Problem Set 4: SIO 221B, Data Analysis

due Friday, November 8, 2002

1a. Use Lagrange multipliers to solve the overdetermined matrix equation $\mathbf{Gm} = \mathbf{d}$, subject to the constraint that the L2 norm of $\mathbf{Hm} - \mathbf{f} = \mathbf{0}$ should be as close to zero as possible.

b. How does your solution to 1a above differ from the solution that you would obtain by augmenting the matrix \mathbf{G} with the matrix \mathbf{H} to create a revised matrix equation?

$$\left(\begin{array}{c} \mathbf{G} \\ \mathbf{H} \end{array}\right)\mathbf{m} = \left(\begin{array}{c} \mathbf{d} \\ \mathbf{f} \end{array}\right)$$

2. Consider the standard matrix equation $\mathbf{Gm} = \mathbf{d}$, where:

$$\mathbf{G} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1\\ 0 & 0.01 \end{array} \right),$$

and

$$\mathbf{d} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

Uncertainties in the elements of **d** are identified as σ_i .

a. What is the least-squares solution for **m** if $\sigma_i = 0.1$ for all *i*?

b. What is the (row-weighted) least-squares solution for **m** if $\sigma_1 = \sigma_2 = 0.1$ and $\sigma_3 = 10$?

c. Comment on your results from cases a and b above? What would happen if $\sigma_1 = \sigma_3 = 0.1$ and $\sigma_2 = 10$?

3. Suppose that you have temperature data at fixed depths (such as CTD bottle depths) and you would like to find a functional form to describe the vertical temperature structure in the range between 150 and 900 m depth.

a. Download the following profile data from the course web site:

http://www-mae.ucsd.edu/~sgille/sio221b/ps4_profile.dat

and least-squares fit a linear profile of the form $T = m_1 + m_2 z$ to the temperature data. In this data, column 3 contains depth, column 4 contains temperature, column 5 contains salinity, and column 6 is oxygen. The particular station was collected on 25 November 1972 at 35.32°W, 30.43°S.

b. Assume that the observational error is 0.1°C at all depths. What are the estimated errors in your parameters m_i ? Is the functional misfit $\langle (\mathbf{Gm} - \mathbf{T})^2 \rangle$ consistent with the assumed errors in T? You can do this by computing the variable

$$\chi^2 = \frac{(\mathbf{Gm} - \mathbf{T})^T (\mathbf{Gm} - \mathbf{T})}{\sigma^2}$$

and checking whether χ^2 is equal to N-M. (More formal procedure would have you compute the complete gamma function to evaluate whether the observed value of χ^2 is plausible.)

c. Verify that the formal error bars that you have derived are consistent with error bars that would be derived using a Monte Carlo simulation. To estimate alternate errors in m_i carry out a Monte Carlo simulation using the following procedure: 1. Generate 100 or more data sets of normally distributed fake perturbations with a standard deviation equivalent to the observed data (using "randn" in Matlab, for example). 2. With each set of noise, randomly perturb the temperature data, and recompute the least-squares fit solution. 3. Compute the standard deviations of your estimates of m_i . Do your error bars differ from the error bars derived in part b?