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ABSTRACT

We consider the two-layer form of the planetary geostrophic equations, in which a simple
Raylcigh friction replaces the inertia, on a western continental slope. In the frictionless limit,
these equations can be written as characteristic equations in which the potential vorticities of
the top and bottom layers play the role of Riemann invariants. The general solution is of two
types. In the first type, the characteristics can cross, and friction is required to resolve the
resulting shocks. In the second type, one of the two Riemann invariants is uniform, the
remaining characteristic is a line of constant f/H, and the solutions take a simple explicit form.
A solution resembling the Gulf Stream can be formed by combining three solutions of the
second type. Compared to the corresponding solution for homogeneous fluid, the Gulf Stream
and its seaward countercurrent are stronger, and the latter is concentrated in a thin frictional
layer on the eastern edge of the Stream.

1. Introduction

Forty-four years have passed since Henry Stommel published the first correct
theory of the Gulf Stream, but the theory of the Stream (and of ocean boundary
currents in general) remains very incomplete. Despite many valuable contributions,
there is as yet no completely deductive explanation of the cross-stream structure of
the current, of its remarkable stability between the Florida Straits and Cape
Hatteras, or of its sudden separation at the Cape. The earliest theories assumed that
the ocean bottom was flat, or that the velocity vanished beneath the thermocline, and
thus ignored the obvious fact that the Gulf Stream is controlled by the relatively
steeply sloping seafloor beneath it, and not by the precise location of the coastline.
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However, the theory of baroclinic flow over sloping topography (to which the present
paper offers a small contribution) has proved to be a considerable challenge.

Several carlier papers have considered analytic and numerical solutions to a
particularly simple, inertia-less, set of model equations for large-scale ocean flow
(Salmon, 1986, 1990; Salmon and Hollerbach, 1991).2 These equations differ from
the more exact primitive equations of ocean motion in that Rayleigh friction replaces
the relative accelerations of fluid particles in all three directions. In nondimensional
form, the equations are:

fXxu=-Vd—-—ecu+fXu
0=—¢, + 0 — edw
u +v,+w,=0
8, + ub, + v, + wo, = 5 + xV?0.

i

(1.1)

Here, (1, v, w) = (u, w) is the velocity in the (eastward, northward, vertical) direction
with coordinate (x,y,z); f = f k where f = y is the Coriolis parameter and k the
vertical unit vector; ¢ is the pressure and 0 the temperature (in the usual Boussinesq
approximation). The prescribed vector ug(x,y,z) is a horizontal body force that
represents the input of wind momentum near the ocean surface. The diabatic
heating, S, must generally include a convective adjustment at places of local static
instability. The constants e and €3’ are coefficients of Rayleigh friction in the
horizontal and vertical directions, respectively; « is the diffusion coefficient for
temperature.

Equations similar to (1.1) have been called the planetary geostrophic equations, a
terminology we apply to (1.1). As shown in the previous papers, the planetary
geostrophic equations, (1.1), are well-posed with respect to boundary conditions of
no-normal flow and prescribed temperature (or temperature flux) at all boundaries.
In interesting cases, €, €32 and k are all asymptotically small. Then the friction and
diffusion terms are important only within thin inner regions located at the boundaries
or in the ocean interior, where they were called fronts. The previous papers
considered a rectangular ocean with a flat bottom and vertical sidewall boundaries at
the coasts. In that geometry, the boundary layers include a western coastal boundary
layer of thickness €, northern and southern boundary layers of thickness €'/2, and
upwelling layers of thickness €d at all vertical coastal boundaries. The upwelling
layers, in which vertical friction is important and the motion is non-hydrostatic, exist
wherever the Ekman flow u - or the interior thermal wind has a component normal to
the coastline. In the limit €52 — 0 of vanishing vertical friction, these upwelling layers

2. Salmon and Hollerbach (1991) investigated the symmetry group of the thermocline equations, the
Eqs. {1.1) with forcing and friction omitted, and stated that one particularly important member of that
group (v, in the notation of the paper) had “apparently not previously been noticed.” I take this
opportunity to note that this transformation had been previously discovered by Peter D. Killworth (1983),
and I thank Dr. Killworth for bringing this to my attention.
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become vanishingly small, but they can never disappear. That is, if vertical coastal
boundaries are present, the solutions of (1.1) cannot be everywhere hydrostatic.
However, if the ocean depth H(x, y) goes smoothly to zero at the coastline, so that
vertical boundaries are absent, then the limit €82 — 0 in (1.1) is regular: The motion is
globally hydrostatic and the upwelling layers entirely disappear. The more realistic
geometry thus permits a slightly simpler dynamics.

With or without vertical sidewalls, the boundary-layer structure of the planetary
geostrophic equations seems to be much simpler than the boundary-layer structure
of the primitive equations with Fickian momentum diffusion (V?u), where, typically,
three nested boundary layers occur at coastal boundaries (e.g. Pedlosky 1968, 1969);
and this simpler structure allows numerical solutions of the planetary geostrophic
equations to probe the physically important limit of small friction and temperature
diffusion to a greater degrce than is currently possible with the physically richer, but
mathematically much more complex primitive equations. The primitive equations
require a momentum diffusion of at least Fickian order because the primitive
horizontal momentum equations contain the advective term w-Vu. In numerical
solutions of the primitive equations, this advection produces progressively finer
spatial scales of momentum, and diffusion of momentum is required to keep these
scales within the limits of numerical resolution. However, the presence of so many
required diffusion operators raises the differential order of the primitive equations as
awhole. This leads to inner regions with complicated structure, and may require that
the eddy coefficients be unrealistically large to maintain numerical stability: in
numerical solutions of any system, the thinnest boundary layers (or fronts) must be
resolved, or the solutions exhibit spurious behavior that typically includes oscillations
on the scale of the grid-spacing. If, without understanding the very complex multiple-
boundary-layer structure of the primitive equations, mixing coefficients are increased
arbitrarily until the thinnest boundary layers are resolved, then the whole domain,
and particularly the ocean interior, may be unrealistically diffusive. I believe that
this—and not the more frequently mentioned presence of inertia-gravity waves—
may be the biggest difficulty in using the primitive equations as the basis for
numerical models. On the other hand, it seems always possible to choose the
parameters in the planetary geostrophic equations (1.1) so that dissipative effects are
confined to thin but fully resolved layers. Again, this is possible because of the
low-order friction, and the low-order friction is sufficient only because momentum
advection has been omitted. Fickian temperature diffusion, V28, is required in (1.1d),
because the temperature advection u-V6 has been retained.

Of course, the idea that dissipation terms should take the simplest form consistent
with the other terms in the dynamical equations rests on the tacit assumption that
inner regions play an essentially passive role in the theory of ocean circulation.
Moreover, the neglect of horizontal momentum may ultimately be unsatisfactory; the
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inertia-less equations can probably not explain so important a feature as the huge
recirculation of the Gulf Stream east of Cape Hatteras. However, I believe that the
planetary geostrophic equations offer the best hope for physical understanding, and
will explain far more of the general circulation than currently thought.

In this paper we consider a two-layer version of the planetary geostrophic equa-
tions in an ocean with realistic bottom relief. Our object is to understand the
influence of topography and variable layer-thickness (baroclinicity) on boundary
currents like the Gulf Stream. The two-layer model differs from the general
planetary geostrophic equations (1.1) in the assumptions of

(a) global hydrostatic balance; and

(b) the existence of two immiscible fluid layers with different, constant tempera-

tures. :

We justity (a) by considering oceans with non-vertical sidewalls. The much more
worrisome assumption (b) receives some support from the appearance of a front,
with thickness k!/?, across which the -emperature varies rapidly, in analytical and
numerical solutions of the planetary geostrophic equations (Salmon, 1990; Salmon
and Hollerbach, 1991). This front corresponds to the ocean’s main thermocline. In
the work reported here, the assumption (b) of two immiscible layers was nevertheless
adopted with considerable reluctance, and only after repeated failures to construct a
Gulf Stream theory based directly on (1.1). However, the two-layer solutions given
below have interesting features-that resemble the observed Gulf Stream.

Section 2 derives the two-layer equations in standard notation. In Section 3 we
consider the relatively easy special case of a completely homogeneous ocean,
emphasizing the striking difference between oceans of infinite northward extent and
those with realistically finite horizontal dimensions. In the former, friction controls
the width and location of both the Gulf Stream and the countercurrent induced by
the continental slope. However, in oceans of finite extent, the Gulf Stream and
countercurrent are steered by the topography and, in the limit of small friction, are
locally independent of the friction. The reasoning in Section 3 (which, though
probably unappreciated, is not new) may explain features of the flow along eastern
North America, including the huge southward transport recently observed east of the
Bahamas.

In Section 4, we show that the frictionless form of the general two-layer equations
can be written as characteristic equations in which the potential vorticities of the top
and bottom layers play the role of Riemann invariants. These equations can be
completely solved, and the general solution is of two types. In the first type, the
characteristics can cross, and friction is required to resolve the resulting shocks. The
solutions can be written in implicit form. In the second type, one of the two Riemann
invariants is uniform, the remaining characteristic is a line of f/H, and the solutions
take a simple explicit form.

Section 5 analyzes a solution of this second type that resembles the Gulf Stream.
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Figure 1. The two-layer model with surface outcrop.

The solution consists of three regions: an inshore region in which the upper-layer
thickness vanishes, a Gulf Stream region in which the lower-layer potential vorticity is
uniform, and an offshore region of uniform wupper-layer potential vorticity. These
regions are bounded by f/H-lines at which frictional inner regions occur. The effects
of baroclinicity and relief can be gauged by comparing this solution to the homoge-
neous-fluid solution with the same topography. We find that both the Gulf Stream
and the countercurrent are stronger than in the homogeneous-fluid case, and that
the latter is concentrated in an €!/2-thickness region of southward flow on the eastern
edge of the Gulf Stream.

2. The two-layer model

We regard the ocean as a fluid composed of two immiscible layers with different,
constant mass densities, bounded by a rigid lid at z = 0 and a bottom atz = —H(x, y)
(Fig. 1). The ocean depth goes smoothly to zero at the coastlines, and the front
separating the layers with different densities can intersect the ocean surface or
bottom. The governing form of the planetary geostrophic equations is (in dimen-
sional form):

f x u; = _Vd)x_ﬁul

fxu=—-Vo, +g'Vh — e,

(2.1)

i

at

+ V- [wh]=0.

Here, h; = h is the vertical thickness of the top layer, #, the thickness of the bottom
layer, w; = (w;, v;) are the corresponding horizontal velocities, &, is the pressure
(divided by a constant representative density) at the surface, f = By k, and g’ is the
reduced gravity. The wind forcing has been temporarily omitted. Since k; + h; = H,
we must have

V- [hlul + hzllz] = 0. (2.2)
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Hence
Ay + hou, = k X Vi (2.3)
where s is the transport streamfunction. From (2.1a,b) we also have
fx(u—w)=-g'Vh — e(u ~ uy). 2.4)

Using (2.3) and (2.4), we can write the horizontal velocities solely in terms of ¥ and 4.
Assuming f > €, we obtain

IO . PV .
w=pgkx Vit ey ‘FH 25
1 g h g'h )

uzzﬁkwi—}:ﬁkXVh-{'EFI—_IVh

where, again, & = h; = H — h,. The curl of the vertically-averaged momentum
equation then yields the streamfunction equation,

f I , 1 v € v
where J(A, B) = A,B, — A,B, is the Jacobian. For the thermocline depth A, we may
use the upper-layer mass conservation equation (2.1c). After substitutions from

(2.5a), it takes the form
ERFTHT Y |

Egs. (2.6, 2.7) are the basic equations of the two-layer planetary geostrophic model.
We can regard (2.6) as a generalization of Stommel’s (1948) equation for the
vertically-averaged vorticity, and (2.7) as an “internal Rossby wave” equation.

Numerical experiments (Salmon, 1990) with the continuously stratified form (1.1)
of the planetary geostrophic equations have shown that the solutions always ap-
proach a steady state. We therefore seek steady solutions of (2.6, 2.7). It is
convenient to rewrite the steady form of (2.6, 2.7) in nondimensional variables.
Scaling x and y by L (the ocean basin size), #; and H by H, (a representative abyssal
depth), ¢ by H,LU, f by BL; and choosing the velocity scale U = g'HoB~'L 2 to be the
same as the propagation velocity of long Rossby waves, we obtain the nondimen-
sional equations

”
6t+

h h
b5+ 1 ‘1_1) Vhl. 2.7

J(£,¢)+J(%h2,1%)=v-(1%V¢) (2.8)
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and

J +J

hhl n
’f _H

|-v.

h
-4 Vhl (2.9)

h
by €5
where now f = y and ¢ is the dimensional friction coefficient divided by BL. The
boundary conditions on (2.8) are i = 0 at coastlines. Additional boundary conditions
apply along the lines of intersection between the thermocline z = —h and the ocean
surface z = 0 or bottom z = —H. At the surface intersections (which we will call
outcrops) the boundary condition is that the upper-layer velocity must (in steady
state) be parallel to the outcrop, that is

uVh=0 at h=0. (2.10)
Substituting from (2.5a), (2.10) becomes

f?

The boundary condition (2.11) can also be obtained by “evaluating” (2.9) at & = 0,
but the separate, physical justification of (2.11) given here is really required; there is
no fundamental reason why (2.9) should hold af the outcrop. If the thermocline
intersects the bottom boundary, then the appropriate boundary condition is that the
lower layer velocity be parallel to the line of intersection. However, only surface
intersections will be considered in this paper.

1
g/ W) =5Vh-Vh  at h=0. (2.11)

3. Homogeneous flow

We consider first the case of an homogeneous ocean, for which the general
- equations (2.8, 2.9) (but now including wind-forcing) reduce to

f €
J}_I,dJ:V’ITIVL'J—W 3.1

with the boundary condition & = 0 at coastlines. We will assume that W, the
prescribed wind-stress curl, is important only in the mid-ocean. OQur purpose is to
demonstrate the dramatic difference between a typical analytical solution of (3.1)
along a western boundary stretching infinitely in the northward direction and the
corresponding solution in a more realistic ocean with finite dimensions. We suppose
that H = H(x), assume that e is small, neglect the frictional force in the x-direction in
the usual way, and seek a solution in the form {i(x, y) = y¥(x). Then, also neglecting
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Figure 2. The eastward velocity u, northward velocity v, and transport streamfunction ¢
according to the solution (3.4-6) for homogeneous flow in an ocean of depth H with a
uniform continental slope of width a. The friction coefficient e = .2a. The flow is driven by
an impinging eastward velocity at large x.

W in the western boundary region, (3.1) becomes an ordinary differential equation,

d(ld‘P) 1da¥ H,

€ ]T]_+HE+I——I—2\F=O (3.2)

with boundary condition ¥(0) = 0. To facilitate analytical solution, we suppose that
the ocean depth takes the simple form

s, O<x<a=l/s

H(x) = 1, a <x

(3.3)

sketched in Figure 2. The uniform continental slope has constant width a. Then,
omitting easy steps, we find that

1u.s
e —— —(x—a)/e
> xye , 0<x<a
v = . (3.4)
“Uny = 5l | = Z)y e e g <y,

The constant u., which is the interior eastward velocity at large x, represents the
effect of distant wind forcing in driving the boundary current along the sloping
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western boundary. The corresponding velocity field,

u= lu {e—(x—a)/( )
2 %e
v=1&y I et < x < a (3.5)
2 € €
1w,
= — —(x—a)/e
w 57 %€

and
1 a
U=U,+ ZUs|—— 2)6‘("‘”)/e
2 €
lu, |[a a<x (3.6)
- —_ —_ ~(x—a)le
2¢” e Z)e
w=10

is shown in Figure 2 for the case of negative u., (interior flow impinging on the coast)
and € = .2a. The flow is northward west of x = 2e with maximum velocity at the coast,
where H = 0; the northward transport Hv reaches its maximum at x = .59¢. To the
east of x = 2¢ lies a southward countercurrent. This countercurrent results from the
tendency of fluid columns moving up the slope to conserve their potential vorticity,
and in the limit e — 0 its total transport approaches that of the northward flow (for
reasons scen more clearly in the next example.) However, as ¢ — 0, both the
boundary current and the countercurrent are squeezed into the corner at x = 0.
Except for the countercurrent, the solution (3.4-6) resembles the classical theories of
Stommel (1948) and Munk (1950). However, as we see next, this resemblance is an
artificial consequence of the infinite horizontal geometry.

Consider next an ocean with the same continental slope near x = 0, but with
northern and southern boundaries, as sketched in Figure 3. The southern boundary
lies north of the equator at y = 0. In a notation that will also be useful later, we
rewrite (3.1) in the advection-diffusion form

€
where
V[u] =k X Vp. (3.8)

is the “velocity field” with streamfunction w(x, y). The arrows in Figure 3 indicate the
direction of the v “flow.” This “flow” enters the ocean basin at the eastern
boundary, and at the northern boundary on the continental slope; it exits the basin
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Figurc 3. An homogeneous ocean with a continental slope along the western boundary. The

arrows indicate the direction in which information flows along lines of constant f/H. The

curved dashed lines are lines of constant transport streamfunction ¢ in the interior ocean,

assuming the standard subtropical wind gyre. On the continental slope, ¥ is constant along

lines of constant f/H, and frictional eflects are confined to the southwestern boundary layer
of thickness e. The lower graph shows & along the section CD.

- through the southern boundary on the continental slope, where (as at all boundaries)
& must be zero. In the limit € — 0, friction is important only in an e-thickness
boundary layer in this region of exiting “flow.”

Now, suppose that the wind curl W is negative over the interior ocean (correspond-
ing to the standard subtropical wind gyre) and zero at the north and south
boundaries (to avoid an uninformative discussion of the boundary layers there).
Then the mid-ocean (x, y) takes the form contoured by the dashed lines in Figure 3,
with the maximum streamfunction at midlatitude and at the foot of the continental
slope, where indicated by the “H.” Suppose again that the wind curl is negligible over
the continental slope, either because W actually vanishes there, or (more realisti-
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cally) because the larger fluid velocities over the slope render it insignificant; this
assumption is easily relaxed. Then outside the southern boundary layer, lines of
constant § coincide with lines of constant f/H on the continental slope. On the f/H
lines that originate at the northern boundary, ¥ must be zero; thus the fluid is
motionless in the region west of line AB in Figure 3. On the f/H lines that originate at
the eastern boundary, the streamfunction on the continental slope has the same
value as at the foot of the slope; that is

o = %(%) (3.9)

where Ui,(v) is the value of ¢ at the foot of the continental slope, where the fluid
depth H = 1.

Now consider a section CD across the continental slope, south of the maximum
interior & at mid-latitude. Refer again to Figure 3. To the west of E, the intersection
between AB and CD, s vanishes, as shown on the lower graph in Figure 3. Between E
and F, the intersection between CD and the f/H-line on which the interior stream-
function is maximum, s increases to the maximum value in the basin, and the flow is
strongly northward. Between F and D, s decreases to its (positive) interior value, and
the flow is strongly southward. Thus, in contrast to (3.4-6), the maximum velocity
occurs not at the coastline but at some distance offshore. Moreover, neither the
velocity nor the width of the northward flowing current (between E and F) and the
southward flowing countercurrent (between F and D) depend on e. Friction is
important only in the southwestern boundary layer, which is the source of all
northward flow. In the limit e — 0, the total Sverdrup transport of the entire
subtropical gyre is carried southward by the countercurrent into this frictional
boundary layer.

If the friction e is increased, the boundary layer thickens, and the streamlines
begin to reconnect on the continental slope. However, the flow described above is
qualitatively unchanged. Nor are our conclusions sensitively dependent on the
precise geometry of Figure 3. If, for cxample, the ocean basin had a continental slope
at all boundaries, so that f/H-lines never intersect a boundary, but all traverse the
southern continental slope (as in Fig. 4), then (assuming € — 0) the effects of friction
are swept even further “downstream” by the v| ;7 “flow.” However, the salient point
remains: the western boundary current system is, asymptotically, locally independent
of the friction, and the flow on the slope is solely determined by the bottom
topography and by the interior streamfunction values built up by the wind forcing.

From the perspective of Figure 3, we can also easily understand the artificial
dependence of the analytical solution (3.4-6) on the friction parameter e. Imagine
that the northern ocean boundary in Figure 3 is moved northward by an arbitrarily
large amount. In that limit, characteristic lines originating on the castern boundary at
arbitrarily high latitude (and therefore, on the assumption of a uniform westward
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Figure 4. The transport streamfunction ¢ (right) satisfying the Eq. (3.1), with e = .01, for
homogeneous wind-driven flow in an ocean with uniform continental slopes at all bound-
aries, so that the H/f lines are as shown on the left. The wind curl, which is nonzero only in
the flat-bottomed interior ocean, corresponds to the standard two-gyre case.

interior flow, carrying arbitrarily large values of ) pass arbitrarily close to the
western coastline, where of course ¢ = (. The resulting arbitrarily large gradient of
atx = 0 makes friction important there, no matter how small e.

Figure 4 shows a numerical solution of (3.1) in an ocean with uniform slopes at all
coasts, so that the H/f-lines are as shown on the left. The wind stress curl is nonzero
only in the flat-bottomed interior ocean, where it corresponds to an anticyclonic
subtropical gyre in the southern two-thirds of the interior, and a cyclonic subpolar
gyre in the north. In the southern part of the western continental slope, the
streamfunction resembles that described above, with a strong southward flow on the
seaward side of the Gulf Stream. To the north, the low streamfunction values
produced by the wind in the subpolar gyre are carried southwestward by the vz
“flow” along f/H-lines to produce a new region of southward flow between the
inshore region of stagnant flow and the strong northward flow in the Gulf Stream.
This southward flow corresponds to the southward flow observed west of the Gulf
Stream in the Middle Atlantic Bight. (See, for example, the velocity sections near
Cape Hatteras analyzed by Joyce et al. (1986).) A solution closely resembling that
shown in Figures 3 and 4 was calculated by Holland (1967). See his Figure 17 and
surrounding discussion.

Lee et al. (1990) and Leaman and Harris (1990) report observations of a very
strong, deep southward flow cast of the Bahamas at 26.5N. They estimate the
average total transport at 30-35 Sverdrups, which is about equal to the total Sverdrup
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transport of the entire subtropical wind gyre. Leaman and Harris note that this huge
southward transport does not coincide with the deep western boundary current as
defined by tracer data. This suggests that this southward flow may be fed from more
southerly latitudes than the latter, in agreement with the explanation offered here.
However, most of this southward flowing water is much colder than the water flowing
through the Florida Straits, so that diabatic heating is required to complete the part
of the circuit represented by the southwestern boundary layer in Figure 3. Of course,
real bathymetry bears little resemblance to that sketched in Figure 3, but our
reasoning does not depend on the exact form of the topography.

It thus appears that neither friction nor inertia may be required to explain some of
the most prominent features of the flow along western boundaries. However, our
reasoning seems to depend very strongly on the assumption of an homogeneous fluid,
and even crude estimates of the Joint Effect of Baroclinicity (i.e. inhomogeneity) and
Relief—the so-called JEBAR effect—suggest that second term in (2.8) is as impor-
tant as any of the terms retained in (3.1). In the following two sections, we resolve
this paradox with solutions of the general two-layer equations which, despite the
leading-order importance of JEBAR, bear a surprising qualitative resemblance to
the solutions for homogeneous flow.

4. General solution of the outer equations

We now consider the general two-layer equations (2.8, 2.9) on a western continen-
tal slope, again assuming that the local wind-forcing is unimportant. Our solutions
will be driven by matching to a wind-driven interior ocean. We anticipate that, in the
limit € — O, the frictional terms in (2.8, 2.9) are also unimportant except in narrow
vertical layers on the boundaries or in the interior. To avoid confusing terminology,
we call the regions of negligible friction “outer regions,” and we call the frictional
layers “inner regions,” regardless of where they occur. We will find that the inner
regions typically occur away from boundaries, but not primarily at outcrops.

In the outer regions, where friction is unimportant, the equations (2.8, 2.9) reduce

to
J(L,¢)+J(%h2,%1)=0 (4.1)
and
h h h
J(ll}, FI) +J h,};(l - ITI)) = 0. (4.2)

The general solution can be written in implicit form. We assume that VH = 0; the
easier case of constant depth will be considered in Section 5. The trick is to eliminate
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fand H in favor of the potential vorticities

_h _H-h 43)
191 = f » = f . -
Then the outer equations (4.1, 4.2) take the forms
J ¢)+J(h N )—0 (4.4)
a1+ q’ g1+ q» '
and
q q192
Jiy, ———|+J|lh,——|=0. 4.5
(¢Q1+CI2) ( g+ q; (4.5)

Our definition of potential vorticity is the reciprocal of the usual one, but it is the
more convenient here.
The solution proceeds easiest if we rewrite (4.4, 4.5) in the equivalent forms

J(b, q1) + @2J(h,q1) =0 (4.6)
and
J(, q2) — q1J(h,q2) = 0. 4.7

Eqs. (4.6, 4.7) are the frictionless limits of the upper and lower layer potential
vorticity equations. There are two cases to consider. In the first case,

a(ql’ qZ)
oy~ (4.8)

If (4.8) holds, then we may take (g;, g2) as new independent variables. Dividing (4.6,
4.7) by the left-hand side of (4.8), we obtain

o, oh 0 s oh 0 49)
aq, " Pag, T da Tag T '
Eliminating ¥ from (4.9) yields
@1+ ) (4.10)
q1 T q2 9910, .

But since g, + g» = H/f never vanishes, we must have
h=F(q)+G(q) (4.11)

where F and G are arbitrary functions, and the primes, which denote differentiation,
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are introduced for convenience. Substituting (4.11) back into (4.9), we easily obtain

b =q,F'(q)) — F(q) — ¢:G'(q2) + G(q2) (4.12)

(where arbitrary constants have been absorbed into F and G). It is easy to verify that
(4.11, 4.12) satisfy (4.9) for any F and G.
In the second case,

a(ql’ q2) —
a(x, y)

We will see that (4.13) can be satisfied only if g, or g, is uniform. If (4.13) holds, then,
by (4.3), h/f is constant on lines of constant H/f. That is,

(4.13)

h E (H) (4.14)
foof ‘
for some function E. We now regard {s and
o= " 4.15

_A (4.16)
o= f .
as new independent variables. Then, dividing our fundamental equations (4.1, 4.2) by
(e, H)
4.17
0 ) @1
we obtain the equivalent equations
B BN
2 —
“H a*P T (4.18)
and
a(p, ®)  (HD, a®(1l — @
(b, @)  HD 012 D)_ (4.19)
a(a, H) e, H)
But (4.14) implies that 9®/3H = 0, whereupon (4.18) integrates to
dd
U = R(a) — «*HP(a) o (4.20)

where R is an arbitrary function. Then, substituting (4.20) into our other fundamen-
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tal equation (4.19), we obtain the ordinary differential equation

a2P

v d
212) = & [ad(1 - P)] (4.21)

for ®(a). The solutions of (4.21) are easily found to be
D = const/a and ® =1 + const/a. (4.22)

In each of these two cases, the corresponding transport streamfunction is given by
(4.20). Translating these two solutions into original notation, we obtain

¥ =R I + Qif (4.23)
h = Q]f
and
— (I;I H 2
U =R, f)_Qz + Q3f (4.24)

h=H-Q.f

where R; are arbitrary functions and Q; are arbitrary constants. It is easy to verify that
(4.23) and (4.24) are exact solutions of the fundamental outer equations (4.1, 4.2). In
overall summary, the general solution of (4.1, 4.2) is (4.11, 4.12) or (4.23) or (4.24);
the homogeneous-fluid solution corresponds to (4.23) with Q; = 0.

In comparison to (4.11, 4.12), the solutions (4.23) or (4.24) seem rather special, but
they seem also to have a special significance. The solution (4.23) corresponds to a
region of uniform upper-layer potential vorticity, ¢, = Q,. Similarly (4.24) corre-
sponds to a region of uniform lower-layer potential vorticity, g, = Q5. In both of these
solutions, the transport streamfunction contains an arbitrary function of H/f, and in
this it resembles the solution for homogeneous flow (Section 3).

The contrast between (4.11, 4.12) and (4.23, 4.24) can be drawn further by writing
the basic equations in characteristic form. The characteristic equations, which are
most readily deduced from (4.9), are

dis
q, = const on - (4.25)
and
dy
q, = const on Pk ) (4.26)

where we now regard ¢ and / as independent variables. That is, g, is the Riemann
invariant on characteristic lines of slope —g, (in the A-§ plane), and g, is the
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Riemann invariant on characteristic lines of slope ¢;. However, it is not difficult to
show that the characteristics defined by (4.25, 4.26) typically cross, producing shocks
at which the solutions become multi-valued unless friction is readmitted to resolve
the multivalued-ness. This situation simply corresponds to choices of F and G for
which (4.11, 4.12) cannot be solved uniquely for /2 and .

From this perspective, the special solutions (4.23) or (4.24) correspond to cases in
which one of the two Riemann invariants is uniform, and, according to (4.25, 4.26),
the other family of characteristics has a uniform slope so that no shocks can occur.
Indeed, we see directly from (4.23, 4.24), that in the solutions with uniform gy, { —
g> f is constant along lines of constant H/f; and in the solutions with uniform g, ¢ +
g.H — g fis constant along lines of constant H/ f. In both of the solutions (4.23, 4.24),
the characteristics are lines of constant H/f in ordinary physical space.

Regions in which one of two Riemann invariants is uniform play an important role
in the theory of gas dynamics. In typical gas dynamics problems, the same Riemann
invariant is uniform over the whole flow. However, the most oceanographically
interesting solutions of (4.1, 4.2) seem to be those in which each of the two solutions
(4.23) and (4.24) obtains over some region of the flow. Before constructing such
solutions, we first show that the boundary between two such regions must itself be a
line of constant H/f.

The latter statement follows from the general result that, in exactly hyperbolic
systems, discontinuities can occur only at characteristics. However, it is illuminating
to give a direct proof based upon the jump conditions at the lines separating regions
in which distinct solutions of types (4.23) or (4.24) obtain. To obtain these jump
conditions, we rewrite the general frictional equations (2.8, 2.9) in “flux form”

V-F,=0, V- F=0 (4.27)
where
1 , €
F1 = V[f/u]lb - v[l/H] 5 h* — ﬁ Vlb (428)
and
h h h h
F2 = - V[h/H]l.lJ + V[h]? 1- E - €f—2 1 - I’__I Vh (4.29)

where vy, is again defined by (3.8) as the “velocity field” corresponding to the
streamfunction p. Now let C be a curve, with normal n, scparating regions with
distinct outer solutions of the types (4.23) or (4.24), at which the outer solutions or
their derivatives are discontinuous. A thin inner region, in which the e-terms become
important, must exist along C to join the discontinuous outer solutions smoothly
together. By the usual argument, the normal components of F; must be constant
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across this thin inner region; this leads to the jump conditions

A Vi — Vi %hz] ‘n=0 (4.30)
and

A ‘n=0 (4.31)

= VW + Vi 7 (1 T

where A denotes the jump in the outer solutions. There are, of course, no jumps in f
or H. Let s be the distance along C. Then (4.30) implies that

K LA WA A PR L 432
as \H A = @ gtz (4.32)
or, in other notation,

da 5 1 5

dTIAlIJ=OLA E(ID (4.33)

where da/dH is measured along C. Now, in all solutions of the types (4.23) or (4.24),
the right-hand side of (4.33) depends only on o (and not on H). But the left-hand side
of (4.33) is H-independent only if da/dH = 0; that is, C must be a line of constant
H/f. It then follows from (4.32) that A# = 0; that is, the outer thermocline depths
must be continuous at C. (The latter conclusion does not apply to flow over a flat
bottom, where dH-!/ds = () in Eq. 4.32.) By similar steps, the second jump condition
(4.31) can be written

= Ala®(1 — D) % (HD)|. (4.34)

do

A [ll} 5

The right-hand side vanishes, since neither ® nor its derivative along C jumps. The

left-hand side vanishes because d®/ds = 0 along a line of constant H/f in either of
the two outer solutions (4.23) or (4.24).

In the next section we construct a theory of the Gulf Stream based upon the outer
solutions (4.23, 4.24) and the information obtained above from the analysis of the
jump conditions. The complete theory requires an inner-region analysis, but the
physical role of the inner region will be obvious from the jumps in the outer solutions.

In retrospect, it is somewhat surprising that the nonlinear equations (4.1, 4.2) can
be completely solved. However, (4.1, 4.2) can be transformed into quasi-linear
equations by considering « and @, defined by (4.15) and (4.16), as functions of # and
Y. Then (4.1, 4.2) are equivalent to

o 5 ab

Fyal w (4.35)
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and

ad da ad

o= d(1 — D) a0 + a(1-2®) R (4.36)
Standard methods lead to the characteristic equations (4.25, 4.26) (but without
assuming that gq;, g, comprise good coordinates) and—eventually—to the other
results quoted above. However, the line of reasoning followed above seems to be
more economical.

5. Gulf Stream solution
We now consider an ocean with the same geometry as in Section 3, and again
assume that the direct effects of wind-forcing can be neglected on the continental
slope. In the mid-ocean, where H = 1, the general equations (2.8, 2.9) reduce to
o
i eV + W, (5.1
and

J(, ) —flzh(l — =V \e}% (1 — h)Vh| + W, (5.2)

which are the equations considered by Dewar (1991). Here W, and W), are the
wind-forcing on the barotropic and baroclinic modes; their precise forms do not
concern us. The outer (i.e. € — 0) solution of (5.1) can have jumps in ¥ across latitude
lines, but these jumps, starting at the eastern boundary region, would be considerably
smoothed as x approaches the western boundary region, by even a relatively small
friction € in the parabolic equation (5.1). Therefore, following Dewar, we assume
that the mid-ocean transport streamfunction is smooth. The precise form of U(x, y)
depends not only on the wind forcing term Wy, but also on the matching conditions at
the foot of the eastern continental slope.

With given, smooth ¥(x, y), the mid-ocean thermocline depth A is determined from
(5.2). However, as emphasized by Dewar, the outer solutions of (5.2) can then still
have jumps in / along lines determined by the jump conditions (4.34). In this paper,
we are interested in the structure of the solutions on the western continental slope,
and we take the interior fields to be given (and to resemble those observed).
However, since the analysis in Section 4 has shown that outer solutions of the types
(4.23) or (4.24) over sloping topography cannot exhibit jumps in 4, and because these
must match to the mid-ocean solutions, we will assume that both {s and h contain no
jumps in the mid-ocean. We also note that no jumps in A seem to occur in numerical
solutions of the general, continuously stratified planetary geostrophic equations (1.1)
(Salmon, 1990).
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Figure 5. Above: Plan view of the Gulf Stream solution (5.3-5). The two lines of constant f/H
separate the Gulf Stream region, y, < f/H < yy, from the northward region of vanishing
upper-layer thickness and the southward region of uniform upper-layer potential vorticity.
The coordinates n and s are boundary-layer coordinates for the inner region at f/H = y,.
Below: The section AB across the continental slope, showing the €!/2-thickness inner region
of concentrated southward flow at the eastern edge of the Gulf Stream.

On the western continental slope, our solution consists of three regions:

(a) a northern and in-shore region « = H/f < o, in which the upper-layer
thickness is zero;

(b) a Gulf Stream region a; < a < a,, in which the lower-layer potential vorticity is
uniform, and the outer solution takes the form (4.24); and

(c) an off-shore region «, < «, in which the upper-layer potential vorticity is
uniform, and the outer solution takes the form (4.23).

Refer to Figure 5. Thus, in the Gulf Stream region, the thermocline has the same
shape as the ocean bottom in constant-latitude sections, and shoals to the north. The
assumption of an offshore region of constant upper-layer potential vorticity is based
on the remarkable observation (apparently first made by Stommel (1965, p. 112) and
still, in my opinion, not convincingly explained) that the depth of (say) the ten degree
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isotherm is proportional to latitude in a large region of the subtropical North
Atlantic.

The boundaries between the three regions reach the mid-ocean at the latitudes y;
andy, in Figure 5. Since # = 0 at o = a, the uniform lower-layer potential vorticity in
the Gulf Stream region must, by (4.24), be @, = o) = y; 1 And since there are no
jumps inh at @ = ap, we must have Q1 + @2 = » =y, in (4.23). Then, choosing the
arbitrary functions of H/f that appear in (4.23, 4.24) to match the prescribed
mid-ocean transport streamfunction yi(y) at the foot of the continental slope, we
obtain the complete set of outer solutions

N R I |
\IJ—lIJ(,H in the inshore region <y1 (53)
h=0
oy (l—H)yH—l.hGlS (1 H 1
b=l + " +y% 7 in the Gulf Stream region y1<y<y2

y (5.4)
SR

Y1

Y i =-y)|PH-1) . 1 H
ll‘—\llo(H)erl o } 17 in the offshore region y2<y 65
_()’1_)’2) ’

Yi¥2

Here, yo(y/H) is the same transport streamfunction obtained in Section 3 for the
case of homogeneous fluid. The non-y, terms in (5.3-5) thus represent the effects of
baroclinicity and bottom topography.

According to the outer solutions (5.3-5), there are (as required by the jump
conditions) no jumps in & anywhere in the flow, and the only jump in ¥ occurs at the
boundary f/H = y, between the Gulf Stream and the offshore region of uniform
upper-layer potential vorticity. At this boundary, an inner region must exist to
resolve the discontinuity in  (and, less importantly, in the normal derivative of A),
and the complete solution requires an analysis of this inner region. A second,
relatively unimportant, inner region is present at the western boundary of the Gulf
Stream, where it is required to resolve a discontinuity in the normal derivative of y.
However, the most important properties of the solution follow directly from the
outer solutions (5.3-5).

The constants y; and y, are arbitrary. However, analytical and numerical solutions
of the continuously stratified planetary geostrophic equations for the mid-ocean
(Salmon, 1990; Salmon and Hollerbach, 1991) suggest that the main thermocline
occurs only where the surface Ekman pumping velocity is downward. This, in turn,
suggests that the outcropping line in mid-ocean coincides with the line of zero
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wind-stress curl, and that, in present context, y; should be the latitude at which this
zero-curl line reaches the foot of the continental slope. The latitude y, can then be
chosen to match the mid-ocean maximum thermocline depth

yi— Y2
B4

h(y,) = (5.6)
to that observed (about .2 in nondimensional units); this givesy , = .8 y;. On the other
hand, we might choose y, to match the Gulf Stream width, y; — ys, to that observed
(about 100 km); that givesy, = .95 y,.

From (5.3-5) we see that the fotal long-shore transport on the shelf, between the
outcrop and the foot of the continental slope, is unchanged by the effects of
baroclinicity and relief. However, the northward transport of the Gulf Stream is
increased by an amount

Yi—y2 Y
] - = 5.7
yi [ Y2 67

which is positive at all latitudes south of the latitude y, at which the eastern edge of
the Gulf Stream reaches the abyss. The northward transport in the offshore region,
between the eastern edge of the Gulf Stream and the foot of the continental slope,
also increases, by the amount

2

P, ) (5.8)

Yiy2

However, these two increases are cancelled by the jump in i at the boundary
between the Gulf Stream and the offshore region. This jump (from west to east) is
negative, and represents a southward flowing countercurrent with transport equal to
the sum of (5.7) and (5.8). Thus, overall, the effects of baroclinicity and relief are to
increase the transport of both the Gulf Stream and the southward flow to its east, but
to concentrate the latter increase in a strong, thin countercurrent at the eastern edge
of the Gulf Stream. In dimensional units, the increase (5.7) in Gulf Stream transport
is

_ ﬁ (y1—»2) ( Y )

Ay = B —_—yf 1 Wl (5.9
Forg' = 1072msec 2, Hy=4km, B = 107" m~!sec™ !, y, = .95 y;, ¥ = 4000 km, and
(say) y = .5 yo, (5.9) predicts a transport increase of about 100 Sverdrups, but this

estimate depends sensitively on several factors.
Holland (1973) compared numerical solutions of the primitive equations in a
square ocean with a western continental slope. He found that solutions with
nonuniform temperature showed a strong recirculation over the slope, with a total
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transport more than twice as large as the Sverdrup transport. He concluded that
“when bottom topography and baroclinic effects are included in a wind-driven ocean
model, the western boundary current can have a transport larger than that predicted
from the wind stress distribution; even when the nonlinear advective terms [i.e.
inertia] are ignored.” Theoretical estimates by Huthnance (1984) also anticipate that
baroclinicity and relief increase the transport on continental shelves.

The solution sketched in Figure 5 resembles the velocity sections inferred by Joyce
et al. (1986) from acoustic and CTD data at locations just before—and just after—the
Gulf Stream leaves the continental slope near Cape Hatteras. The upstream section
(their Figure 4a) shows a region of weak, depth-independent, southward flow near
the coast (as anticipated in Section 3), a Gulf Stream region in which the isopycnals
parallel the sloping bottom, and an offshore region in which the thermocline depth is
more nearly constant. Between the latter two regions is a relatively thin (60 km)
region of strong southward flow, corresponding to the inner-region countercurrent in
the solution proposed here. This southward flow is strongest near the bottom, where
it would be called the Deep Western Boundary Current. In the conventional
explanation, the Deep Western Boundary Current is driven by the interior upwelling
required to compensate sinking at high latitudes. However, according to the theory
offered here, this current would be present east of the Gulf Stream even if
thermohaline forcing were absent altogether. The observed Deep Western Boundary
Current may be playing a dual role.

Now consider the inner region at the boundary f/H = y, between the Gulf Stream
and the offshore region. Let s be the distance downstream along this line, and let # be
the distance in the shoreward normal direction, as shown on Figure 5. The inner-
region approximation to (2.8) is

1
Ay e 0k a(h’l_i)

9

f

(5.10)

because o(f/H)/as = 0. Eq. (5.10) is a parabolic (“heat’) equation for ¢ in which
“time” runs in the negative- s direction. The parabolic character of (5.10) depends
critically on the orientation of the inner region; if the inner region were not parallel
to a line of H/f then a term proportional to dys/dn would also occur on the left-hand
side of (5.10). The last term in (5.10)—the JEBAR term—is a “source” that vanishes
in mid-ocean (where (5.10) reduces to (5.1)) but is nonzero on the continental slope.
According to the outer solutions, this “source” has different values on the two sides
of the inner region, and this difference (which is of course smoothed by the
inner-region) produces the n-direction change in i needed to match the discontinu-
ous outer solutions. Since only the normal derivative of ~—and not 4 itself—jumps
across the inner region, the JEBAR “source” in (5.10) has the same size as in the
outer regions. It then follows from (5.10) that the inner region thickness must be €!/2.
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The € determined by matching this thickness to the observed countercurrent
thickness (60 km) is much smaller than that obtained by requiring the conventional
e-thickness Stommel boundary layer to match the observed Gulf Stream width
(100 km.)

6. Speculation

If one accepts that the western continental slope region is one in which the local
wind is relatively unimportant, and that dissipation terms are also unimportant
outside thin inner regions, then the outer-region solutions must take the form (4.11,
4.12), (4.23), or (4.24). In this paper I have suggested that realistic solutions are
combinations of the latter two (uniform potential vorticity) types, and that a simple
solution, consisting of only three regions, resembles reality. But why should solutions
of the more general form (4.11, 4.12) not be realized? And, in solutions of the form
(4.23) or (4.24), what determines the number of uniform-potential-vorticity regions
that actually occur? These questions can be answered only in the context of a
whole-basin, time-dependent theory whose first task is to explain why stable steady
solutions exist at all. However, I conjecture that solutions of the form (4.11, 4.12)
(with shocks fitted as necessary!) will turn out to be generally unstable, and that the
number of required uniform-potential-vorticity regions in solutions of the form
(4.23) or (4.24) will increase with the complexity of the bottom topography. Although
all of our outer solutions hold for arbitrary H(x, y), the time-dependent equations
ultimately decide between the myriad of possible patchings. The specific three-
region solution given in Section 5 may have meaning for the relatively smooth
topography along the mid-Atlantic coast, but many more outer regions may be
required on the much more rugged topography southeast of Florida. Even if one
accepts the three-region solution of Section 5, a full-basin theory is evidently needed.
Although the solution in Section 5 matches an arbitrary interior barotropic flow
We(), it requires that the interior baroclinic flow be one of uniform upper-layer
potential vorticity. And, although this seems to be what is observed, the whole
explanation is—at this point—frustratingly circular. A completely deductive theory is
a very considerable challenge, but we can perhaps find some consolation in the
prospect that such a theory need not necessarily include inertia.

Despite these many caveats, I find it very tantalizing that the solution proposed in
Section 5 is one in which the potential vorticity of the ocean is—in some sense—as
uniform as possible. The upper- and lower-layer potential vorticities cannot, of
course, both be uniform in the same region. The principle that seems to be followed
is that the upper (most active?) layer aquires a uniform potential vorticity, except in
regions of large bottom slope; there, the lower-layer potential vorticity is uniform.

The idea of uniform potential vorticity has gained great currency in recent years.
Uniform potential vorticity states have been attributed to the mixing of water
particles in physical space (Rhines and Young, 1982) and to the mixing of system
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states in phase space (e.g. Salmon, 1982). However, neither explanation applies
satisfactorily to the planetary geostrophic equations, which, according to numerical
experiments, slowly evolve to steady final states, in which the eddy-fluxes vanish. If
steady final states like (5.3-5) are in fact realized by numerical solutions of the
planetary geostrophic equations, then a new, essentially deterministic explanation
must be sought, bascd more closely on the mathematical properties of (1.1).
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