Problem Set 5: SIO 221B, Data Analysis

due Friday, November 15, 2002

1. (10 pts) A matrix A is defined as

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ -3 & 1 \\ 2 & 2 \end{bmatrix}$$

Using the eigenvector relations between the singular values, \mathbf{u}_i , and \mathbf{v}_i , find the complete SVD for **A**. Do not use a singular value decomposition program.

2. (20 pts) Suppose we have observations of horizontal velocity from a moored array of current meters, as described in the following table:

$x \ (\mathrm{km})$	$y~(\mathrm{km})$	$u \ (\rm cm/s)$	$v \ (\rm cm/s)$
10.	0.	35.5	21.3
0.	10.	53.5	30.4
-10.	0.	49.2	24.8
0.	-10.	33.5	18.4
0.	0.	43.5	25.5

A. Fit planes to the measurements of u and v and calculate the following:

- i. The coefficient of each function in the fit.
- ii. The mapped values of velocity at each instrument.
- iii. The misfit as measured by the L2 norm.
- iv. The vorticity, $\partial v / \partial x \partial u / \partial y$, and divergence, $\partial u / \partial x + \partial v / \partial y$.
- v. The covariance matrix of the model coefficients, assuming that the standard deviation of each component of velocity is 3.0 cm/s and that the error is uncorrelated between instruments.
- vi. The resulting error in area-averaged velocity, vorticity, and divergence.

B. Enforce the constraint that the flow has zero divergence, and redo i-vi above. Discuss the differences between the two sets of results.

C. Suppose one of the instruments failed. (You choose which one.) Redo the calculations and discuss the results.

3. (bonus) Choose any oceanographic or climate record that you like. Least-squares fit a function of your choice to the data. Discuss the method of fitting that you have used, uncertainties in the results, and the goodness of fit. If you e-mail me a graphic summarizing your results (preferably in postscript, pdf, gif, or jpg) I'll bring them to class for discussion and will post them on the web.