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Lecture 16: Linear estimation theory: Noise

Recap
In Lecture 15, we started looking at linear estimation theory (also known as kriging or ob-

jective mapping, or Gauss-Markov estimation). We laid out key equations, starting with a linear
model of the form:

ŷ = aTx, (1)

where x is measured data, ŷ is an estimated mapped quantity, and a is a set of coefficients that
allow us to map x to determine ŷ. We found:

a = 〈xxT 〉−1〈xy〉. (2)

where 〈xx〉 is the covariance of the data with itself, and 〈xy〉 is the covariance of the data with the
mapped value ŷ.

As we noted, by convention, we assume that we know the covariance, but have no informa-
tion about the true values y or the mapped approximation ŷ. In principle, to maintain the statistical
accuracy of the solution, oceanographers have usually emphasized the importance of inferring
the covariance matrices from independent sources, rather than relying on the data. It turns out
that statisticians are less prescriptive about this, and given a large enough data set, they will infer
covariances from the data that they are going to map. It also turns out that statisticians really en-
joying working with Argo data, since the irregular sampling allows them to test different statistical
methods.

Noise matters
As we noted last time, the symmetric data–data covariance matrix can run into trouble when

data points are highly correlated, (e.g. if the decorrelation scales Lx and Ly are really long, or if
two independent data points have the same coordinates). In a hypothetical two dimensional matrix,
we could have:

〈ddT 〉 = A

[
1 1
1 1

]
, (3)

which is singular.
So what do we do about noise? When we initially went through the derivation for linear

estimation, we neglected the fact that measurements are intrinsically noisy. Data are noisy for a
multitude of reasons:

1. The instrument used to measure a variable has intrinsic errors— instrumental error.

2. Our data may be sparse and not representative of the processes that we want to study—that
is, our temperature profile might be in the middle of an eddy, when we think we’re trying to
map the mean state of the ocean. This is referred to as representation error. We need to
take into account this intrinsic variability in the system we are measuring.

3. Beyond the challenges of representation error, we might simply have missing physics in our
model that will show up as noise—for example, surface wave effects impact the the drag
coefficient CD that links wind speed to wind stress, but they aren’t taken into account in
many formulations of CD, which can lead to spread when we try to infer wind stress.
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While data are noisy for all the reasons that we mentioned above, in practice representation
error is the biggest culprit. This means that even closely spaced measurements will not be as
correlated as any given measurement is with itself. We need to build this measurement uncertainty
into the matrix by adding noise. Assume that we measure x̂1 which is equivalent to the true x1 plus
noise:

x̂1 = x1 + n1 (4)

The corresponding covariance is
〈x̂21〉 = 〈x21〉+ 〈n2

1〉, (5)

where we assume no covariance between x1 and the noise.
In essence, this means that the covariance 〈x1x1〉 needs to exceed the covariance of x1x2 by

our estimate of the noise variance. We should represnet this noise by adding the noise variance
along the diagonal.

〈xxT 〉 = A

 1 + σ2 exp
[
−4δ2
T 2

]
exp

[
−4δ2
T 2

]
1 + σ2

 . (6)

Provided our noise is reasonably sized, this will protect us from having a singular matrix, and also
provide a good representation of the uncertainty in the system.

In general, our data covariance should be:

〈xxT 〉 = 〈x̃x̃T 〉+ σ2I, (7)

where σ is the prior uncertainty for the measurements. This assumes that the uncertainty is the
same everywhere, but we are free to have σ depend on location.

Linear estimation theory: Adding noise to the problem
While the process implied in the model ŷ = αxmay be the object of our study, other processes

affecting the measured variables are certainly also occurring. Suppose that linear relationship truly
exists between two variables in the form

ỹ = α̃x̃ (8)

where the ∼ indicates that this is true relationship between the variables. The reality is that our
measurements are noisy so that we have access to the variables as follows

y = ỹ + ye = α̃x̃+ ye (9)
x = x̃+ xe (10)

where the e subscript indicates noise. Statistics we calculate from our observations will include
contributions from noise. So the gain calculated from this data would be

α =
〈xy〉
〈x2〉

(11)

=
〈(x̃+ xe)(α̃x̃+ ye)〉
〈(x̃+ xe)2〉

(12)

=
α̃〈x̃2〉+ α̃〈x̃xe〉+ 〈x̃ye〉+ 〈xeye〉

〈x̃2〉+ 2〈x̃xe〉+ 〈x2e〉
(13)
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Assume that the noise on x and y is uncorrelated with the true variables (the signal) and with each
other

〈x̃xe〉 = 〈x̃ye〉 = 〈xeye〉 = 0 (14)

so that

α = α̃
〈x̃2〉

〈x̃2〉+ 〈x2e〉
(15)

In the limit that the noise variance 〈x2e〉 is zero, the true gain is recovered. With larger noise,
the estimated gain α will always be closer to zero than the true gain α̃. As the noise variance
approaches infinity, the gain approaches zero. The reason the optimum gain is reduced in the
presence of noise is that amplifying noise degrades the MSE. As we are considering variables with
zero mean from here on, the essential notion is that minimum MSE estimates tend to fade toward
the mean in the presence of noise.

Since our estimate always will be closer to zero than the true value, this is a reminder that we
always want to start from our best prior guess, so that our estimate will be as close as possible to
what we already know.

Choosing a decorrelation function
Objective mapping problems are classically laid out using Gaussian covariance functions.

However, there’s no obligation to specify any given analytic form for the covariance. We could
assume a different analytic form (e.g. a double exponential), an empirical form based on observa-
tions, or if y was a complex function of x, we could build the functional relationships between y
and x into to covariance—this is done to map dynamic topography from velocity information, for
example.

One obvious choice is the double exponential:

ρ(τ) = A exp

(
−|τ |
T

)
(16)

Dependence on time or space
We set up the covariance to depend only on the separation between t1 and t2, but not on the

actual values of t1 and t2. This is a computationally convenient decision that is appropriate much
of the time, but it’s not required. It is however, essential that your covariance matrix be symmetric.
In other words, I need to require that

〈x(t1)x(t2)〉 = 〈x(t2)x(t1)〉 (17)

In the case above, we’d run into trouble if we used t1 − t2 with an exponential and without
an absolute value sign, or if we varied the decorrelation scale T , but had it depend only on the first
index. Consider the challenges in having a covariance matrix of the form:

〈xxT 〉 = A

[
1 + σ2 exp

[−τ
T

]
exp

[
+τ
T

]
1 + σ2

]
(18)

or

〈xxT 〉 = A

 1 + σ2 exp
[
−|τ |
T1

]
exp

[
−|τ |
T2

]
1 + σ2

 . (19)
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Neither of these matrices meets the fundamental requirement that the data–data covariance be
symmetric, that is that the covariance between x(t1) and x(t2) has to be the same as the covariance
between x(t2) and x(t1).

Mapping in multiple dimensions
So far we’ve been looking at linear estimation in one dimension only, essentially considering

variations on interpolating in time to between x(t1) and x(t2) to find x(t). However, our most inter-
esting and challenging problems involve mapping in two-dimensional space, or three-dimensional
space, or some combination of space and time. This requires a little thought for the covariance.

Now that we’ve gotten started, we’re going to examine what happens when we implement this
with real data, with noise.

Mapping in practice
Suppose we have an ocean full of Argo data that we want to map. How do we set up the

problem? First, we’ll have our data, for example temperature at 10 m depth:

d =


T1
T2
...
TN

 (20)

For this, we’ll need a data–data covariance matrix, which depends not at all on temperature, but
only on the geographic separation between measurement points (here identified as i and j, since
we used x and y previously as variables:

R =


ρ(0, 0) ρ(i1 − i2, j1 − j2) ρ(i1 − i3, j1 − j3) . . .

ρ(i2 − i1, j2 − j1) ρ(0, 0) ρ(i2 − i3, j2 − j3) . . .
ρ(i3 − i1, j3 − j1) ρ(i3 − i2, j3 − j2) ρ(0, 0) . . .

...
...

... . . .

 . (21)

We also have a location or set of locations to which we want to map our data, so we can define the
data–model covariance:

Q =

ρ(i1 − im1, j1 − jm1) ρ(i1 − im2, j1 − jm2) . . .
ρ(i2 − im1, j2 − jm1) ρ(i2 − im2, j2 − jm2) . . .

...
...

...

 . (22)

So if we want to map our data, our formula for a says that we should compute:

ŷ = QR−1d. (23)

The measure of the quality of the fit is the fractional mean squared error:

〈(ŷ − y)2〉
〈y2〉

= 1− QTRQ

P
(24)

where P is the covariance of the mapped values, and is usually used as a diagonal matrix.
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Now let’s incorporate noise into the covariance matrix formulation. As above, each individual
measurement is far more correlated with itself than with any measurements collected nearby in time
or space. To address this, we add noise (e.g. σ2) along the diagonal of our data–data covariance
matrix.

R =


ρ(0, 0) + σ2 ρ(i1 − i2, j1 − j2) ρ(i1 − i3, j1 − j3) . . .

ρ(i2 − i1, j2 − j1) ρ(0, 0) + σ2 ρ(i2 − i3, j2 − j3) . . .
ρ(i3 − i1, j3 − j1) ρ(i3 − i2, j3 − j2) ρ(0, 0) + σ2 . . .

...
...

... . . .

 . (25)

In addition to being physical, this has the added benefit of ensuring that R will be invertible.

Examples
Finally, in class, we examined some specific examples of objectively mapped results and

discussed a series of questions:

1. What is the mapped quantity?

2. What data were used?

3. What goes in the data–data covariance matrix?

4. What goes in the data–model covariance matrix?

5. What challenges do you see?

One key point that emerges when we look at real examples is the fact that in classic objec-
tive mapping, we impose the covariance matrices without knowing the specific data values. The
data–data covariance matrix and the data–model covariance matrix depend only on the spatial and
temporal separation between data but not on the actual data values.


