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Final: Solutions

1. (10 points) Consider a small data set that can be expressed as a matrix:

A =











1 2 0 3
2 1 2 1
3 3 2 4

−1 1 −2 2











What is the rank of this matrix? How much of the variance in the data can be expressed by
the first EOF? How much by the first two EOFs?

Solution: Although this is a 4×4 matrix, the SVD of the matrix has 2 non-zero eigenvalues,
indicating that the matrix is rank 2. The first mode EOF explains λ2

1/
∑2

i=1 λ2
i

= 80.33% of
the variance. The second mode EOF explains the remaining 19.67% of the variance, so that
100% of the variance is explained by the first two modes.

2. (20 points) You would like to estimate the meridional eddy temperature flux 〈v ′T ′〉 using
a current meter and a thermistor. How long should you deploy your instruments in order
to be able to distinguish the mean flux from zero (using 5% confidence limits)? At present
you have made some preliminary measurements that have yielded the following information
(some of which may prove irrelevant):

a. The lagged covariance of temperature can be fit to a Gaussian with an e-folding scale
of 35 days.

b. The lagged covariance of velocity can be fit to a Gaussian with an e-folding scale of
10 days.

c. The lagged covariance of {v′T ′} can be fit to a Gaussian with an e-folding scale of 30
days.

d. The standard deviations of v, T , and {v′T ′} are all 2 in the appropriate units.
e. The means of v, T , and {v′T ′} appear to be about 1.

Solution: This problem involves two steps. First we need to determine how many effective
degrees of freedom are required, and then we need to decide how long a current meter deploy-
ment that represents. The standard deviation of an averaged estimate v ′T ′ is σv′T ′/

√
NE.

For data with Gaussian statistics (which we’ll assume here) roughly 95% of observations are
within two standard deviations of the mean. So if we want to have 95% certainty of finding
a mean that’s distinct from zero, we’ll need 2σv′T ′/

√
NE < v′T ′. This means that

√
NE > 4,

and NE > 16. (More formally, we’d require that NE > (1.96 · 2)2 = 15.37.

We know that

NE =
T

∫

∞

−∞
exp

(

− t2

T 2
e

)

dt

so

T = NE

∫

∞

−∞

exp

(

− t2

T 2
e

)

dt
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where NE is 16 and Te is the e-folding scale, 30 days. Thus, T = 16
√

π30 days = 851 days.

3. (20 points) You have collected the following data, which are irregularly spaced in time.
In this part of the world, the covariance of temperature is assumed to be Gaussian with an

t (yrs) T (◦C) σT (◦C)
1920. 17.1 4.
1922 15. 4.
1923 14.8 2.

1923.5 14.4 2.
1927 19. 1.

e-folding timescale of 2 years. The variance of the signal is assumed to be 4 at zero time
lag, and the variance of the measurement noise varies depending on the method used to
collect each observation, as indicated in the table. Use the formalism of objective mapping
to estimate the temperature at this location in 1925 and the uncertainty of your estimate.
(Hint: be sure to remove the mean before doing the calculation.)

Solution: This is a relatively straight-forward objective mapping problem. First define a
data-data covariance matrix: CT (t)T (t+∆t) = 4 exp(−(∆t)2/22) + σ2

n
δ(∆t). This produces a

5 by 5 matrix. Now, compute the data-grid covariance: C
T (t)T̂ (1925) = 4 exp(−(1925−t)2/22).

This will be a 5 by 1 vector. Finally, compute your solution T̂ = T+C
T (t) ˆT (1925)C

−1
T (t)T (t+∆t)(T−

T ) = 16.41◦. The uncertainty is σ2 = C(0) − C
T (t)T̂ (1925)C

−1
T (t)T (t+∆t)C

T

T (t)T̂ (1925)
= 2.92(◦)2 so

σ = 1.71◦.

4. (20 points) On planet X, the Peripheral Sea has two entrances, both of which are deep,
flat-bottomed channels that are substantially wider than the local Rossby radius, as shown
in the figure. You have collected four hydrographic stations, one on either side of the the
channel entrances, at point A, B, C, and D.

A

B

C

D

Peripheral Sea open oceanopen ocean

How can you estimate the total transport through each of the channels? Set up the matrix
equations that you would use to solve for this transport. What additional information would
you need to determine your solution?
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Model answer: This problem is asking you to set up an inverse problem using 4 stations.
To begin setting up the problem, we’ll assume that mass, heat and salt are all conserved
within the Peripheral Sea, in a broad range of isopycnal layers. For each density class we can
define a balance: (ushearAB

+ ubotAB

)sAB = (ushearCD

+ ubotCD

)sCD where ushearAB

is the
geostrophic shear between stations A and B relative to the reference depth, and ubotAB

is the
reference depth velocity, and sAB is the mean concentration of density, potential temperature,
or salinity at the station locations in the isopycnal layer. This leads to a matrix equation
with two unknowns, representing the inflow and outflow reference velocities, and as many
equations as we define refernce levels. Thus:

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z1AB
LABρ1AB

z1CD
LCDρ1CD

z2AB
LABρ2AB
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LCDρ2CD

...
...

znAB
LABρnAB
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LCDρnCD

z1AB
LABθ1AB
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LABθ2AB
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[

urefAB

urefBC

]

=


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LCD
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where LAB is the distance between points A and B, and znAB
is the vertical separation

between layers. What’s missing from this? There’s no formal error covariance built into
the matrix equation here, but some adjustment should probably be made based on the a
priori data uncertainties to help constrain the solution. Error bars should be estimated for
the reference velocities. In addition, we haven’t included air-sea heat and freshwater fluxes
or Ekman transport. With a little a priori information about the flux sizes, it would be
nice to build them into the right-hand side. Diapycnal fluxes between layers have also been
neglected, but could be built into the left-hand side equations. In this case, it would be nice
to have a little a priori notion about the flux sizes that we expect.

Finally, there’s a lot of basic information about planet X that we’ll need. What’s its
rotation rate? What’s the latitude of the sea? How big is gravity? What are all the
dimensions of the system?

5. (30 points) After carefully analyzing numerical model output for the North Pacific,
oceanographer X has published a paper stating that fluctuations at 60◦N are inversely cor-
related with fluctuations at 40◦N. Moreover, in the model output, these fluctuations appear
to be linked to the Pacific Decadal Oscillation (PDO).

You’d like to examine whether the behavior of the ocean resembles the model. Unfortunately,
you are stranded on a desert island, and the only data that you have available are irregularly
spaced XBT profiles and a time series of monthly PDO variations. The friend who sent you
the PDO index rather cryptically remarked that she hoped you had a good singular value
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decomposition package, since she was sure you’d need either EOFs or a least-squares fitting
technique to make sense of this data.

Write a clear discussion, explaining how you could use (a) EOFs and (b) least-squares fitting
to analyze your data. Note that there may be more than one approach to this problem (and
EOFs and least-squares fitting are not the only ways to treat this data).

For the EOF calculation, how would you actually go about sorting the data into a usable
form? What would the elements of your matrix be, how would you handle this matrix,
and how would you interpret the results of your analysis? What are the limitations of this
analysis?

For the least-squares fitting, how would you organize your data and carry out your calcu-
lations? What quantities might you fit to what other quantities? What could you hope to
learn from this analysis? What problems might you encounter?

Model answer: This question is asking you to outline a methodology for two separate
calculation comparing irregularly spaced XBT data with the Pacific Decadal Oscillation
index.

EOFs: Let’s start by looking at EOFs. EOFs normally describe the modes of variability of
one data field. Here we have two data types, so we might imagine using canonical correlations
to describe the joint variability of the XBT observations and the PDO index. However,
canonical correlations require that we can construct a covariance matrix relating the two
data sets. The PDO is just a vector, so that would limit us to a rather uninteresting
covariance vector. (We’d do better if we could go back to the original data used to devise
the PDO index, but in this case we’re stuck.) So let’s compute EOFs for the XBT data
and then correlate the EOF modes with the PDO. To do this, first construct a data-data
covariance matrix for the XBTs. The PDO is a temporal mode, so we’ll want to derive a
temporal mode from our EOFs. Since the data are irregularly spaced, we’ll construct the
covariance matrix based on the available data, and will not try to grid the data. Here’s one
approach. First, extract temperature data from a single representative depth: perhaps an
average temperature between 50 and 100 m. Remove the mean. (You should probably also
remove an annual cycle, using a least-squares fit.) Then bin the data in time and space.
Now, take time period one and compute the mean covariance of all of the observations with
other observations from the same spatial bin (or with themselves). That will be C11. Next
compute the covariance of observations at time 2 with observations at time 1 that happen
to be collocated. That will be C12 and C21. Continue in this way to fill out the covariance
matrix, C. Now compute its SVD (or simply find the eigenvectors of C) to obtain the
temporal mode EOFs. This will produce 〈YYT 〉V = CV == λ2V. (The U and V matrices
are the same, because the covariance matrix is symmetric.) The spatial modes are then of
the form α = vT Y , where Y is the data matrix and v the temporal modes (the columns
of V. Since the data matrix is gappy, we might not be too happy with this version of the
spatial modes. Alternatively, we could compute a separate covariance matrix for the spatial
modes.
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Here are a few additional considerations. If the XBT data are quite uniform in extent,
then it may be realistic to compute a full data matrix in space and time, in which case the
time and space modes of the EOFs can be computed directly from the SVD. It’s also worth
commenting a little on the spatial bins: you might choose to lump all data from each latitude
into a single bin. However, this strategy could suppress aspects of the variability that may
matter for, so it’s probably preferable to sort your data into latitude and longitude bins.

Finally, to answer the question about whether the ocean matches the model we need to
look at two things. First, is there a spatial mode in which variability at 40◦N is inversely
correlated with variability at 60◦N? Second, does this mode correlate with the PDO? This
analysis will pose several limitations: the spatial coverage of the XBT data may not be
adequate to observe the signal that we’d like to see. If there are few observations in a
bin, then our covariances may be noisy, which could lead to erroneous or confusing results.
Moreover, if the signal were really a propagating mode, the EOF would not be tuned to
capture it.

Least-Squares: Least-squares fitting is a very different tool. When we least-squares fit, we
impose a functional structure. In this case, for lack of any better idea, let’s least-squares fit
the XBT data to the PDO. There are a number of ways we could do this, but here’s one
simple strategy: Sort the XBT data into geographic bins. Each bin will then have a time
series of XBT data, and we can again extract a representative value (e.g. mean temperature
in the upper 100 m depth). For each bin, least-squares fit a constant, an annual cycle (why
not?) and the best fit coefficient to match the PDO. Evaluate locations where the “gain”
linking the PDO and XBT data is high. Is there a reversal in the fitted coefficients for the
PDO between 60◦ N and 40◦N? Are the correlation coefficients statistically significant? How
much of the data variance is explained?

Alternatively, fit all of the data with the PDO times a spatial structure (a plane, perhaps,
or a functional fit to the first mode spatial EOF from your previous analysis). This has
the advantage of retaining the exact spatial and temporal information in the observations,
although there is nothing particularly optimal about the function that we’re fitting to the
data. Results of such a fit may prove difficult to interpret, however, since we’ve imposed so
much information on the data using the fit.

Finally, Jessica asked, “Where is the desert island?” Here are a couple of possibilities:
Monuriki (from the film Castaway), Palmyra (not actually a desert, but it belongs to the
Nature Conservancy, and has been considered for possible management by Scripps).


