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Problem Set 3: Solutions

1. (Problem 2 from the notes.) Suppose particle motion evolves according to

X(n) = X(n − 1) + ∆V (n) (1)

V (n) = (1 − α)V (n − 1) + R(n) (2)

where R is independent of V (n), has stationary statistics and is serially uncorrelated. Find
the general solution for V (n). Use it to find the diffusivity of κ∞ = limt→∞

1
2

d
dt
〈X2(t)〉 in

terms of α and 〈R2〉. Will the concentration of X-particles obey a diffusion equation? Why?

Solution: First we derive a general expression for V (n):

V (n) = (1 − α)V (n − 1) + R(n)

= (1 − α)V (n − 2) + (1 − α)R(n − 1) + R(n)

= (1 − α)nV (0) +
n

∑

i=1

R(i)(1 − α)n−i

so

lim
n→∞

V (n) =
n

∑

i=1

R(i)(1 − α)n−i

Therefore

X(n) = X(n − 1) + ∆V (n)

= X(0) + ∆
∑

i = 1nV (i)

= X(0) + ∆
n

∑

i=1

i
∑

j=1

R(j)(1 − α)i−j + ∆
n

∑

i=1

(1 − α)iV (0)

so

lim
n→∞

X(n) = X(0) +
∆V (0)

α
+ ∆

n
∑

i=1

i
∑

j=1

R(j)(1 − α)i−j

where we have used the fact that
∑∞

i=1 xi = 1/(1−x). Using this information, we can derive
an expression for the diffusion. We start by defining the covariance of V :

CV V (n,m) = 〈VnVm〉 = (1 − α)n+m +
n

∑

k=0

m
∑

l=0

R(k)R(l)(1 − α)n+m−k−l

=
l=min(n,m)

∑

k=0

〈R(k)2〉(1 − α)2l−2k(1 − α)|n−m|

= 〈R2(1 − α)|n−m|〉
l=min(n,m)

∑

k=0

(1 − α)2k

= 〈R2〉(1 − α)|n−m|1 − (1 − α)2l+2

1 − (1 − α)2
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= 〈R2〉(1 − α)|n−m|1 − (1 − α)2l+2

1 − (1 − α)2

=
〈R2〉(1 − α)|n−m|

α(2 − α)
in the limit where n,m are big

Then we can use the covariance to compute 〈X(n)2〉. Here we note that the constants in
X(n) are uncorrelated with R(k). Formally 〈X(n)2〉 computed here should also include a
term of the form (X(0) + ∆V (0)/α)2.

〈X(n)2〉 = ∆2
n

∑

k=0

n
∑

l=0

V (k)V (l) =
n

∑

k=0

n
∑

l=0

Cvv(k − l)

= ∆2
n

∑

k=−n

(n − |k|)Cvv(k)

= ∆2 〈R2〉
α(2 − α)

[

n + 2
n

∑

k=1

(n − k)(1 − α)k

]

= ∆2 〈R2〉
α(2 − α)

[

n + 2n(1 − α)
∑

k = 0n−1(1 − α)k − 2(1 − α)
n−1
∑

k=0

(k + 1)(1 − α)k

]

= ∆2 〈R2〉
α(2 − α)

[

n + 2n(1 − α)
1 − (1 − α)n

1 − (1 − α)
− 2(1 − α)

1 − (n − 1)(1 − α)n

(1 − (1 − α))2

]

= ∆2 〈R2〉
α2(2 − α)

[

n(2 − α) − 2n(1 − α)n+1 − 2(1 − α)

α
(1 − (n − 1)(1 − α)n)

]

where we’ve noted that
∑

kxk = xd/dx(1/(1−x)). As n becomes big, all terms to the power
n go to zero. For large n, the time derivative of 〈X(n)2〉 is stable:

κ∞ =
1

2

d〈X(n)2〉
dt

=
1

2∆

d〈X(n)2〉
dn

=
∆〈R2〉
2α2

The same result can be derived by computing 〈X(n)2〉 directly from the expression for X(n)
using a quadruple sum. You may find it interesting to confirm these results numerically. The
diffusion rate κ∞ is a constant, so we expect that the concentration of particles will obey a
diffusion equation.

2. The wind fields that we used in the midterm show evidence for a clear annual cycle. Use
a least squares fitting procedure to estimate the mean wind, a linear trend, and the size of
the annual cycle. Explain your method and show your results for both the zonal and the
meridional component of the wind.

You can refine your estimate by assuming that the uncertainty in the wind fields depends
on the number of measurements averaged to produce each wind estimate (column 6 of the
data). Explain how you would do this?
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Solution:

To solve a system of equations Gm = d, first define the data vector d to be your wind
measurements and define a time vector t that is the length of d. Now remove all missing
data from d and t. Finally define G as

G =













1 t1 cos(2πt1/365.25) sin(2πt1/365.25)
1 t2 cos(2πt2/365.25) sin(2πt2/365.25)
...

...
...

...
1 tN cos(2πtN/365.25) sin(2πtN/365.25)













The solution vector is m = (GT
G)−1

G
T
d. Since u and v have missing data in the same

places, d can be either u or v. The strength of the annual cycle is simply m2
3 + m2

4. Here
are my solutions (from south to north): Here time is measured in days so m2 has units of

u1 v1 u2 v2 u3 v3

m1 -4.6322 -1.5676 -5.7635 -1.8222 -6.6346 -1.2637
m2 0.0017 0.0016 0.0030 0.0010 0.0033 0.0002
m3 -1.8038 2.1221 -1.0365 2.0419 -0.1184 1.6228
m4 0.4461 -0.3187 0.4953 -0.2795 0.4176 0.0596

m s−1 day−1 and the other coefficients have units of m s−1.

The simplest way to refine the estimate to take account of the error estimates is to use a row
weighting technique. As we saw in the midterm, the uncertainty in a mean is equal to the
standard deviation, σ, divided by the square root of N , the number of data points. Although
we don’t know σ, we do know N . Therefore, we can define a weight vector, w = 1/

√
N ,

where N is the number of measurements in column 6. Now divide each row of G and each
value of d through by the corresponding value of w. Thus, G̃i,j = Gi,j/wi and d̃i = di/wi.

Now solve the weighted system: m = (G̃T
G̃)−1

G̃
T
d̃. In this case the weighted solution is

modified only slightly relative to the original solution
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