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Hamiltonian derivation of the nonhydrostatic pressure-coordinate
model
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Miller (1974) and Miller and Pearce (1974) (see also Miller and White 1984) introduced a new
kind of approximation in which the fluid motion—though nonhydrostatic—is governed by equations
written in pressure coordinates. The Miller-Pearce (MP) equations admit buoyant convection
while filtering out acoustic waves, and exactly conserve a form of energy and potential vorticity
on fluid particles (Johnson 1978). However, like the more familiar anelastic equations (Ogura and
Phillips 1962; Gough 1969), the MP equations incorporate a prescribed reference temperature,
T,(p), and become inaccurate if the actual temperature wanders far from T,(p). As noted by
White (1989), this feature of the MP equations may make them inapplicable to flows in which the
temperature varies greatly on isobaric surfaces. To give another example, the MP equations could
not be used to model convection in a stellar atmosphere, in which the average temperature profile
is, typically, not foreknown.

In an important paper, White (1989) extended the MP model, removing the prescribed
reference temperature, while retaining the conservation laws and other desirable properties of
MP. White speculated that his extended equations have a Hamiltonian structure, and that “a slick
derivation of the Ertel property could be constructed if the relevant Hamiltonian were known . . 7
In this note, we derive White’s extended equations using Hamilton’s principle, and we show how
his potential vorticity law arises from the usual particle-relabelling symmetry of the Lagrangian.

Although Miller and White wrote their equations for an ideal gas, it is illuminating to consider
an ideal fluid with an arbitrary equation of state. We begin by recalling Hamilton’s principle for
such a fluid. Let

x(a, b, 1), z(a, b, 1) (1)

be the horizontal and vertical location of the fluid particle identified by labelling coordinates (a, b)
at time 7. (To simplify the equations, we temporarily assume that the fluid is two-dimensional and
nonrotating.) The labels are assigned so that

da db = d(mass). (2)
Then
o(x, z 1
a= (x, 2) =- 3)
¥a,b) p
is the specific volume, and the material derivative (8/67) of (3) yields the continuity equation
oo du ow
oo+ @
likg dx 09z
where (1, w) = (9x/at, 3z/97) is the fluid velocity. The momentum equations result from Hamilton’s
principle in the form
1/0x\2 1/8z\2
b -\ - — _— - =
oo s <42 -0 o

for arbitrary variations 8x(a, b, 7), 8z(a, b, 7) in the locations of the marked fluid particles. Here,
g is the gravity constant, and the internal energy, E(a, 6), is a prescribed function of the specific
volume (3) and the potential temperature (or entropy),

6 = 6(a, b). (6)
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The potential temperature depends only on the particle identity, in a manner determined by initial
conditions. For complete details, see, for example, Salmon (1988).

Now, if the contribution of the vertical velocity dz/97 to the kinetic energy in (5) is simply
discarded, then the resulting form of Hamilton’s principle

6ij da db dr{%(%)z — E(a, 8) — gz} =0 @)

yields the equations for hydrostatic flow:

o X
e Y
op (8)
8z: 0= il 4
where
_ 0E(a, 9)
p= " )
is the usual thermodynamic definition of pressure. By (6),
6_6 =0 10
ot (10)

Equations (4, 8, 9, 10) are the complete set of equations for hydrostatic flow; (10) is the
‘thermodynamic equation’, and (9) can be considered the equation of state.
We begin by asserting that the variational principle (7) for the hydrostatic flow is equivalent

to
1/0x\2 @/ 8(x, p) B
6”f da db dt{i(a_r) ~G(p.6) - E(a(a, 5" g)} =0 (an
for variations dx(a, b, 1), 8p(a, b, 1), O¢(a, b, 7). Here,
G(p, 6) = E(«, 0) + pa (12)

is the free energy, a prescribed function of the pressure and potential temperature, determined
from E(a, 8) by (9). By (9) and (12),
3G(p, 6)
kY £ Y
ap
In the new variational principle (11), (x, p) play a role analagous to the role played by (x, z) in
(7). Thus, by the device of introducing the free energy, G(p, 8), the variational principle (11)

gives p the status of a generalized coordinate.
The form of (11) is logical, because

jfdxdzp(E+gz)=j[dxdsz (14)

in hydrostatic flow. The last term in (11) can be viewed as a constraint—with Lagrange multiplier
¢—that p be hydrostatic. (It is this constraint that filters out acoustic waves.) However, it suffices
to show that the equations resulting from (11) are equivalent to (4, 8-10). The variations of (11)
yield:

(13)

. _¥x 13 p) 3¢y _
ox: - a2 g d(a, b) ax),, =0 (15)
3G 1o p)og
P s by ap (16)
%P | oo, 17)

% 3. b)
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By (17), (15) and (16) can be rewritten in the familiar forms

Ju a¢
ot a)p (18)
and
3¢
0=—-——-qa
3 . (19)
The material derivative of (17) is
du ow
—)] +—=0 (20)
ox/, dp

where w = dp/dt is the vertical velocity in pressure coordinates. Thus (10, 13, 18-20) form a
complete set of equations in (x, p) coordinates, equivalent to (4, 8-10) in (x, z) coordinates.

Now the hydrostatic Lagrangian in (7) and its equivalent in (11) differ from the exact
Lagrangian in (5) only in that (5) includes the vertical kinetic energy. It follows that we can obtain
more accurate approximations than (7) or (11) by including approximations to this vertical kinetic
energy. The most natural such approximation relates the vertical velocity to the material derivative
of the hydrostatic pressure p:

L0z _dzip_ adp_ 13G(p,6) e
dt  dp ot g ar g ot

Since the approximation (21) depends on p, it is better to work from (11) (for which p is a
generalized coordinate, subject to independent variations) than from (7). We will show that the
variational principle

offfasadyfF) 3 (52 - om0 - KR} -0 e

is equivalent to White’s extended equations. The conservation laws for energy and potential
vorticity stated by White are then automatic consequences of the obvious symmetry properties of
(22).

Since the new (vertical velocity) term in (22) is affected only by 8p(a, b, 1) variations, (18)
and (20) are unchanged. The new vertical momentum equation is

13Ga*G oG 1d(x,p)o¢

op: —S———— =0.
P* T @p a7 9p " gala,b)op )
Using (17) again, and remembering (13), (23) becomes
o d :1o]
297 aw) = — P a. (24)

For an ideal gas, @ = RT/p and (10, 13, 18, 20, 24) reduce to the equations discovered by White.
The dynamics resulting from (22) automatically conserves the energy

U da db{%uz +%(§w>2+ G(p, e)}. (25)

For an ideal gas, G = C,T and (25) reduces to the conserved energy given by White.
Before discussing potential vorticity, we generalize (22) to include Coriolis force and the other
horizontal dimension (y). Let ¢ be the third labelling coordinate, again defined so that

_Ax,y,2)

a= 3@, b,c) (26)
It is convenient to let ¢ = 6. Let R(x,y) and P(x, y) be any two functions satisfying
) @)
dy  9x

where f is the Coriolis parameter. Then the variational principle
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6f drf” da db dc{e‘;—’; - R(x,y)) g—:+ (la-y + p(x,y)) ., %(1 9G(p, ‘9))2 _

29t ot g it
- - Q(M >} _
yields
du ag o a¢)
R S . — =——}. 29
ox, Oy: py fv ax>p and az_+fu o), 29)

Equations (10, 13, 24) are unchanged, and (20) generalizes in the obvious way.

Now, Hamilton’s principle (28) applies to time-dependent variations in the map from (a, b, c)
to (x, y, p). But consider the inverse map from (x,y, p) to (a, b, ¢). Remembering that ¢ = 8, we
see that only the 3/dt terms in (28) are affected by variations da, b, dc(x, y, p, t) satisfying

a,b,0) =0 and é6c=0. (30)
a(x, ¥, p)
But (30) implies that
doa + 3% _ 0 (31)
oa b
so that
- SyY(a, b, c, 1), ob =iézp(a,b,c, T), 6c=0 (32)
ab da

for some Sy(a, b, c, 7). Now, it is easy to show that, for any quantity, F, the variation in material
derivative 9F/d1 caused by particle-label variations satisfying (30) is:
66F _ oF a8 aF o

ar——aa—raa—gga_ab. (33)

Substituting (33) and (32) into (28), and integrating by parts, we obtain

a
f drffjda db dc a—g oy =20 (34)
where
dx,u—R,8) oy,v+ P80 1 ¥G, G, 0
_Hwu=R.O) a0+ P.6) 15G.Gy0) )
d(a, b, 6) d(a, b, 8) g d(a, b, 0)
Since 8 is arbitrary, dQ/at = 0. Multiplying (35) by the constant
a(a, b, 8) (36)
ax,y,p)

(see (17) and remember ¢ = #) and noting that

iG,G,0)  8(p,ap,6) 8(p, aw, 0)

=a = 37
Wrp) oy 9. 7
because, by (13), a = o p, ), we finally conclude that
9 {a(x, u—R,8) dy,o+P,0) . ap, Fw/g?, 9)}
arl a(x,y,p) 3(x.y,p) a(x,y,p)
a 2
= [{V, X (= R, v + P, @w/g")}V,0] =0 (38)

where V, is the gradient operator in (x, y, p) coordinates. Equation (38) is the potential vorticity
law discovered by White.
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Although our derivation of White’s equations from (28) adds nothing of practical value to the
beautiful results of Miller, Pearce and White, it offers another illustration of the great compactness
and power of Hamiltonian approximation methods. The existence of energy and potential-vorticity
conservation laws is guaranteed by the obvious symmetry properties of (28), and even the absence
of sound waves could be anticipated from the fact the pressure inside the free energy G(p, ) in
(28) is hydrostatic (by the ¢-constraint in (28)) and thus G is insensitive to local pressure
fluctuations. Moreover, in the Hamiltonian derivation, one is not tempted to introduce the
reference state represented by T(p) that seems to arisc when the approximate equations are
obtained by the more conventional method of expanding in a small parameter. In that respect,
White’s equations are analogous to the semigeostrophic equations for nearly geostrophic flow,
which do not incorporate a prescribed reference state, while the earlier equations of Miller and
Pearce are analogous to the quasigeostrophic equations, which become highly inaccurate when the
flow wanders far from a prescribed state with nearly flat isothermal surfaces.
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