasi-steady Fofonoff flow is clearly impossible.

In Section 4, we consider the question of compatability between a given wind stress
and Fofonoff flow more carefully, using the time-averaged integral of (1.1) over the
area enclosed by a mean streamline of the flow. Then Fofonoff flow is possible only
where the wind exerts a torque of the correct sign to balance the bottom-drag torque on
Fofonoft flow with no need for a Reynolds flux of potential vorticity.
 Our experiments show that, in cases and in regions where Fofonoff flow is possible
by the foregoing criteria, the solutions of (1.1) are energetic, Fofonoff-like, and nearly
steady, as anticipated by equilibrium statistical mechanics. When, on the other hand,
the wind opposes Fofonoff flow, the solutions are turbulent, with small mean flows and
much less total energy. In summary, the nonlinear terms in (1.1) always try to move
the system toward quasi-steady Fofonoff flow. If the wind cooperates, they partly
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succeed. However, if the wind opposes Fofonoff flow, then the system exhibits large
fluctuations about a very weak mean flow.

Thermal equilibrium (and Fofonoff mean flows in particular) corresponds to a
uniform probability distribution of system states over hypersurfaces in phase space
corresponding to fixed values of the energy, total potential vorticity, and potential
enstrophy. Our thesis that the nonlinear terms in (1.1) always push the system toward
thermal equilibrium is thus equivalent to the principle that nonlinearities mix
probability density over the accessible volume of phase space. This is distinct from the
principle of potential vorticity mixing in physical space, which, unless selectively
applied, grossly violates energy conservation.

If our thesis is correct, then quite different physical systems with the same gross
conservation laws ought to behave similarly in the strongly nonlinear regime. In
Section 5 we test this idea by comparing solutions of (1.1) to solutions of the stochastic
model equation

VY, + J (Y, VA*) + By, = wind curl + friction (1.4)

where * is a random variable with only gross statistical properties in common with .
The only rigid constraint on y* is that the Jacobian term in (1.4) not be a source of
potential enstrophy. (The energy and total vorticity are automatically conserved by
(1.4) when the right-hand side is zero.)

We find that time-averages of the solutions to (1.4) bear a surprising resemblance to
those of (1.1). This suggests that fundamental properties of the solutions to (1.1) are
generic, and that it is pointless to seek specific “mechanisms” for every observed
property of nonlinear flow models.

The model (1.1) has been the subject of many previous papers. Veronis (1966) was
the first to note that solutions of (1.1) can resemble Fofonoff flow. Niiler (1966)
proposed an analytical explanation for this resemblance for the case of small wind curl
and friction, but for the reasons stated above, his theory applies only to prescribed
winds that can do positive work on Fofonoff flow. Marshall and Nurser (1986) present
a similar theory for a baroclinic quasigeostrophic model. Merkine e al. (1985) have
recently expressed doubt that Fofonoff flow has relevance to solutions of (1.1). We
disagree with their conclusions for the reasons stated by Holloway (1986b).

The present paper, which is an incomplete summary of Griffa (1988), is our attempt
at a qualitative synthesis of the solutions to (1.1). Our synthesis is based upon thermal
equilibrium theory even in the cases where the solutions do not resemble Fofonoff flow.
However, many of our experiments closely resemble numerical solutions that have
appeared in the literature. See especially Marshall (1984).

2. Background
The quasigeostrophic equation for a single-layer ocean in a square basin is

%+J(%q)=(ﬁ—{)curl'r+D (2.1
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where (x, y) are Cartesian coordinates in the (east, north) direction, {(x, y, t) is the
streamfunction, and the potential vorticity

g=¢{+f (2.2)
is the sum of the relative vorticity
F=v% (2.3)
and the Coriolis parameter
S=So+ By (2.4)
Here
J(A,B)=6—A—QI—;—6—B% (2.5)

dx dy  Ox dy’

p is the mass density, H is the constant depth, 7, is a representative wind stress
magnitude, 7(x, y) is the wind stress (divided by 70), and D is a general dissipation
operator discussed further below. The boundary conditions are ¥ = O at the coastal
boundaries. '

The ‘methods of equilibrium statistical mechanics predict the final states toward
which finite-resolution models of macroscopic fluid systems would evolve in the
absence of external forcing and viscosity. These thermal equilibrium states anticipate
the role of fluid self-interactions in realistic, nonconservative flows. For a review of the
theory and its previous applications to geophysical fluid dynamics, see Kraichnan and
Montgomery (1980), Salmon (1982a, b), and Holloway (1986a). In this paper, we are
primarily interested in assessing the relevance of thermal equilibrium theory to
numerical solutions of (2.1) with realistic forcing and damping.

When 7 = D = 0, the dynamics (2.1) conserves the energy

E= ffA (V)? dx dy (2.6)

and the potential vorticity ¢ on every fluid particle. (Here

fj; dx dy

denotes an integration over the whole basin.) It follows that every moment,

QHE[Lq"dxdy, n=12,... 2.7)

is also conserved.
Now suppose that (2.1) is replaced by a discrete numerical analogue,
dyi(t)

- G, (¥ ¥ - ¥ i=1toN (2.8)
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where ¥,(7) is the streamfunction at the i-th gridpoint or mode. If (as is generally the
case) (2.8) statisfies the Liouville property,

Y. 4G,
i=1 awt
then equilibrium statistical mechanics predicts that ensembles of free (i.e. unforced

and undamped) solutions of (2.8) approach the stationary equilibrium state with
(macrocanonical) probability density

when 7=D=0, (2.9)

P, Vs ..., ¥N) = const - exp ‘—— A E — i A Qj]. (2.10)
j=1

Here E and Q; are the conserved discrete analogues of (2.6) and (2.7), and the
constants A; are determined by the average initial values of £ and Q.
If moments Q, with n > 3 are ignored, then the probability density

P (1. - ¥n) = const - exp{— NE — M@ — M, 00 (2.11)

depends only on the energy E, the total potential vorticity @, and the potential
enstrophy @,. (We come back to this step below.) A straightforward calculation (e.g.
Salmon, 1982a, Section 5) then establishes that the average streamfunction,

Wy=Jff ... [db dby.. . ¢ Pyt o ¥n) (2.12)

obays the discrete analogue of

V) + By — yo) =7 (¥) (2.13)

where
)\I }\0
- f,— =L d -0 ,
Byo Jo M, an | Y ~ (2.14)

The relevance of thermal equilibrium ensembles with probability density (2.11) to
solutions of (2.1) with realistic forcing and damping has always been questioned, and it
is the central focus of this paper. The truncation of ¥(x, y, t) to a finitie number of
discrete variables ¢,(¢), corresponding to a finite grid-spacing Ax or a maximum
wavenumber k, ., is especially unrealistic in the limit of zero (eddy) viscosity. The
usual argument considers the sequence of equilibrium states (for given average E, 0,
and Q) as k.. — o, and posits that this sequence of states qualitatively resembles the
states exhibited by the freely evolving continuum system, in which k,,,, = « from the
start.

Carnevale and Frederiksen (1987) have carefully examined the dependence of the
thermal equilibrium states on k.. They show that, as k,,,, — o, all of the energy ends
up in the steady Fofonoff flow defined by (2.13) with the constants y and y, then solely
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determined by the initial energy and total vorticity,
7z = ff {dx dy = Q, + constant. (2.15)

A finite enstrophy is contained in time-dependent motions at infinite wavenumbers,
but there are no transient motions at any finite wavenumber. Carnevale and Freder-
iksen further show that vy is always larger than —kZ,, where k,,, is the lowest
wavenumber in the basin, and that the steady Fofonoff flow is therefore stable by
Arnold’s nonlinear stability criterion. As they point out, the stability of Fofonoff flow
with y > —kZ,, is required for consistency of the statistical theory because the thermal
equilibrium flow is asymptotically steady. The “negative temperature” thermal
equilibrium states with —k2,, < ¥ < 0 correspond to initial conditions with unrealisti-
cally large energy (large Rossby number).

The asymptotically exact results of Carnevale and Frederiksen can be anticipated by
the following more intuitive arguments. First consider free (i.e. unforced and
undamped) three-dimensional turbulence governed by the Euler equations. In three-
dimensional turbulence, the only important integral invariant is the energy, and the
thermal equilibrium state has energy equipartition among Fourier modes at all
wavenumbers less than k,,,,.

Next consider free two-dimensional turbulence, governed by (2.1-3) with f = 0 =
r = D. For this case, energy equipartition is prevented by the requirement that the
enstrophy

Zzs_[/;i’zdxdy (2.16)

also be conserved. As shown by Kraichnan (1975), the constraint that (2.16) remain
constant actually traps all of the energy at k,,;, as ko — co.

The case of freely evolving (+ = D = 0) beta-plane flow governed by (2.1-4) is, in a
sense, intermediate between two- and three-dimensional turbulence. In this case, the
energy can spread to high wavenumbers, increasing the enstrophy Z,, provided only
that the potential enstrophy

_/Z Gdxdy —Z, + 2 j]; ¢ By dx dy + constants (2.17)

remains constant. This requires that

_CEffA ¢ By dx dy (2.18)

decrease to offset the increase in Z,. Thus the tendency for energy to equipartition
among spatial Fourier modes forces a negative correlation between relative vorticity
and latitude. This negative correlation between vorticity and latitude is a characteristic
property of Fofonoff flow.

In numerical experiments, k,,,, is fixed at a relatively small value, and the pile up of
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energy at k,,, arrests the evolution toward the Fofonoff state. I k. could be
increased, this energy would spread into even higher wavenumbers, further increasing
the enstrophy Z, and the anticorrelation C between vorticity and latitude, and thus
causing a stronger mean Fofonoff flow. In numerical experiments, it is often
impractical to increase Kpay, but the energy piling up at kpa, can be removed by a
scale-selective eddy viscosity. Thus solutions of (2.1-4) in which 7 vanishes and D
represents only an eddy viscosity should exhibit the same strong Fofonoff flow as
solutions with 7 = D = 0 and a much larger Kpaxe Such solutions are examined in
Section 3.

As already stated, equilibrium statistical mechanics predicts that most of the energy
in time-dependent motions is concentrated near k.. A scale-selective eddy viscosity
removes this time-dependenf energy, thereby reducing the dimension of the volume in
phase space available to the system. Thus, for the dynamics (2.1-4) with vanishing 7
and D only an eddy viscosity, the Fofonoff state is a stable attractor in the language of
dynamical systems theory.

The approximation (2.11) to (2.10) is convenient because integrals like (2.12) are
easy to perform only if the argument of exp in (2.10) is at worst a quadratic in the ;.
The usual justification for (2.11) is that discrete approximations (2.8) typically only
conserve E, 0y, and Q,. However, this justification is unappealing because it seems to
depend on a shortcoming of discrete approximations. A more plausible justification is
that (2.11) corresponds to a uniform distribution of probability on the phase-space
hypersurface T of constant E, 0, 0,. The more exact distribution (2.10) is uniform on
a subset of T, but this subset may sample I' so densely that (2.12) can be accurately
evaluated with (2.11). We regard the numerical experiments in Sections 3 and 4 as a
simultaneous test of the validity of the theory leading up to (2.10) and the accuracy of
‘the approximation (2.11).

3. Experiments without forcing or bottom drag

In this section we analyze numerical solutions of (2.1-4) with vanishing wind stress
and D a scale-selective eddy viscosity that represents the effects of unresolved small
scales by removing the energy that piles up near &,,,, the highest resolved wavenum-
ber. By the reasoning in Section 2, we expect these solutions to approach steady
Fofonoff flow. However, we are here primarily concerned with the pathway of
approach to the Fofonoff state, which equilibrium statistical mechanics cannot
address.

At the small scales on which the eddy viscosity is effective, the dynamics are
essentially those of pure two-dimensional turbulence with negligible B. The eddy
viscosity in numerical solutions of two-dimensional turbulence is often taken to be of
the form

D= (- (V)Y (3.1
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where » is a constant eddy coefficient and m is a positive integer. The choice m = 1
mimics the standard molecular friction but does not accurately represent the effect of a
sharp cutoff in resolved lengthscales. Larger values of m exacerbate the problem of
choosing m coastal boundary conditions (besides no-normal-flow) to go with (3.1).
These boundary conditions are as arbitrary as (3.1) itself. However, Marshall (1983)
has proposed that the choice of boundary conditions be constrained by the requirement
that the eddy viscosity cause no boundary fluxes of Q,. This is logical because the eddy
viscosity operator and associated boundary conditions (which can be combined into a
general integro-differential operator) represent the effect of unresolved small scales
within the fluid itself, and there is no fluid outside the boundaries. However,
Marshall’s specific suggestion for the case m = 2 leads to a boundary flux of £ with
indefinite sign. Griffa (1988) has shown that this causes unacceptable oscillations of
the energy in experiments like those considered here.

To avoid this difficulty, we here use the anticipated vorticity eddy viscosity proposed
by Sadourny and Basdevant (1981, 1985), viz.

D=Dy=—vJ{VJ¥I). (3.2)

It can easily be shown that D, dissipates enstrophy, but not energy or total vorticity,
within the body of the fluid, in agreement with the phenomenology of the k*
enstrophy inertial range in two-dimensional turbulence. Moreover, with boundary
conditions of no-normal-flow and

g
3, W) =0 (3.3)

(where n denotes the normal direction), D, causes no boundary fluxes of total
vorticity, enstrophy, or energy. Vallis and Hua (1988) report good agreement between
(3.2) and the eddy viscosity calculated explicitly from higher resolution experiments.

We now discuss the results of two experiments with eddy viscosity (3.2) and no other
forcing or dissipation. The experiments begin from random initial conditions with
energy concentrated at nondimensional wavenumbers &k = 3 to 4 (based upon the basin
size L), and (we anticipate) evolve toward steady solutions of (2.13) with v and y,
determined by the (conserved) energy

E =L},

and total vorticity (2.15). For realistically small initial energy, <y is positive and the
final state has a westward interior flow with speed

U=28/v. (3.9)

The boundary layer, of thickness

8= JU/B (3.5)
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Table 1. Experiments without forcing or bottom drag.

Experiment QG1 QG2 SM2
Dynamics quasigeostrophic quasigeostrophic stochastic model
Initial Ro 159 x 107? 298 x 10°? 3.74 x 1073

6 (Eq. 3.7) 398 Ax 1.30 Ax 1.52 Ax

Z)Z .012 .063 .037

Duration 81.6 T, 91.2 T,y 948 T,,,

and velocity magnitude LU/3, makes the dominant contribution to E. Thus
U~U,, vé/L 3.6)

and, combining equations, we find that the boundary layer thickness depends only
weakly on the initial energy:

8~ Ro™ L, 3.7)
where
Urms

is the Rossby number. Egs. (3.4-8) provide the link between -y and the initial energy.

The latitude y, where () — O is determined by the (conserved) value of the total
vorticity Z. If Z = 0, then yo = L/2, and the Fofonoff flow is symmetric about the
central latitude. If Z < O then y, < L/2 and the northern (anticyclonic) gyre
dominates.

Table 1 summarizes the experiments. (The stochastic model experiment SM2 will
be discussed in Section 5.) All of our experiments were performed with a resolution of
64 by 64 gridpoints. Finer resolution is impractical because the experiments must run
for long times. The coarse resolution puts a lower bound on the initial energy, because
the inertial boundary layer thickness (3.7) must be resolved. All of our initial Rossby
numbers are small compared to unity, but large compared to realistic ocean values. For
example, if L = 4000 km and 8 = 107" cm ™' sec™', then experiment QG1 corresponds
to an rms velocity U, of 255 cm sec™'. QG2 corresponds to 47.7 cm sec™'. If finer
resolution had permitted smaller initial Rossby numbers, we would expect thinner
inertial boundary layers and longer adjustment times, but qualitatively similar
behavior to that reported below. Table 1 also gives the boundary layer thickness
estimated from (3.7) in units of gridspacing Ax; the normalized total vorticity Z/Z,,,
where

Zope = ff |¢] dx dy; (3.9)
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Figure 1. Anticorrelation C(¢), defined by (2.18), between the relative vorticity and latitude (in
arbitrary units) versus time (in units of turnover time 7,,,) in the free quasigeostrophic
experiments (a) QG1 and (b) QG2; and (c) in the stochastic model experiment SM2. The
increase in C(¢) with time is an indication of the emergence of Fofonoff flow.

and the duration of each experiment in units of the turn-over time,
Toms = L/ U ps. : (3.10)

The Jacobian in (2.1) is computed using the Arakawa scheme, which conserves
discrete analogues of E, Q,, and @,. In all of our experiments the eddy coefficient » has
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Figure 1. (Continued)

the minimum value needed to prevent a mnoticeable pileup of energy at scales
comparable to Ax.

All of the experiments reported in this paper were run for very long times, of the
order of 10° time-steps. Such long runs are required, because Rossby waves impose a
relatively short time-step on the calculation and also inhibit the nonlinear interactions
between modes.

a. Experiment QGl . Figure 1a shows the evolution of the anticorrelation C(2), defined
by (2.18), between vorticity and latitude in experiment QG1. The increase of C(2)
from its near-zero initial value is an indication of the emergence of Fofonoff flow. As
shown in Figure la, C(¢) increases rapidly until time 4.5 T, indicating a rapid
accumulation of positive (negative) vorticity in the southern (northern) half of the
basin. The much slower average increase in C(2) after 4.5 T, is marked by gradually
decaying oscillations. As explained below, these oscillations are caused by basin-scale
Rossby waves that die out very slowly. The average fractional increase in C(¢) over the
last 60 T, is only 4.4 x 107*

Figures 2 and 3 show snapshots of the streamfunction and the relative vorticity
during the initial phase of rapid adjustment. During the first 2 7,,,, the reflection
properties of Rossby waves rapidly increase the energy and enstrophy near the western
boundary. Fluid particles moving rapidly along the western boundary then carry
negative vorticity northward and positive vorticity southward. This mechanism for the
segregation of vorticity, which leads to the formation of two oppositely rotating gyres,
was recognized by Veronis (1970). By time 3 T, the fluid particles and the inertial
boundary layers they set up have reached the eastern boundary, and by 4 T, the
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b}

Figure 2. Streamfunction at times separated by 7,,,, from the beginning of free quasigeo-
strophic experiment QG1. The flow is rapidly adjusting to the Fofonoff state, although
significant east/west asymmetry is still evidentat 4 T,

b)

\ .\’ / ,
A © v
N N~
WY \“"/9

Figure 3. Relative vorticity at times separated by T, from the beginning of experiment QG1.
The adjustment to the Fofonoff state is characterized by an accumulation of large relative
vorticity along the northern and southern boundaries.
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Figure 4. Streamfunction during one Rossby wave period beginning at time 78 T, in
experiment QG1. The time interval between pictures is .4 7.

extension and energy of the eastern inertial boundary layers are comparable to those in
the west.
It follows from (2.1) and (2.18) that (neglecting eddy viscosity)

0

dc(t) 1 L
> =[53f0 |9y dy

Thus the emerging east-west symmetry is directly associated with the leveling-off of
C(2). Holloway (1986a) reports unpublished numerical experiments in which the
emergence of Fofonoff flow coincides with the growth of C(¢).

By time 20 T, fluctuations on the grid scale Ax have been dissipated by the eddy
viscosity. The remaining oscillations are apparently basin-scale Rossby waves whose
predicted frequency

(3.11)

x=
x=L

| S —

_BE
"o \/nz + m?

agrees well with that observed in Figure 1a for (1, m) = (1, 2). These Rossby waves are
excited when the system apparently “overshoots” its adjustment toward Fofonoff flow
early in the experiment; the maximum instantaneous value of C(t) is actually attained
niear the end of the initial phase of rapid adjustment. Figure 4 shows the time evolution
of ¢ during one oscillation period at 78 7,,,..

(3.12)

£
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The streamfunction and potential vorticity averaged over the last 20 7,,,, of QG1 are
shown in Figure 5a. The boundary layer thickness in Figure Sa agrees well with the
estimate given in Table 1. A more sensitive comparison between the final state of QG1
and Fofonoff flow is provided by Figure 6a, which is a scatter plot of (g} and (¢} for
the same averaging period. Figure 6a supports the prediction of (2.13) that (g) be a
linear function of (¥) in the final Fofonoff state, but it also shows that the slope
d{q)/d{y) differs significantly between the two gyres. This difference in slope
decreases slowly throughout the experiment, from a difference of 45% between gyres at
time 13.5 T, to a difference of 31% at time 78.5 T,,,. The near-constancy of the slope
within each gyre suggests that the two gyres adjust rapidly to separate quasiequili-
brium states, which then interact slowly to bring about the final global equilibrium.?

By (2.14), the slope v = d{q)/d{¥) is a function of the “inverse temperatures” A,.
Thus the slowly equilibrating gyres are closely analogous to two bodies with high heat
conductivities that are separated by a poorly-conducting wall. Although the two bodies
eventually have the same temperature, they pass through a sequence of states with
different but uniform temperatures.

b. Experiment QG2. In comparison to QG1, experiment QG2 has a much smaller
initial energy and a slightly larger average total vorticity (refer again to Table 1). We
find that QG2 also evolves toward Fofonoff flow, but after an initial period of rapid
adjustment, this evolution proceeds much more slowly than in the more energetic
experiment QG1.

In QG2, inertial gyres form near the northern and southern boundaries within the
first few T,,,. These gyres have initial latitudinal widths of about L/4, but are visible
only in time-averages between the times 4.5 T,,, and 28 T,,,. The interior region
outside the gyres is dominated by Rossby waves. Between about 5 7, and the end
of the experiment, the gyres slowly expand to a latitudinal width of L/ 3.* By the end
of QG2, the two-gyre pattern is evident also in snapshots, but even time-averages
(Fig. 5b) do not yet closely resemble Fofonoff flow. The asymmetry between the
northern and southern gyres in Figure 5b is a consequence of the positive total vorticity
in the initial conditions. At the end of QG2 (g ) depends quasilinearly on {y') within
each of the gyres (Fig. 6b). In the region between the gyres () ~ 0.

As shown in Figure 1b, the anticorrelation C(¢) in QG2 increases rapidly until the
time 4.5 T, at which the inertial gyres reach the eastern boundary, but, in contrast to
QG1, C(t) also increases steadily thereafter, indicating that QG2 never reaches its
equilibrium state. The fractional change in C(#) over the last 60 T,,,, of QG2 is 2.6 x
102, Experiment QG2 also shows less evidence of basin-scale Rossby waves (compare

3. G.F. Carnevale (personal communication) reports a similar phenomenon in numerical experiments on
quasigeostrophic flow over topography.

4. William R. Young (personal communication) had previously noticed inward growth of inertial gyres
from latitudinal boundaries.
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Figure 5. Average streamfunction (left) and potential vorticity (right) near the end of free
experiments (a) QGl; (b) QG2; (c) SM2; and (d) the instantaneous streamfunction and
potential vorticity at the end of wind-driven experiment QGa. Only QG1 closely resembles
Fofonoff flow, but QG2 and SM2 seem to be evolving toward it. The wind in QGa is
compatible with Fofonoff flow, and the average circulation therefore resembles that in QG2.
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mechanics predicts a linear relation between {g) and ().
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Figs. la-b) than did QG1. This too is apparently because of its “quieter” (i.e. less
energetic) start.

As shown in Table 1, the thinner inertial boundary layer in QG2 is much more
poorly resolved than in QG1. This is the reason for the small-amplitude gridpoint
oscillations in Figure 5b.

The smaller initial latitudinal width and subsequent slow expansion of the gyres in
experiment QG2 is possibly explained by Rhines’ (1975) suggestion that nonlinear
interactions are inhibited on lengthscales at which the Rossby wave frequency (3.12)
exceeds the “advection frequency”

nw\? mw\? 1/2

where U,,, is a reasonable estimate of the velocity inside the inertial gyres. We find
that the ratio of (3.12) to (3.13) is approximately unity when (n, m) = (1,4). The
corresponding ratio in QG1 is only about %.

Tn both QG1 and QG2, the small-scale fluctuations are rapidly removed by the eddy
viscosity, and the remaining time-dependent motions seem to be primarily basin-scale
Rossby waves. These disappear slowly, and in the less energetic experiment QG2 seem
to slow the adjustment to Fofonoff flow. In both experiments the gyres form initially on
a timescale of a few T, but the complete adjustment to the final Fofonoff state
requires many 7,,,. In the following section we introduce forcing and a bottom-drag
friction with a decay time scale between T, and the long time required to reach the
exact Fofonoff state. We therefore anticipate that the role of nonlinear interactions in
these forced experiments will be to move the system toward states like the ones
observed in QG1 and QG2 after the initial phase of rapid adjustment.

4. Experiments with forcing and bottom drag
In this section we analyze numerical solutions of (2.1—4) with nonzero wind stress,
and dissipation operator

D=Dy— € (4.1)

equal to the eddy viscosity (3.2) plus a bottom drag with drag coefficient e. All of our
experiments use the wind stress r(x, y) = (r(»), 0) with one of the following choices for
7(),0 <y < L:

7(y) = — sin (xy/L) = 7,(y) (4.2a)
7(y) = + sin (wp/L) = 7,(¥) (4.2b)
r(y) = — cos (wy/L) = 7(y) (4.2¢)

corresponding, respectively, to (a) an easterly wind with a maximumaty = L /2;(b)a
westerly wind with a maximum at y = L/2;and (c) easterlieson y < L/2 and westerlies
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on y > L/2. Cases (a) and (b) correspond, in the linear limit, to two counter-rotating
Sverdrup gyres. Case (c) corresponds to the classical single subtropical gyre.

The dramatic differences in the numerical solutions corresponding to the various
wind fields (4.2) can be anticipated from the time-average of (2.1-4), viz.

To

V c({u){g)) + V- (uq) = (——) curl 7 — € ({). (4.3)
pH

Here, primes denote departures from the time-average, and the eddy viscosity (whose
effect on the time-average flow is expected to be small) has been ignored. The integral
of (4.3) over the area enclosed by a mean streamline (¥ ) = constant, yields

f(u’q’) -ndr=(fl%)fr-dr—ef(u)-dr (4.4)

where dr is the counterclockwise displacement around the mean stream line and m is
the outward unit normal.

By the reasoning above, nonlinear interactions always drive the system toward
quasi-steady Fofonoff flow. If the Fofonoff state were actually reached, then (4.4)
would have to be satisfied, on every closed streamline, with the left-hand side set equal
to zero. Thus, if the two terms on the right-hand side of (4.4) cannot balance when (u)
is the mean velocity in the hypothetical Fofonoff state, then the nonlinear terms cannot
succeed in pushing the wind-driven system very close to the Fofonoff state, and we say
that the wind is incompatible with Fofonoff flow. The wind may be incompatible with
Fofonoff flow over all or only over a part of the ocean basin.

If the wind is incompatible with Fofonoff flow, we find that the two terms on the
right-hand side of (4.4) generally have opposite signs (as expected from the fact that
- (1.3) must be positive), but the mean flow {u) is much smaller than in cases where the
wind is compatible with Fofonoff flow. The Reynolds flux of potential vorticity (i.e. the
left-hand side of (4.4)) must therefore be important, and we do indeed observe large
temporal fluctuations in such cases.

Table 2 summarizes the forced quasigeostrophic experiments. (The stochastic model
experiments SMb and SMc2 will be discussed in Section 5.) In the identifier for each
experiment, the letter a, b, or ¢ refers to the wind stress in (4.2). The first two columns
in Table 2 give the wind stress magnitude 7, and decay coefficient ¢ in nondimensional
form. If 8 = 10" ¢cm™' sec™!, H = 4000 m, and L = 4000 km (for example), then the
values in Table 2 correspond to wind stresses of 1.0 and 2.0 dyne cm™2 The
corresponding drag decay time

T, = ¢! (4.5)

would be 2.54 and 12.7 years. Table 2 also gives the Rossby number (3.8) and the ratio
of the advection time (3.10) to the drag time (4.5) at the end of each experiment, and
the duration of each experiment in drag times. We remark that none of the
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Table 2. Experiments with forcing and bottom drag.

w1/ (pHBL?) ¢/BL Final Ro Duration

(107%) (107 (107%) T/ T (T)
Experiment
QGa 2.45 3.13 2.69 12 1.6
QGb 2.45 3.13 .63 .50 1.7
QGcl 1.23 625 14.7 .0043 2.9
QGc2 1.23 3.13 .94 .33 5.6
SMb 2.45 3.13 78 40 1.1
SMc2 1.23 3.13 89 35 1.8

_experiments reach an exactly steady statistical state. All of the experiments except
QGc2 were run with 64 by 64 gridpoints; QGc2 required 128 by 128 gridpoints to
resolve the inertial boundary layer. All of the experiments except QGel begin from
random initial conditions; QGcl begins from a state of rest. Of course, the initial
conditions of these dissipative experiments should eventually become irrelevant.

a. Double-gyre experiments QGa and QGb. Experiments QGa and QGb differ by only
a minus sign in the wind stress, but QGa, in which the wind blows in the same direction
as interior Fofonoff flow, is compatible with Fofonoff flow, whereas QGb is not. As
anticipated by the foregoing remarks, the equilibrium state of QGa resembles steady
Fofonoff flow, while the equilibrium state of QGb is very unsteady, with a very small
mean velocity. These two experiments thus nicely demonstrate the folly of attempting
to predict the behavior of the system from a scaling analysis alone.

In QGa a symmetric two-gyre mean flow emerges by time .4 7,. The energy in the
gyres builds up steadily until the end of the experiment, although the latitudinal extent
of each gyre does not increase much from the value of L/4 attained early in the
experiment. The inertial boundary layer thicknesses agree well with estimates based on
(3.5) using the velocity in the interior of the gyres. The final flow in QGa (Fig. 5d)
differs only slightly from its time-average. Figure 6c gives the scatter plot of (g) and
(y) averaged over the last .35 T, of QGa. The resemblance between QGa and QG2
(which had about the same Rossby number) is obvious.

An analysis of the balance of terms in the time-average of (2.1) for experiment QGa
shows that J({¢),(g)) balances Ba{y)/0x in the eastern and western inertial
boundary layers, whereas the former balances the bottom drag in the northern and
southern boundary layers. The region between the gyres has a Sverdrup balance not
obvious in Figure 5d.

Experiment QGb differs from QGa only in that its wind field is reversed, and now
opposes interior Fofonoff flow. However, by the end of QGb the energy has reached a
constant average value much lower (by a factor of 20) than the final energy in QGa
(which is still increasing).

In QGb, a two-gyre mean flow also emerges by time .4 T, but it consists of narrow
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gyres closely confined to the western boundary. At first these mean gyres are
concentrated near y = L/2. As time increases, the gyres expand to reach the
northwestern and southwestern corners of the basin, but two intense recirculation cells
remain near y = L /2.

Figure 7a shows snapshots of the streamfunction and potential vorticity at the end of
experiment QGb. Only the recirculation cells near (x, y) = (0, L /2) are visible in the
instantaneous fields. The instantaneous flow is dominated by fluctuations in which
Rossby waves with wavenumbers (n, m) = (3, 2) and (4, 2) are evident.

Figure 7c shows the streamfunction and potential vorticity averaged over the last .5
T, of experiment QGb. The weak mean flow shows litile resemblance to Fofonoff flow.
An analysis of the balance of terms in the averaged potential vorticity equation (2.1)
shows that the recirculating cells are maintained by Reynolds transport of potential
vorticity. The basin interior has a weak Sverdup balance. .

The scatter plot of (¢q) and (y) is shown in Figure 6d. The differences from all
previous experiments are dramatic. The points corresponding to locations outside the
small recirculating gyres are spread over a finite area of the (¢) — (g) plane. The
nearly horizontal line of constant {g), which corresponds to points within the two small
recirculating gyres, was also noted by Marshall (1984). The vertical line of zero (y)
corresponds to points on the boundary.

Experiments QGa and QGb tend to confirm our interpretation that the nonlinear
terms in (2.1) drive the flow toward the Fofonoff state along the same phase-space
pathway followed by the unforced, undamped experiments reported in Section 3. In the
case QGa in which the wind blows in the same direction as Fofonoff flow, the flow
approaches a state which is very similar to the final state of experiment QG2. The final
state of QG2, although differing significantly from Fofonoff flow, seems to be
converging toward it. However, it is likely that QGa, although its energy is still
increasing, will remain stuck on the way to the Fofonoff state, because the drag time 7.
is very small compared to the long time apparently needed to reach the Fofonoff state
at this Rossby number.

In experiment QGb, the westerly wind tries to build up an eastward interior mean
flow, but the nonlinear terms, which want to push the system toward the Fofonoff state,
disrupt it. In consequence, the mean flow is in the general direction of the wind but is
very weak (except in the two small recirculation gyres near the western boundary).

b. Single-gyre experiments QGcl and QGc2. In experiments QGcl and QGce2, the
wind has the classical subtropical gyre pattern (4.2¢) of trade winds on y < L/2 and
westerlies on y > L /2. The wind stress has only half the amplitude of the wind stress in
experiments QGa and QGb, but it now exerts a nonzero (negative) net torque on the
fluid. Since this wind stress is compatible with a Fofonoff flow in which the eastward
return flow occurs predominately along the northern boundary, we expect a resem-
blance between these solutions and the thermal equilibrium states.
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Figure 7. The instantaneous streamfunction (left) and potential vorticity (right) at the end of
wind-driven quasigeostrophic experiment (a) QGb; and corresponding stochastic model
experiment (b) SMb; and the time-average streamfunction and potential vorticity near the
end of these same experiments, (c) QGb; and (d) SMb. The wind in these experiments is not

compatible with Fofonoff flow.
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d
Figure 7. (Continued)

Experiments QGcl and QGc2 differ only in the bottom-drag coeflicient e. The
bottom drag in experiment QGc2 is the same as in all other experiments, but the drag
in QGcl is five times smaller, and the final Rossby number is therefore much larger in
QGcl. Refer again to Table 2.

For given wind stress, the equilibrium total vorticity (2.15) can be predicted from
the time- and basin-average of (2.1), viz.

To
(p—f_l) _/:/;curl rdxdy =¢(Z). (4.6)

A comparison between the measured total vorticity and that predicted by (4.6)
provides one measure of nearness to statistical equilibrium. By the end of the
experiments, the total vorticities in experiments QGel and QGce2 were within 3% of
the values predicted by (4.6). The energy in QGcl was still increasing, but showed
signs of leveling off. The energy in QGc2 had attained a nearly constant value.

In QGcl a small anticyclonic eddy appears in the northwest corner of the basin by
time .04 T.. The eddy expands along the northern boundary to the northeast corner.
The resulting gyre then expands slowly southward. By time .32 T, it covers 80% of the
basin, and thereafter ceases expanding. However, its strength and boundary layer
thicknesses keep increasing until the end of the experiment.

Figure 8a shows snapshots of the streamfunction and potential vorticity at the end of
QGcl. These snapshots closely resemble the time-averages. The southern 20% of the
basin is an eddy region in which the weak mean flow is cyclonic despite the fact that the
wind torque is everywhere negative.

Analysis of the time-average potential vorticity equation shows that the inertial
boundary layers in QGcl have the same balances as in QGa. The quasi-steady interior
of the gyre shows a weak Sverdrup balance. In the southern eddy region, the
convergence of Reynolds vorticity flux balances the bottom torque.
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Figure 8. Instantaneous streamfunction and potential vorticity at the end of wind-driven
quasigeostrophic experiments (a) QGcl and (b) QGc2; and (c) the time-average streamfunc-
tion near the end of stochastic model experiment SMc2, which corresponds to QGc2. The
wind in these experiments corresponds to the classical subtropical gyre, and is generally
compatible with Fofonoff flow.
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Figure 6e shows the scatter plot of {g) and () for QGcl. As in QGa, {g) depends
linearly on (i) throughout the gyre; the mean streamfunction () is very small in the
southern eddy region.

Experiment QGc2 has the same forcing but a much larger bottom drag than QGel. In
QGc2 the inertial gyre covers only about 60% of the basin, and the final flow (Fig. 8b)
shows a greater east/west asymmetry. Because the inertial flow is weaker, the Sverdrup
balance is more evident in Figure 8b. Again, the weak mean flow in the southern eddy
region is maintained by eddy transports. The scatter plot of {g) and () for QGc2
(Fig. 6f) is qualitatively similar to that for QGcl, but the linear relationship between
{g) and () within the inertial gyre is somewhat less sharp.

Our interpretation that the nonlinear terms drive the system toward the Fofonoff
state seems also to provide a qualitative explanation for experiments QGcl and QGe2.
The new feature of these latter two experiments is the uniformly negative sign of the
wind torque. The total vorticity must then be negative by (4.6). A negative average
vorticity Z corresponds to a Fofonoff flow in which y, < L/2 in (2.13) so that the
northern anticyclonic gyre dominates. However, Z is apparently not so negative that
Vo < 0; that is, the target Fofonoff state also has a southern cyclonic gyre on 0 <y < y,,.
Since the wind stress in experiments QGc exerts a negative torque throughout the flow,
the two terms on the right-hand side of (4.4) cannot balance one another around closed
streamlines within a southern Fofonoff gyre. In the southern region, the Reynolds flux
of potential vorticity (i.e. the left-hand side of (4.4)) must be important. The southern
eddy region in experiment QGe is therefore like the entire flow in QGb, where the wind
everywhere opposes Fofonoff flow.

5. Stochastic model experiments

The previous results suggest that the integral conservation laws (on which the
equilibrium statistical mechanics is solely based) largely define the role of the
nonlinear terms in (2.1). In this section we test this idea by comparing solutions of
(2.1-4) to solutions of the stochastic model equation

7o

VA, + T, 5% + B, = (——) curlt + D (5.1
oH

where {* is a random variable with only gross statistical properties in common with ¢.
The boundary condition remains ¢ = 0. Eqgs. (2.1) and (5.1) differ only in that {* —
Vi * replaces ¢ in the Jacobian term only.When + = D = 0, (5.1) automatically
conserves the energy E and total vorticity Z (or @,). If we agree to constrain the choice

of {* by
ffA GI (b & + By)dxdy = 0 (5.2)

then (5.1) also conserves the potential enstrophy Q,, and the thermal equilibrium states
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for (5.1) are the same as for (2.1). That is, although the Jacobian terms in (2.1) and
(5.1) are completely unalike, they drive their respective systems toward the same
Fofonoff state. If solutions of (2.1) and (5.1) then have “nonlinear” properties in
common (either with or without forcing and damping), the explanation for these
properties must rely only on the three integral quantities conserved by the Jacobians
(and the fact that both Jacobians involve only local derivatives in physical space). A
more detailed mechanistic explanation that would apply to J(¥, V&}) but not to
J (¢, V2 ¢*) would be unnecessary.
The form

J (Y, V*) (5.3)

for the Jacobian in the stochastic model equation is one of many conceivable choices.
An obvious alternative is

JW*, V). (5.4)

However, (5.3) is more logical than (5.4) because the vorticity is controlled by smaller
lengthscales than is the streamfunction, thus samples more degrees of freedom in the
flow, and is therefore better modeled as a random variable. However, (5.1) has no
particular significance as a model for (2.1). Our purpose here is merely to demonstrate
that the solutions to (2.1) and (5.1) have common properties that are undoubtedly
shared by a broad class of dynamical equations with the same integral conservation
laws. We do however note that (5.4), but not (5.3), corresponds to a mixing of the
potential vorticity by a random walk of the fluid particles. In this paper we specifically.
avoid the assumption that the nonlinear terms in the equations of motion produce
regions of uniform potential vorticity, and we note that, in all of the experiments of
Sections 3 and 4, only the small recirculating gyres in experiment QGb are regions of
uniform potential vorticity. Our thesis is that the role of the nonlinear terms is better
characterized as a mixing of probability density in phase space than as a mixing of
potential vorticity in physical space. The mixing in phase space is along hypersurfaces
of fixed total potential vorticity, potential enstrophy (and perhaps higher moments of
g) and energy. The principle of potential vorticity mixing in physical space, unless
selectively applied, grossly violates energy conservation.

The stochastic model (5.1) also resembles the stochastic model for the direct
interaction approximation (Kraichnan, 1971), which contains a term

J(*, V). (5.5)

However, the stochastic model for the direct interaction approximation also contains
an important stochastic damping term.

At each time-step we calculate the random vorticity {* in (5.1) as follows. We first
select a vorticity field {** = V*** whose spatial Fourier coefficients have random
phases but whose wavenumber spectrum is proportional to the spectrum of { = V).
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Let « be the constant of proportionality between the spectra. Then if U, is the rms
velocity corresponding to ¢, and U,,,.* is the rms velocity corresponding to y*,

(Urms*)2 = aUrm.tz' (56)

We next average {** with the {* from the previous M timesteps, and then enforce (5.2)
as described below. The resulting {* has autocorrelation time

T* = MAt1, (5.7)

where At is the time step, and conserves £, 0, and @, in (5.1).

We choose the constant of proportionality & by the rather arbitrary normalization
requirement that the velocity fields corresponding to ¢* and ¢ cause the same mean
square displacement of fluid particles at long times. That is, we require

T'*(Urm.v*)2 =T Urm.\'2 (58)
where T is the autocorrelation time for {. By (5.6) and (5.8)
a=T/T* (5.9)

A large « corresponds to a nearly white noise random vorticity {*, but requires that the
amplitude of {* be larger than the amplitude of { by a factor &'/ In all of our
experiments, we let « = 100. We consider it desirable that {* fluctuate rapidly
compared to ¢ so that solutions of (5.1) not depend on the details of a particular
realization of {*.

To enforce (5.2), we rewrite (5.2) in the abstract form

' a-¢*=> (5.10)

where each element of vector {* is the value of {* at one of the grid points. The vector a
and scalar b depend on the known fields ¢ and {. Let {** be the estimate of (¥,
described above. Then we take ¢* to be

bh_a.**
groper 029, (5.11)
. a-a
which is simply the projection of ¢** onto the hyperplane defined by (5.10). Figure 9
shows the fields of ¢, {**, and {* at a typical timestep. As could be expected, the
projection step (5.11) produces very little change in the random vorticity field.

Stochastic model experiments SM2, SMb, and SMc2. The stochastic model experi-
ments are summarized in Tables 1 and 2. The three experiments SM2, SMb, and
SMc2 have initial conditions or wind stress ficlds that arc similar to thosc in
quasigeostrophic experiments QG2, QGb, and QGc2, respectively. However, the
stochastic model experiments are generally shorter than the quasigeostrophic experi-
ments because the time-step must be shorter, and because the construction of {*
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b)

Figure 9. The (a) relative vorticity ¢; (b) random vorticity estimate {**; and (c) potential-
enstrophy-conserving random vorticity {* at a typical time step in a stochastic model
experiment.

demands extensive computations. Nevertheless, corresponding experiments can be
usefully compared.

Stochastic model experiment SM2, with no forcing or bottom drag, is similar to (but
more energetic than) experiment QG2. As shown in Figure 1c, the anticorrelation C(¢)
between vorticity and latitude in SM2 increases steadily until time 7 7,,,,. As in QG2,
this increase corresponds to the emergence of a two-gyre mean flow. Figure 10 shows
the growth of the gyres during this initial phase. Although the process resembles that in
QG2, the interpretation given in Section 3 cannot here apply in detail, because
potential vorticity is not conserved on fluid particles by (5.1). Figure 5c shows the
streamfunction and potential vorticity averaged over the last 2.3 7,,, of SM2. The
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b)

Figure 10. The streamfunction in free stochastic model experiment SM2 at time intervals of
12T, beginning at 5.1 T,

ms.

latitudinal extent of the gyres is about the same as in QG2. The east-west asymmetry is
decreasing, but is not yet as small as in Figure 5b (at a much later time.) However,
even at the same times, the east-west asymmetry is larger in SM2 than in QG2; the
stochastic model seems to be equilibrating at a slower rate.

Stochastic model experiment SMb has the same wind stress and bottom drag as
quasigeostrophic experiment QGb. By the end of SMb, the energy has leveled off at a
value about 13% higher than in QGb. As in QGb, the instantaneous flow (Fig. 7b)
exhibits large fluctuations, and the mean flow (Fig. 7d) is concentrated at the western
boundary and visible only in time averages. However, the small intense vortices near
y = L/2 in QGb (Fig. 7c) are missing in SMb, and the corresponding line of constant
potential vorticity is absent from the scatter plot of (¢) and (¢) in Figure 6g, which
otherwise resembles Figure 6d. Thus the explanation for the concentrated recirculation
vortices in QGb may well depend on the advection of potential vorticity by the fluid
motion.
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Figure 11. The streamfunction in wind-driven stochastic model experiment SMc2 at time
intervals of .35 T, beginning at 4T.

Stochastic model experiment SMc2 has the same wind stress and bottom drag as
quasigeostrophic experiment QGc2. By the end of SMc2, the energy has leveled off at
a value about 10% lower than in QGc2. As in QGc2, an anticyclonic gyre appears early
in SMc2 in the northwest corner of the basin and expands eastward along the northern
boundary (Fig. 11). The gyre then expands southward, and its east/west symmetry
increases. At the end of experiment SMc2, the flow is still evolving, but averages over
the last .2 T.(Fig. 8c) already resemble the final flow in experiment QGc2 (Fig. 8b).

The resemblance between the stochastic model experiments and the quasigeo-
strophic experiments is remarkable, especially considering the arbitrariness and
artificiality of (5.1). This resemblance strengthens our belief that fundamental
properties of the nonlinear solutions to the quasigeostrophic equation can be explained
on the basis of integral conservation laws alone. The resemblance between the
stochastic model experiments and the quasigeostrophic experiments also supports our
conjecture that the nonlinear terms in the quasigeostrophic equations drive the system
unrelentingly toward the thermal equilibrium state—even in cases (like QG2) in which
the evolution seems to be stalling at an intermediate state—because the stochastic
model equations, which show a similar behavior, almost certainly mix probability
throughout the available phase space.

If the nonlinear terms in the equations of motion can be characterized by their
tendency to drive the system toward a Fofonoff state that is solely determined by the
values of Q,, E, and Q,, then the equilibrium states that arise as a compromise between
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this tendency and the competing effects of forcing and damping can perhaps be
understood by considering the budget equations for these same integral quantities.
Assuming that Q,, E, and Q, are not changing in time, it follows easily from (2.1-4)
that

[[curl rdxdy =€ (Z), (5.12a)
A

—ﬂwcurlrdx dy = [/;(ll} - rdxdy = €(E) (5.12b)

and, using (5.12a),

[/;(f) curl rdxdy + [Cﬁycurlv_dxdy
e Jf & dxdy + ¢ [ Byt dxdy + % (5120)

Here, ¢ = (epH)/7, and x represents the destruction of enstrophy by the eddy
viscosity. Since the Rossby number is small except in boundary layers, the second term
in (5.12¢) is much larger than the first, so that

_[[Bycurlfdxdy+e’(C)ze’(Zz) + X (5.13)
A

where (C) and (Z,) are the averages of the anticorrelation defined by (2.18) and the
enstrophy (2.16), respectively.

The following ideas can be considered a generalization of the qualitative arguments
s,urrounding (2.16-18) to the case of nonzero forcing and damping. In Section 2 we
suggested that the unforced quasigeostrophic system tries to equipartition its energy
among spatial Fourier modes, subject to the constraints that 0., E, and Q, be
conserved. We here suggest that the forced quasigeostrophic system tries to equiparti-
tion its energy among spatial Fourier modes, subject to the power integral constraints
(5.12-13). The enstrophy {Z,) is again a convenient measure of the energy residing in
higher wavenumbers, and since the eddy dissipation x of enstrophy is also expected to
increase with (Z,), we propose that the system adjusts so as to maximize the
right-hand side of (5.13) subject to the constraints (5.12a) and (5.12b).

Table 3 gives the values of all the terms in (5.12¢) and (5.13) in experiments QGa,
QGb, and SMb. The first term in Table 3 is the term neglected in (5.13). The eddy
term x has been calculated as a residual. Its unrealistically negative (but small) value
in QGa reflects the fact that QGa has not reached a statistically steady state. We see
from Table 3 that, by the measure of (Z,), QGa and QGb have achieved about the
same degree of energy equipartition among modes. In QGa, the first term in (5.13) is
negative, and the right-hand side is balanced by a high anticorrelation (C) between
vorticity and latitude. In QGb, the first term in (5.13) is positive, and (Z,) attains
nearly the same value as in QGa without any help from {C). In fact, {(C) is slightly
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Table 3. Terms in the potential enstrophy budget equation (5.13). (Arbitrary units.)

Experiment QGa QGb SMb
(f (&) curl T dx dy) 2.2 —.5 —.6
J [ By curl v dx dy -21.4 21.4 21.4
¢(C)y = —¢€f [By (dxdy 29.2 -3.0 -3.6
€[ {3 dedy 12.0 9.8 11.7
X -2.0 8.1 5.5

negative in QGb, as it must be to satisfy (5.1 2b) with positive E. This is because (¢) is
positively correlated with —({), but curl 7 is negatively correlated with latitude in
experiment QGb. The turbulence in QGhb causes a significant cascade of enstrophy into
higher wavenumbers and a relatively large eddy dissipation x of enstrophy. However,
analysis shows that x is significant only near the small recirculation cells on the
western boundary. Once again, the generally good agreement between experiments
QGb and SMb in Table 3 supports the view that the stochastic model successfully
mimics important properties of the quasigeostrophic dynamics.

6. Summary

In his seminal paper on steady frictionless flow, Fofonoff (1954) recognized that the
potential vorticity must be constant on streamlines, and assumed a linear dependence
of ¢ on ¢ to make the analysis easy. Subsequent investigators (especially Veronis,
1966) noted the resemblance between Fofonoffs solutions and the corresponding
solutions for highly nonlinear wind-driven flow. However, this resemblance remained
somewhat mysterious, given the arbitrariness of Fofonoff’s assumption.

Equilibrium statistical mechanics offers an explanation for the occurrence of
FofonofT’s flow: In the thermal equilibrium states corresponding to given initial values
of the energy, total vorticity, and potential enstrophy, the flow is steady (except on the
smallest resolved lengthscales) and the average potential vorticity (gq) depends
linearly on ().

In this paper, we have verified that free solutions of the quasigeostrophic equation
for single-layer flow evolve toward steady Fofonoff flow. If the energy is realistically
small, the system passes through a sequence of states in which inertial gyres form at
latitudinal boundaries and gradually expand to fill the ocean basin. When two gyres
are present, each gyre attains a “local thermodynamic equilibrium” very rapidly.
However, “global thermodynamic equilibrium” comes about much more slowly
because the interaction between gyres is weak. The evolving flow exhibits an east/west
asymmetry with the highest velocities in the western boundary layer. This asymmetry
disappears as the system reaches equilibrium.

When wind stress and bottom drag are switched on, nonlinear interactions still try to
drive the flow toward the Fofonoff state, but the forcing and friction push the system in
a generally different direction. If the wind stress is compatible with Fofonoff flow in
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the sense that the bottom-drag torque on Fofonoff flow can balance the wind torque,
then the competition between nonlinearity and forcing produces an equilibrium that
resembles an intermediate state exhibited during the free evolution toward Fofonoff
flow, in which the inertial gyres cover only a fraction of the ocean basin. This fractional
coverage increases with the Reynolds number of the flow.

If the wind stress is incompatible with Fofonoff flow, then the equilibrium state has
a weak mean flow that does not resemble Fofonoff flow. These non-Fofonoff
equilibrium states are unsteady, with a large Reynolds potential vorticity flux across
mean streamlines. However, the Reynolds flux of potential vorticity is in the.direction
favoring Fofonoft flow.

The statistical mechanical theory that predicts that nonlinear interactions always
drive the system toward a mean Fofonoff flow is based solely on the conservation laws
for energy, total vorticity, and potential enstrophy. This suggests that any system with
these same conservation properties ought to behave similarly in the highly nonlinear
regime. We support this idea by comparing numerical solutions of the quasigeostrophic
equation with solutions of a stochastic model equation in which the potential vorticity
is not conserved on fluid particles. The two solutions resemble one another, but also
show interesting differences. In particular, small but strong recirculation cells near the
western boundary, which have been explained by Cessi ez al. (1987) on the basis of
potential vorticity mixing by particle motions, are absent in the solutions of the
stochastic model equations.
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