
UCSD—SIOC 221B: (Davis, Rudnick, Gille) 1

Lecture 12: Singular value decomposition

Recap
Last time we took a look at eigenvalue problems and their links to empirical orthonal func-

tions. We examined a classic eigenvalue equation for a rank 2 matrix with 2 modes, and we looked
at eigenvalue decomposition in the form:

A−1 = PD−1PT (1)

where A is a square matrix, P is an orthonormal matrix containing a set of basis vectors that span
the space defined by A, and D is a diagonal matrix with the eigenvalues on the diagonal.

The condition number of the matrix A is the ratio of the largest to the smallest eigenvalue and
is an indication of the stability of the inversion to numerical error.

Representing matrices that are not square
Standard eigenvalue calculations make sense for square matrices, but what happens for a

matrix G that is not square? Let a linear transformation be defined by the N ×M matrix G, so
that Gm is a transformation of m into d. Define N ×N and M ×M orthogonal matrices U and
V by some basis vectors ui and vi as

U =
[
u1 u2 · · ·uN

]
(2)

V =
[
v1 v2 · · ·vN

]
. (3)

The vector m is transformed into m̃ through a matrix rotation operation.

m̃ = VTm. (4)

That is, m̃ is the coordinates of m with respect to the basis vectors vi. Because V is orthogonal,
the inverse transform is

m = Vm̃. (5)

Similarly for vector d

d̃ = UTd (6)
d = Ud̃. (7)

Consider the misfit vector
e = Gm− d (8)

Using (5) and (7)
e = GVm̃−Ud̃ (9)

Premultiplying by UT :
UTe = UTGVm̃− d̃. (10)

So that the transformed misfit vector is

ẽ = UTGVm̃− d̃. (11)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 2

The linear transformation G is represented in the new basis by

G̃ = UTGV. (12)

Everything we’ve done so far has been hypothetical. We haven’t relied on any special knowledge
of G, or any unusual requirements for U or V.

Our goal is to find two orthogonal matrices U and V such that G̃ is as simple as possible.
Let’s assume that G̃ = S where

S =

[
SK 0
0 0

]
(13)

where SK is a K ×K diagonal matrix

SK =

s1 0

s2
. . .

0 K

 . (14)

Such a representation for G̃ would certainly be very simple.
Now we show that such a representation is always possible. From (12)

G = USVT . (15)

So the symmetric matrix GTG is

GTG = VSTUTUSVT = V(STS)VT , (16)

where STS is diagonal. Since V is orthogonal, we know that the diagonal elements of STS are the
eigenvalues of GTG. Because GTG is symmetric, we know that such an eigenvalue decomposi-
tion is always possible. Similarly

GGT = U(SST)UT , (17)

where SST is diagonal, and the diagonal elements are the eigenvalues of GGT . The elements
along the diagonal of S are called the singular values of G. It may be surprising (but true) that
the singular value decomposition (15) is possible for any matrix G. The number K of non-zero
singular values is the rank of G.

We are now in the position to prove a few things about the general inverse problem. First, we
define the transformed vectors as being separated into two parts

UTd = d̃ =

[
d̃K

d̃0

]
(18)

VTm = m̃ =

[
m̃K

m̃0

]
(19)

(20)

consisting of the first K components, and the remaining components. All solutions to the problem
of minimizing ||Gm− d||2 are of the form

m = Vm̃ = V

[
m̃K

m̃0

]
(21)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 3

where m̃0 is arbitrary. Prove this by considering (dropping the 2 subscript from here on)

||Gm− d||22 = ||USVTm− d||2 (22)
= ||SVTm−UTd||2 (23)
= ||Sm̃− d̃||2 (24)
= ||SKm̃K − d̃K ||2 + ||d̃0||2. (25)

The minimum misfit is for
SKm̃K = d̃K , (26)

and the misfit is then ||d̃0||2. Apparently m̃0 has no effect on the misfit. Thus it is in the null space.
For the full rank underdetermined problem, there is no d̃0, and therefore no misfit. For the full rank
overdetermined problem, there is no m̃0 and therefore no null space. The solution with minimum
model size as measured by ||m|| is clearly the one with m̃0 = 0.

Foundations
Often in oceanography we collect large data sets that are time series at a group of locations.

Moored current meter arrays do just this. We may want to come up with a simpler description of
the data than N time series. This description may be an end in itself, or more interestingly, may be
the input to a linear estimator.

Suppose we have a time series which we write as an N -vector y(t). It is always possible to
write a decomposition of y as

y(t) =
N∑
i=1

αi(t)bi, (27)

where the set of vectors bi is orthonormal,

bT
i bj = δij, (28)

and the temporal functions αi are given by

αi = bT
i y. (29)

A simple example of such a decomposition is the case where the basis vector bi has a one at
position i and zeros elsewhere. The αi are then the time series at those locations.

Our goal is to come up with a set of basis vectors such that the αi are uncorrelated. In this
new coordinate system,

〈αiαj〉 = bT
i 〈yyT 〉bj = δij〈α2

i 〉, (30)

the covariance matrix of the αi would be diagonal,

BT 〈yyT 〉B = D, (31)

where B is the orthogonal matrix whose columns are the basis vectors bi, and D is a diagonal
matrix whose elements are the variances of each of the αi. Premultiplying (31) by B results in the
eigensystem

〈yyT 〉B = BD. (32)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 4

We already know how to solve eigensystems, so we recognize that the diagonal of D is made up
of the eigenvalues and the columns of B are the eigenvectors. The eigenvectors are commonly
called empirical orthogonal functions, the temporal functions αi are known as amplitudes, and
the eigenvalues are the variances of the amplitudes. What we have essentially accomplished is a
coordinate transformation such that the eigenvectors indicate those linear combinations of the data
that are uncorrelated.

It turns out that the decomposition (27) where the basis vectors are the EOFs is optimum in
another way. Suppose we desire a set of K < N vectors that best approximate the data y in the
sense that the mean square error is minimized. Our estimate is then

ŷ =
K∑
i=1

αibi, (33)

and the measure of error to be minimized is〈
(ŷ − y)T (ŷ − y)

〉
=
〈
yTy

〉
−

K∑
i=1

〈α2
i 〉. (34)

The expression above relies on the fact that the basis vectors are orthonormal according to (28).
So the goal in finding the basis vectors is that the variance in the estimate, the second term on the
right-hand side of (34), be maximized subject to the constraint (28). Using the method of Lagrange
multipliers, the cost function to be maximized is

L =
K∑
i=1

[
bT
i 〈yyT 〉bi − λi

(
bT
i bi − 1

)]
. (35)

Extremizing this cost function with respect to bi results in the equation to be solved:

〈yyT 〉bi = λibi. (36)

This is of course identical to the eigensystem (32), and we find that the best K functions are the
first K EOFs where the ordering the of eigenvalues is from largest to smallest. The first K < N
EOFs describe as much or more variance as any other possible set of K vectors subject to the
normalization (28). It follows that a representation of the data with a different set of K vectors
cannot produce a smaller mean square error than the first K EOFs. In this sense we say that the
EOFs are the most “efficient” descriptors of variance. There are other sets of K vectors that would
be just as efficient, but they must be in the subspace defined by the first K EOFs. Any set of K
vectors which has components in the subspace of the N − K higher indexed EOFs must be less
efficient than the first K EOFs.

We have been discussing the EOF decomposition using a collection of time series at different
locations. It is worth noting that the decomposition described by (27) may be made using data
that have any two independent parameters. So far we have said the ensemble average is over time
and we have found the EOFs to be vectors whose components are values at different locations,
and that both the EOFs and the amplitudes obey orthogonality relations. There is nothing special
about the independent variables of time and location. Other sorts of EOFs are sometimes used
in the literature when the independent variables are different; examples are complex EOFs and

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 5

frequency-domain EOFs. The basic idea is exactly the same although the definition of the ensemble
average and/or the normalization condition (28) may differ.

Relationship to singular value decomposition
It turns out that the representation (27), where the basis vectors are EOFs, is exactly equivalent

to the singular value decomposition of the N × L matrix Y whose rows are the N time series:

Y =

y1(t1) y1(t2) · · · y1(tL)
y2(t1) y2(t2)

... . . .
yN(t1) yN(tL)

 (37)

The covariance matrix is then simply:

〈yyT 〉 = 1

L
YYT (38)

We know that the matrix Y has a singular value decomposition

Y = USVT , (39)

where the number of nonzero singular values indicate the rank of Y. If N < L and the rows (that
is, the data) are linearly independent, then the rank would be N . Now the covariance matrix is
equivalent to:

1

L
YYT =

1

L
USSTUT (40)

The right hand side is just the eigenvalue decomposition of the covariance matrix where matrix
SST is square and diagonal with elements equal to Lλi, and the columns of U are the EOFs. The
amplitudes are given by the rows of the matrix

UTY = SVT (41)

associated with nonzero singular values.
So the EOF decomposition is mathematically equivalent to a singular value decomposition.

The important physical issue is whether the implicit ensemble average and normalization are ap-
propriate to your particular problem. This is the same sort of question considered when we used
the singular value decomposition to solve least-square problems. In that case we asked whether
the norms were reasonable. It is important not to simply find the EOFs for some data set, which
you can always do, and assume that the answer will be physically meaningful. The answer has
relevance only if the average and normalization are appropriate.

Testing EOFs on white noise
Finally we can carry out an exercise to ask what happens if we compute EOFs on a matrix of

random white noise. We can define a data set (in this case a 100 × 10 matrix:

A=randn(100,10);

or

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 6

import numpy as np
import scipy
import xarray as xr
import cmocean as cmo
import matplotlib.pyplot as plt
from numpy import linalg as LA

A=np.random.normal(size=[100,10])

Then we can decompose the data, either by computing the svd of the full matrix, or by con-
verting the matrix A into a covariance matrix and finding its eigenvalues or svd. All of these
produce the same results, although the eigenvalue solver orders the eigenvalues from smallest to
largest:

[u,s,v]=svd(A);
[eu,es]=eig(A’*A);
[uu,ss,vv]=svd(A’*A);

% what is the difference between the eigenvalue decomposition
% and the svd?
[diag(s) diag(es) diag(ss) diag(s).ˆ2]

or

U,S,Vh=LA.svd(A)
es,eu=LA.eigh(np.matmul(A.T,A))
uu,ss,vv=LA.svd(np.matmul(A.T,A))

S,es,ss,S**2

You’ll see that the SVD sorts the singular values from largest to smallest, the Matlab eigenvalue
solver sorts the eigenvalues from smallest to largest, as does the python solver “eigh” (but not
“eig”).

One question you can ask is how much of the variance is explained by each mode. You might
be tempted to compute this using the singular values, but for variance you really need the squared
singular values:

% how much of the variance is explained by each mode?
plot(diag(s).ˆ2/sum(diag(s).ˆ2),’LineWidth’,2)
h=gca;
set(gca,’FontSize’,14)
xlabel(’Mode number’,’FontSize’,14)
ylabel(’Fraction of variance explained’,’FontSize’,14)

or

plt.plot(np.arange(1,11,1),S**2/np.sum(S**2))
plt.xlabel(’Mode number’,fontsize=14)
plt.ylabel(’Fraction of variance explained’,fontsize=14)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 7

You can also plot the structure of the modes by plotting the vectors U and V, in this case, in
Matlab, the columns of the matrices, where the first column is mode 1, the second column is mode
2, and so forth. In Python, the singular vectors are columns for U and rows for V.

One thing we sometimes do with EOFs is to reconstruct the data using just the first few modes.
The recoonstruct the first mode, you’d use

% reconstruct the data mode by mode? Mode 1:
A1=u(:,1)*s(1,1)*v(:,1)’;

or

A1=np.outer(U[:,:1],Vh[:1,:])*S[0]

and visualize the original field and reconstruction:
plt.subplot(1,2,1)
plt.pcolormesh(A)

plt.subplot(1,2,2)
plt.pcolormesh(A1)

Once you’ve done this, you might ask how the variance in mode 1 compares with the variance
inferred from the singular values alone.

% variance in mode 1 reconstruction vs total variance
sum(A1(:).ˆ2)/sum(A(:).ˆ2)

% variance inferred from singular value 1:
s(1,1)ˆ2/sum(diag(s).ˆ2)

or

np.sum(A1**2)/np.sum(A**2), S[0]**2/np.sum(S**2)

In this particular case, our data are white noise, so we expect no skill whatsoever from the
EOFs. In this example, in the case of data that are white noise, the fraction of variance explained
helps us address the null hypothesis: for a matrix with a given number of degrees of freedom,
how much apparent skill would we see purely by chance? Formally, researchers sometimes use a
rule-of-thumb text called the N -test, in which they compare EOFs for noise with true EOFs. To
carry out the test, plot the fraction of variance explained for the true data, as a function of mode
number, and plot the fraction of variance explained for noise with equivalent matrix dimensions
(either white noise, or noise that has been filtered to match the effective smoothing in the data).
The pointN , where the lines cross provides a rough indication of the number of modes that provide
more skill than we’d expect from pure noise. Beyond that point, it s hard to justify continuing to
attempt to interpret EOFs. The N -test is a rough rule of thumb, but a useful starting point. For
more details, see Preisendorfer (1988).

Bibliography
Preisendorfer, 1988. Principal Component Analysis in Meteorology and Oceanography, Elsevier,

425 pp.

