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Lecture 18: Mapping gappy data

Recap
We’ve been looking at objective mapping as a means to grid irregularly spaced data. But what

happens when data are extremely sparse, when we need to fill big holes in our sampling scheme?

The ocean heat content problem
When data are spaced more closely than a decorrelation scale, then objective mapping will

produce plausible, smoothly varying maps. But if data are sparse, we might be in trouble. Sparse
data are a common problem in oceanographic research, and especially in assessing average condi-
tions prior to the modern satellite and Argo observing error.

In class we reviewed three specific examples:
Ocean heat content. Ocean temperature data collected from long hydrographic lines are gappy

in space and time. Argo did a lot to remedy this problem, staring around 2005. But prior to that,
gaps pose real challenges. Boyer et al (2016) provide a nice review of strategies. Among them

1. Levitus et al, 2000, carried out a straightforward mapping, replacing data gaps with clima-
tology. The approach is entirely consistent with best practices in objective mapping—let
the map revert to the mean when update data are not available. But since climatology is
invariant, and much of the ocean is unsampled, this means that many locations have mapped
values equivalent to the mean. The resulting trend risks looking small, since no data implies
a zero or small trend.

2. Other strategies (e.g. Ishii et al, 2006 or Gouretski et al, 2012) have tried other strategies
for optimizing mapping scales to vary mapping scales and try to fill gaps in the data more
completely.

3. Willis et al, 2003, used the covariance between sea surface height anomalies from altimetry
and subsurface variability measured by Argo to gain global information. This allowed them
to fill gaps across the entire data record, albeit only during the altimeter era.

4. PMEL followed a strategy similar to Willis et al, not using altimeter data but assuming that
at any give point in time, regions without data should have an anomaly similar to the mean
anomaly in regions that were sampled. This allowed them to fill in unsampled areas to
produce a consistent result.

5. The UK Met Office used a damped persistence appoach, setting an intial guess equal to the
monthly climatology plus a damped term eachal to a damping coefficient α = 0.9 (chosen
experimentally) multiplied by the difference between the previous month’s anomaly and the
previous month’s climatology. This damped correction prevents the background guesses
from reverting too strongly to zero.

6. Domingues et al, (2008) used altimeter data to define overall patterns of variability, defined
by the first 30 Empirical Orthogonal Functions. They then projected observed variability
onto these EOFs to extend the analysis back in time prior to the start of the satellite era.
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While the results of these strategies are not wildly different, the differing strategies clearly account
for differences in estimates of global heat content increase and global sea level rise.

These aren’t the only options. Notably, in the deep ocean, Purkey and Johnson (2010) assesed
warming in basins deeper than 4000 m by assuming that any observations collected in the basin
were more or less represenative of the entire deep basin.

Mapping pCO2 with a neural net. While the ocean heat content mapping strategies are aligned
with fairly traditional objective mapping and regression approaches, there are other options. In
recent years, a plethora of tools have emerged to use machine learning strategies to map irregularly
sampled data. One prime example involves neural net based approaches (e.g. Landschützer et
al, 2013) to define biogeochemical provinces and to map CO2 concentrations in regions that are
poorly sampled by other data.

Mapping O2 with random forest. In class we looked at the random forest approach used by
Giglio et al (2018) to map sparsely sampled O2 measurements by filling gaps using more densely
sampled temperature and salinity. Random forest uses a non-linear regression approach that subdi-
vides the data based on different criteria (e.g. temperature exceeding a certain threshold, or salinity
less than some threshold) in order to develop an algorithm to determine how to fill missing values.
A jupyter notebook for this is posted separately from these notes. Matlab routines also exist for
these, but I have not written out examples.
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