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ABSTRACT

The equilibrium of an idealized flow driven at the surface by wind stress and rapid relaxation to non-
uniform buoyancy is analyzed in terms of entropy production, mechanical energy balance, and heat trans-
port. The flow is rapidly rotating, and dissipation is provided by bottom drag. Diabatic forcing is transmitted
from the surface by isotropic diffusion of buoyancy. The domain is periodic so that zonal averaging provides
a useful decomposition of the flow into mean and eddy components. The statistical equilibrium is charac-
terized by quantities such as the lateral buoyancy flux and the thermocline depth; here, scaling laws are
proposed for these quantities in terms of the external parameters. The scaling theory predicts relations
between heat transport, thermocline depth, bottom drag, and diapycnal diffusivity, which are confirmed by
numerical simulations. The authors find that the depth of the thermocline is independent of the diapycnal
mixing to leading order, but depends on the bottom drag. This dependence arises because the mean
stratification is due to a balance between the large-scale wind-driven heat transport and the heat transport
due to baroclinic eddies. The eddies equilibrate at an amplitude that depends to leading order on the bottom
drag. The net poleward heat transport is a residual between the mean and eddy heat transports. The size
of this residual is determined by the details of the diapycnal diffusivity. If the diffusivity is uniform (as in
laboratory experiments) then the heat transport is linearly proportional to the diffusivity. If a mixed layer
is incorporated by greatly increasing the diffusivity in a thin surface layer then the net heat transport is
dominated by the model mixed layer.

1. Introduction

In this study, we examine the role of mesoscale ed-
dies and small-scale mixing in the poleward transport of
heat, and in the maintenance of the oceanic ther-
mocline. As an idealized model with some relevance to
the Antarctic Circumpolar Current (ACC), we focus on
domains that are periodic in the zonal direction. Forc-
ing is provided by a surface wind stress �s(y) and by
relaxation of the surface temperature toward a pre-
scribed distribution Ts(y). If �sdTs/dy � 0 (as in Fig. 1),
then the wind stress generates an Ekman flow and an
associated zonal-mean meridional circulation, (�, w),
which tends to overturn the isopycnals. The meridional
heat transport produced by this zonal-mean flow trans-
ports heat up the gradient of Ts(y); that is, the heat flux
(�T, wT) is cooling where Ts(y) is a minimum and
warming where Ts(y) is a maximum.

It is easy to show using an entropy production argu-
ment that a steady wind stress such as �s(y) cannot
coerce the ocean into transporting heat up the gradient
of Ts(y) (see section 5). Thus the divergence of the
mean heat flux (�T, wT) must be canceled by a larger
divergence1 of the eddy heat flux, (��T�, w�T�), so that
the total ocean heat transport, mean plus eddy, is from
the maximum of Ts to the minimum. Several recent
studies have shown in detail how this cancellation oc-
curs (Karsten et al. 2002; Marshall et al. 2002; Marshall
and Radko 2003; Gallego et al. 2004; Kuo et al. 2005).

Using theories and diagnostics inspired by the trans-
formed Eulerian mean formulation of Andrews and
McIntyre (1976), these earlier works show that the
competition between the mean heat flux and the eddy
heat flux sets the structure of the zonally averaged tem-
perature field T(y, z). A key ingredient, emphasized by
Kuo et al. (2005), is that beneath a surface diabatic
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1 Only the divergences cancel: there is not pointwise cancella-
tion between (�T, wT) and (��T�, w�T�). In the bulk of the ther-
mocline the mean flux is vertical while the eddy flux lies along
T(y, z) surfaces.
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layer (hereinafter SDL) the flow is nearly adiabatic,
and the eddy fluxes of buoyancy lie along mean buoy-
ancy surfaces; that is, the buoyancy flux is “skew.” In
these adiabatic interior layers, the potential vorticity is
homogenized on mean buoyancy surfaces. The depth of
the adiabatic homogenized thermocline is controlled by
baroclinic instability and is largely independent of
small-scale mixing; that is, independent of the mixing
produced by breaking internal gravity waves.

In view of these important advances it seems that the
adiabatic interior is well understood. However, it is the
diabatic terms that determine the net heat transport
(Andrews and McIntyre 1976), and in the ocean they
are related to small-scale mixing. The dependence of
small-scale mixing on the diffusivity � is unknown be-
cause mixing depends on the vertical scale developed
by temperature near the surface. The dependence of
the heat flux on diffusivity and other nonconservative
processes has not been discussed in the ACC literature
cited above. We find that variations in diapycnal mixing
affect the large-scale heat transport of simulations such
as that in Fig. 1. We furthermore obtain a strong de-
pendence of the net heat transport on the bottom drag.

This result is not obvious since bottom drag affects di-
rectly the momentum budget, but not the heat balance.
This sensitivity indicates that the size of the small re-
sidual between the mean and the eddies is crucially
controlled by both bottom drag and diapycnal mixing.

Karsten et al. (2002) and Marshall et al. (2002) have
emphasized that the cancellation between � · (�T, wT)
and � · (��T�, w�T�) is nearly complete. Kuo et al.
(2005) show that the small residual circulation is almost
zero below the SDL. Thus it is certainly possible that
small-scale mixing has little effect on the depth of the
main thermocline, but nonetheless plays an essential
role within the SDL. Moreover, it is the depth of the
SDL, rather than the depth of the thermocline, which
determines the total efficacy of ocean heat transport.
Consequently baroclinic eddy closure assumptions,
which make no reference to small-scale mixing and bot-
tom drag, can have little utility outside of the limited
arena in which they are calibrated.

The role of diapcynal mixing and of a surface mixed
layer in the large-scale heat transport were systemati-
cally examined by Gallego et al. (2004) in a zonally
averaged model of the ACC, where eddy fluxes were

FIG. 1. (top) The zonally and time-averaged buoyancy, b(y, z), for Run 2 is shown in colors. The contour interval
is 2 � 10�3 m2 s�1. The large scale Ertel potential vorticity, bz(y, z), is shown in black. Below a surface trapped
region, b and bz are coincident. (bottom) The zonal mean streamfunction, �(y, z) is contoured (solid are positive
and negative are dashed) and the contour interval is 2.1 � 10�1 m2 s�1.
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parameterized rather than computed. In that study the
dependence of the meridional heat transport on the
diapycnal diffusivity lead to very small residual heat
transport (�0.1 PW) using observed values of mixing
(1 � 10�5 m2 s�1). However, the meridional heat trans-
port could be substantially enhanced by lateral trans-
port in the model’s mixed layer. Using models that re-
solve rather than parameterize eddies, we find qualita-
tively similar results to Gallego et al. (2004), although
the quantitative dependence on parameters differs.

Our goal here is to obtain scaling estimates for the
thermocline depth, the depth of the SDL, and for the
net heat transport in terms of the external parameters
(e.g., small-scale mixing, the strength of �s, the rotation
rate). Although we systematically explore only the de-
pendence on the diapycnal diffusivity and the bottom
drag (the main source of energy dissipation), this is
enough to constrain our scalings arguments.

2. The model

The model is

Du

Dt
� f� 	 px 
 � · ��u 	 �s

� 1�s�s � r�bu,

D�

Dt
	 fu 	 py 
 � · ��� � r�b�,

pz 
 b,
Db

Dt

 � · ��b, and

� · v 
 0. �1�

The velocity is v 
 (u, �, w) and the vertical coordinate
is �H � z � 0, where H is the constant depth. The
horizontal coordinates are 0 � x � Lx and 0 � y � Ly.
The buoyancy is b 
 gT.

We examine both a doubly periodic geometry, where
periodicity is imposed in both the latitudinal as well as
the longitudinal directions, and a channel geometry,
where solid boundaries confine the flow meridionally.
Although neither of these geometries apply realistically
to the Southern Ocean, they both ensure that the sys-
tem has closed budgets for mass, mechanical energy,
and heat (as in Karsten et al. 2002; Kuo et al. 2005).
Other approaches, directed at modeling the Southern
Ocean (Marshall and Radko 2003; Olbers and Visbeck
2005), use an open boundary on the equatorward side
of the domain. With an open lateral boundary it is dif-
ficult to relate directly the key processes maintaining
the mean circulation and stratification to the surface
heat fluxes. Thus, for an idealized process model we
prefer to use a closed system and balance global bud-
gets in terms of surface inputs and outputs.

a. Momentum forcing and bottom drag

The momentum equation is forced by a zonal surface
stress concentrated near the surface z 
 0. This wind
stress is modeled with the body force in (1):
��1

s �s(z)�s(y)x̂. Here �s(y) is a specified pattern of wind
stress and the constant �s K H is the depth of the sur-
face layer. We use a sinusoidal wind profile

�s�y� 
 �� sin�2�y�Ly�. �2�

The nondimensional surface function,

�s�z� ��2
�

e�z2�2�s
2
, �3�

tapers the body force smoothly to zero in the ocean
interior. We use �s 
 40 m. The surface function �s is
normalized so that

�
�H

0

�s�z� dz 
 �s. �4�

This normalization ensures that the total flux of zonal
momentum into the water column is �s(y). Distributing
the wind stress over a surface forced layer, with speci-
fied thickness �s, relieves the model from resolving Ek-
man layers.

The bottom stress is also represented as a body force
� r�b(z)(ux̂ 	 � ŷ) in (1). This bottom drag force is
applied over a layer of thickness �b K H using the
bottom concentrated function

�b�z� �
H

�b
�2

�
e��z	H�2�2�b

2
. �5�

We use �b 
 40 m. The time scale r�1 controls the
strength of the bottom drag and is the spindown time of
the barotropic velocities. Because the stresses are mod-
eled as interior sources and sinks, the top and bottom
boundary conditions are �uz 
 ��z 
 0.

b. Buoyancy forcing

The thermal forcing at the surface z 
 0 is applied
with the restoring boundary condition

�*bz�x, y, 0, t� 
 bs�y� � b�x, y, 0, t�, �6�

where bs(y) is the prescribed value toward which the
surface buoyancy is restored; we use the sinusoidal pro-
file:

bs�y� 
 �B cos�2�y�Ly�. �7�

The relaxation rate in (6) is controlled by the rough-
ness length �*. The roughness length is related to the
diffusivity by the relation �* 
 �(0)Cp�/�, where � (W
m�2 K�1) is the bulk transfer coefficient of heat (Haney
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1971), Cp is the specific heat, and � the density of water.
Here we assume that � is a constant. Using the typical
value, � 
 40 W m�2 K�1, we find that 1 � �* � 100 m
for 1 � 10�5 � �(0) � 1 � 10�3 m s�2. In finite-
difference models, the surface boundary condition (6)
is equivalent to relaxing the buoyancy in the top model
layer, of thickness dz1, to bs(y) on a time scale trlx 

dz1�*/�(0).

The ratio of �* to the depth of the thermocline de-
termines whether the surface boundary condition (6) is
effectively fixed flux or fixed buoyancy. The fixed
buoyancy limit is obtained by taking �* 
 0. For heat,
which is in turn related to temperature, this is the more
relevant approximation.

Some earlier studies (Karsten et al. 2002; Kuo et al.
2005) impose the buoyancy flux over part of the ocean
surface. This fixed-flux limit is obtained if both �* and
�(0)bs become large with the ratio �(0)bs(y)/�* fixed to
the surface flux value. In this case the third term in (6)
is negligible and the surface flux, �(0)bz(x, y, 0, t), is
proportional to bs(y). Equivalently, in a finite-differ-
ence formulation, the fixed-flux limit is obtained by
taking the limit of trlx → �, while keeping the ratio
bsdz1/trlx fixed. By making �* a function of horizontal
position one can encompass variable boundary condi-
tions such as those in the experiment of Karsten et al.
(2002). The bottom boundary condition is no flux,
�bz(x, y, �H, t) 
 0.

c. Small-scale mixing

The eddy diffusivities �(z) and �(z) represent small-
scale mixing processes such as breaking internal gravity
waves and mixed layer turbulence. As a simple model
of enhanced diffusivity in the surface layer we use

��z� 
 �a 	 �s�s�z�, �8�

where �s(z) is the Gaussian surface function in (3); �(z)
represents small-scale mixing processes, such as break-
ing internal gravity waves and mixed layer turbulence.
The constant �a is the small abyssal diffusivity and �s is
the surface diffusivity that maintains the mixed layer.
For the viscosity we take �(z) 
 P�(z), where the con-
stant P is a Prandtl number.

d. Method of solution

The problem formulated in the previous section is
solved with two different models. The first model is a
finite difference primitive equation model in a doubly
periodic domain, described in Cessi and Fantini (2004).
The model resolves the vertical structures of �s and �b

defined in (3) and (5). For all but one (Run 5 in Table
1) simulations with this model we take �* 
 0, so a fixed
surface buoyancy condition is used.

The second model is the Massachusetts Institute of
Technology (MIT) Ocean General Circulation Model
(MITgcm; Marshall et al. 1997a,b), in a channel con-
figuration. For this model, ��1

s �s 
 (dz1)�1�k,1 and �b 

(dzN)�1H�k,N, where dz1and dzN are the model’s
depths for the top and bottom layer, respectively, and
�k,J is a Kronecker delta with unit value for level J and
zero elsewhere. In other words, the wind and buoyancy
forcing and the dissipation are concentrated in the top
and bottom model level, respectively.

For this model �* is finite, but we typically operate in
a regime where �* is much less than the vertical scale of
the buoyancy. This is the regime where typical values
are trlx 	 10 days (using dz1 
 10 m), and this is the
fastest time scale in the mean buoyancy equation.

TABLE 1. The parameter values for the primitive equation model in the doubly periodic configuration are H 
 2000 m, Lx 
 2 �
106 m, Ly 
 4 � 106 m, f 
 10�4 s�1, � 
 10�4 m2 s�2, B 
 2 � 10�2 m s�2, and P 
 25, �x 
 �y 
 10.417 km.

Run �a (m2 s�1) �s (m2 s�1) �
*

(m) R (s�1) H (m) l (m) D (m2 s�1) Symbol

1 8 � 10�4 0 0 7.0 � 10�7 499 79 256 573 �
2 8 � 10�5 0 0 2.2 � 10�7 213 149 885 164 �
3 2 � 10�5 0 0 1.1 � 10�7 146 165 231 84 �
4 2 � 10�5 0 0 2.2 � 10�7 180 131 739 71 �
5 8 � 10�5 0 7.9 2.2 � 10�7 221 149 002 151 �

6 8 � 10�4 6.3 � 10�2 0 7.0 � 10�7 611 75 034 804 	
7 8 � 10�5 6.3 � 10�3 0 2.2 � 10�7 307 119 157 414 	
8 4 � 10�5 3.1 � 10�3 0 1.6 � 10�7 279 129 223 325 	
9 2 � 10�5 1.6 � 10�3 0 1.1 � 10�7 265 143 524 262 	

10 8 � 10�4 1.6 � 10�3 0 7.0 � 10�7 563 86 030 634 �

11 8 � 10�5 1.6 � 10�3 0 2.2 � 10�7 307 122 837 312 �

12 4 � 10�5 1.6 � 10�3 0 1.6 � 10�7 290 125 445 263 �

13 8 � 10�4 5.1 � 10�2 0 1.0 � 10�6 650 79 696 745 �

14 8 � 10�5 6.3 � 10�3 0 4.5 � 10�7 377 105 185 342 �

15 4 � 10�5 3.1 � 10�3 0 2.2 � 10�7 312 121 776 278 �

16 2 � 10�5 1.6 � 10�3 0 2.2 � 10�7 320 119 384 207 �
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In summary, both models operate in or near the fixed
surface buoyancy regime. In the oceanographic context,
this is a more relevant regime than the fixed flux limit,
when the tracer of interest is temperature (or heat). As
discussed in Stommel (1961), the relaxation time for
salinity is much longer than that for heat. Thus, the
fixed-flux limit would be relevant for determining the
vertical distribution of salinity.

3. The mean circulation and eddy buoyancy fluxes

We use an overbar to denote a zonal and time aver-
age:

A�y, z� � �
0

t
 �
0

Lx

A�x, y, z, t�
dx

Lx

dt

t

. �9�

Here t� is sufficiently long to remove the unsteadiness
forced by eddy fluctuations. Angle brackets denote a
volume and time average,

�A� � �
0

t
 �
V

A�x, y, z, t�
dV

V

dt

t

, �10�

where the total volume of the model ocean is V 

LxLyH. A prime denotes the departure from the zonal
and time average: A�(x, y, z, t) � A(x, y, z, t) � A(y, z).

a. The mean circulation

Given b(y, z), one can obtain approximations to the
zonal mean flow, (u, �, w), by solving

� f � � �s
� 1�s�z��s�y� � r�b�z�u,

f u 	 py � 0,
pz 
 b, and

�y 	 wz 
 0. �11�

Above, the Reynolds stresses, (u�)y and so on, are ne-
glected. This is justified because the scales of motion,
including eddies, are larger than the deformation ra-
dius. The bottom drag in the meridional momentum
equation, r�b�, is also neglected.

Integrating the zonal momentum equation from bot-
tom to top we get

r�
�H

0

�b�z�u�y, z� dz 
 �s�y�. �12�

The left-hand side is simplified by replacing u(y, z) with
u(y, � H). Using the normalization of �b(z) in (4), one
then has

ub�y� �
�s�y�

rH
, �13�

where ub(y) � u(y, � H) is the zonal mean velocity at
the bottom. With a flat bottom, the stress imposed at
the top is balanced by frictional stresses at the bottom.
This is certainly not the case in the oceanographic con-
text, where form drag by bottom relief is the dominant
form of momentum transfer to the solid earth. How-
ever, the zonal momentum budget will not be used in
our scaling arguments.

The complete zonal mean velocity is then obtained
by integrating the thermal wind relation vertically. One
finds:

u�y, z� �
�s�y�

rH
�

1
f ��H

z

by�y, ẑ� dẑ. �14�

Figure 2 shows u for a typical calculation (Run 2 in
Table 1): the barotropic component of the flow—the
first term on the rhs of (14)—greatly exceeds the baro-
clinic component. We have verified that (14) is an ac-
curate approximation for our numerical results.

Next, we obtain the mean meridional circulation. In-
troducing the zonal mean streamfunction �(y, z), de-
fined by (�, w) 
 (��z, �y), we find from (11) that

��y, z� � �
1
f �z

0

��s
� 1�s�ẑ� � H�1�b�ẑ�� dẑ�s�y�.

�15�

Outside the top and bottom layers, this simplifies to
� � �f�1�s(y), or

� 
 0, w � wEk�y� � �
1
f

d�s

dy
. �16�

Above, wEk(y) is the Ekman pumping produced by the
curl of �s(y).

b. Eddy buoyancy fluxes in the adiabatic interior

In the adiabatic interior the Ertel potential vorticity
is homogenized (Kuo et al. 2005), and this implies that
the eddy quasigeostrophic potential vorticity is zero—
see the appendix and also Marshall et al. (1993). Addi-
tionally the scale of the eddies is larger than the Rossby
radius. Thus from (A10) in the appendix:

��b� � �y�bz. �17�

Beneath the SDL the flow is almost adiabatic and con-
sequently the eddy fluxes lie in the mean buoyancy
surfaces, or

��b� by 	 w�b� bz � 0. �18�

Combining (17) and (18) we obtain

� ��b�

w�b�
� � � 0 

� 0��by

bz
�. �19�
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Thus the function �(y) in (17) is identified as the inte-
rior antisymmetric eddy diffusion; �(y) is also the
“quasi Stokes streamfunction” of Plumb and Ferrari
(2005).

In the adiabatic interior layers � 
 0 and the mean
buoyancy equation reduces to

���b��y 	 �w�b��z 	 wbz � 0, �20�

where w � wE(y) 
 �f�1d�s/dy is the Ekman velocity
in (16). Substituting (19) into (20) gives

�y� � f�1�s�y�. �21�

The rhs of (21) is just ��, so � 	 � � 0. Thus, as
emphasized by earlier investigators, within the adia-
batic interior there is almost total cancellation between
the mean streamfunction and the quasi Stokes stream-
function (Karsten et al. 2002; Marshall et al. 2002; Gal-
lego et al. 2004; Kuo et al. 2005). This cancellation is
quite apparent when the eddy and mean component of
the buoyancy fluxes are compared. Figure 3 shows the
vertically integrated meridional fluxes (top) and the
horizontally integrated vertical fluxes (bottom). For
both components, the net buoyancy flux is much
smaller than the separate mean and eddy components,
which largely cancel except within the SDL.

The vanishing of the residual streamfunction, � 	 �,

is a consequence of the homogenization of potential
vorticity on isopycnals and the adiabaticity of the inte-
rior region. Both conditions are found to hold in more
complicated models of the Antarctic Circumpolar Cur-

FIG. 2. The time- and zonally averaged zonal flow, u, for run 2 is contoured as a function of y and z.
The contour interval is 0.01 m s�1 and negative values are dashed.

FIG. 3. (top) The vertically integrated meridional transport of
buoyancy is plotted as a function of y (thin solid) for run 2 in
Table 1. The transports by the zonally averaged circulation
(dashed) and by the eddies (thick solid) are also shown, and they
are much larger than their sum. (bottom) The meridionally inte-
grated vertical transport of buoyancy is plotted as a function of z
(thin solid). The transports by the zonally averaged circulation
(dashed) and by the eddies (thick solid) are also shown, and they
are much larger than their sum except in the mixed layer.
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rent that include realistic forcings and geometry (e.g.,
Marshall et al. 1993). From another perspective, the
result, ��b�/bz 
 �s/f, is Johnson and Bryden’s (1989)
momentum balance in which the eddy form stress trans-
mits eastward momentum downward.

c. The mean stratification

A popular approach to determining the mean strati-
fication b(y, z) is to follow Green (1970) and posit an
eddy closure relation ��b� 
 ��eddyby (Johnson and
Bryden 1989; Karsten et al. 2002; Marshall and Radko
2003; Olbers and Visbeck 2005). Various prescriptions
for �eddy have been used in the literature. Combining
this eddy diffusion closure with the relations in the pre-
vious section leads to a first-order hyperbolic equation
for b. With the surface boundary condition in (7) and a
constant �eddy, the solution of this hyperbolic equation
produces a quite unrealistic mean stratification. Thus,
instead of pursuing this approach we propose the ex-
ponential thermocline

bint�y, z� � � B 	 A�y�ez�h �22�

as a phenomenological representation of the mean
stratification in the adiabatic interior. With suitable ad-
justment of the thermocline depth h and of the function
A(y), the exponential model (22) provides a good fit to
the observed interior stratification.

Although the exponential model has little theoretical
basis, it does have several features that make bint(y, z)
useful for scale analysis. First, �zbint 
 h�1(bint 	 B) so
that bint(y, z) has homogenized potential vorticity. Sec-
ond, bint(�H, z) 
 �B; that is, the fluid is unstratified
beneath the densest point on the surface.

The function A(y) is determined by applying the sur-
face boundary condition in (6). However, for �* � h,
the boundary condition cannot be applied directly to
the expression (22) because there is a correction in the
SDL, which changes the surface derivative of b, al-
though the correction to the function itself is small. We
will have more to say about this in section 7. In the limit
of �* K h, the surface boundary condition can be ap-
plied without knowledge of the SDL correction, and to
a good approximation A(y) 
 bs 	 B.

4. The mechanical energy balance

To obtain a scaling for the thermocline depth, and for
the net heat transport, we first need to establish some
results concerning the mechanical energy balance.

Dotting v into the momentum equations and averag-
ing over the volume gives the global kinetic energy bud-
get:

�s
� 1��s�su� 	 �wb� 
 r��b|v|2� 	 ����v�2�. �23�

Following Paparella and Young (2002) we obtain a
more convenient expression for the total conversion
between kinetic and potential energy, �wb�. Multiplying
the buoyancy equation by z and volume averaging we
obtain

�wb� 
 ��bz�. �24�

The no-flux bottom boundary condition,

���H�bz�x, y, �H, t� 
 0,

is used crucially in the proof of (24). Equation (24) shows
that the two terms on the rhs of �wb� 
 �wb 	 w�b��
almost cancel, leaving a small positive residual of order �.

Using (24) to eliminate �wb� in (23), the mechanical
energy equation can be rewritten exactly as

�s
� 1��s�su� 	 ��bz� 
 r��b|v|2� 	 ����v�2�. �25�

The first term on the rhs of (25) is the dissipation of
mechanical energy by bottom drag. This is the main
sink of mechanical energy and is always larger than the
dissipation of mechanical energy by internal friction,
��||�v||2� 
 ��(u2

x 	 u2
y 	 u2

z 	 �2
x 	 �2

y 	 �2
y)�. Thus, we

neglect the final term in (25) and the dominant balance
in the mechanical energy budget is

H�1��su0� � r�|vb|2�, �26�

where u0(y) � u(y, 0) is the zonal mean flow at the top,
z 
 0, and vb(x, y, t) � v(x, y, �H, t) is the total (mean
plus eddy) bottom velocity.2

In passing from (25) to (26) we also neglected the
conversion from potential energy, that is, the term
��bz�. To appreciate this approximation we can make
some order-of-magnitude estimates. Typical values for
the wind work are

H�1��su0� 
 O�2.5 � 10�8 m2 s�3�, �27�

where we have used �s � 10�4 m2 s�2, u0 � 0.5 m s�1

and H 
 2000 m. To estimate the conversion from po-
tential energy, take � � 10�4 m2 s�1 and bz � 10�6 s�2

so that

��bz� 
 O�10�10 m2 s�3�. �28�

Thus the nonuniform surface buoyancy bs(y) does not
provide a substantial source of mechanical energy in
(26): the total mechanical energy balance shows that
the flow is entirely driven by the wind work H�1��su0�.

From a wider perspective, this illustrates the hypoth-

2 In passing from (25) to (26) we have also made the mild
approximation of replacing v with surface and bottom values
within the relevant �s and �b boundary layers.
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esis of Munk and Wunsch (1998) that the main physical
energy inputs to the ocean circulation are wind stress
and tides. Dewar et al. (2005, manuscript submitted to
J. Mar. Res.) have recently argued that biology provides
a third energy source comparable in order of magnitude
the physical sources identified by Munk and Wunsch.
In these energy budgets, conversion from potential en-
ergy, that is, �wb�, is inconsequential because of the
identity (24) (Paparella and Young 2002).

Now from (14), the zonal mean flow at the surface is

u0 � ub �
1
f ��H

0

by�y, z� dz, �29�

where ub(y) � �s(y)/rH is the zonal mean flow at the
bottom. Thus the wind work is

��su0� � rH�ub
2� � ��

�H

0

b�y, z� dz � wE�y�� .

�30�

Above, wE(y) 
�f�1d�s/dy is the Ekman velocity. The
final term in (30), which is much smaller than the other
two, is the “useful wind work.” This is the net energy
extracted from the wind after bottom drag on u—that
is, rH�u2

b�—dissipates most of the wind work. This small
amount of power is all that is available to drive the
baroclinic eddies against bottom drag.

Substituting (30) into (26) we obtain3 the key result

�H�1��
�H

0

b�y, z� dz � wE�y�� � r�|u�b|2�. �31�

Thus the dominant balance in (31) is between the useful
wind work and the bottom dissipation by the eddies.
Later we use this approximation to estimate the mag-
nitude of the barotropic eddy velocities in terms of b.

Because of the large numerical cancellation in pass-
ing from (26) to (31), it is important to verify that the
conversion from potential energy, ��bz� is still much
smaller than the remaining terms in (31). Using Ly �
6 � 106 m as the meridional scale of �s(y), and the
numerical values from our earlier estimates, we find
that the order of magnitude of the useful wind work is

H�1��
�H

0

b�y, z� dz � wE�y�� 
 O�10�9 m2 s�3�.

�32�

The useful wind work estimated above is smaller by a
factor of 25 than the total wind work estimated in (27),

but still greater by a factor of 10 than the conversion
from potential energy in (28) [and (28) uses a gener-
ously large �].

The balance in (31) is the situation described by Gill
et al. (1974): on the left-hand side available potential
energy is generated by Ekman pumping. This energy is
transferred via baroclinic instability to mesoscale ed-
dies. The right-hand side of (31) is the damping of the
baroclinically driven eddies by bottom drag. Notice that
in order to understand the energetics of the eddy field
one can deal with the mean Eulerian velocity, wE(y),
rather than the residual velocities obtained from the
transformed Eulerian mean formulation.

An alternative derivation of useful wind work

To better understand (31) we now give a second deri-
vation, which applies in an arbitrary geometry, includ-
ing bottom topography and nonzero �. This derivation
does not rely on the explicit expression of the mean
zonal wind given by (13). The first point to note is that
(24) is unchanged provided that there is no flux of
buoyancy through the bottom (in this more general
context angle brackets denote a total volume and time
average over the basin).

Because zonal averaging is no longer possible, one
makes a Reynolds decomposition v(x, y, z, t) 
 v(x, y, z)
	 v�(x, y, z, t) based on a time average and the assump-
tion of a spectral gap. One readily obtains the mean,

�
i
1,2

�
j
1,3

�u�iu�j�xj
ui� 	 �s

� 1��s�su� 	 �wb� 
 r��b|u|2�,

�33�

and eddy,

��
i
1,2

�
j
1,3

�u�iu�j�xj
ui� 	 �w�b�� 
 r��b|v�|2�, �34�

contributions to the energy budget. In the Reynolds
stress terms, we have used the notation (x1, x2, x3) 

(x, y, z) and (u1, u2, u3) 
 (u, �, w). Notice that triple
correlation terms vanish under the total volume aver-
age within angle brackets and that, summing (33) and
(34), we recover the total energy budget in (23).

The first terms on the lhs of (33) and (34) are the
Reynolds stress conversions between the mean and the
eddies. To the extent that Reynolds stress work is neg-
ligible in the eddy equation we obtain �w�b�� �
r��b|v�|2�. Using (24), �w�b�� � ��wb� we obtain

��wb� � r��b|v�|2�. �35�
3 We neglect the small amount of energy dissipated by bottom

drag on �.
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In this general context4 we cannot make the final step
that w(x, y, z) � wE(y), so we do not totally recover
(31) from (35). Yet the derivation of (35) is useful as an
illustration of the two assumptions: (i) the existence of
a spectral gap and (ii) negligible Reynolds stress work
in the eddy energy budget, which are required to justify
the balance between generation of APE and eddy dis-
sipation proposed by Gill et al. (1974).

5. Entropy production and heat transport

In this section we develop some integral constraints
on large-scale heat flux. All of our deductions are ki-
nematic in the sense that we use only the buoyancy
equation

Db

Dt

 � · ��b, �36�

and the boundary condition (6). Thus the results apply
to both the model formulated in the previous section
and to laboratory experiments such as those of Karsten
et al. (2002). The main difference in interpretation is
that in the numerical model �(z) parameterizes small-
scale mixing, whereas in the laboratory experiment the
constant � is the molecular diffusion of heat.

With constant salinity, as in the present model, the
meridional heat flux is �0cpQ(y)/(g), where g is grav-
ity,  is the coefficient of thermal expansion, and Q(y)
is defined by

HQ�y� � �
�H

0

�b � �by dz. �37�

Averaging the buoyancy equation (36) in the zonal and
vertical directions gives

H
dQ

dy

 F0. �38�

On the right-hand side above,

F0�y� � �0bz0, �39�

where subscript 0 indicates evaluation at the surface
z 
 0, for example; bz0 � bz(x, y, 0, t). The heat flux
between the atmosphere and the ocean (watts per
square meter) is �CpF0/(g).

To obtain the entropy production budget, multiply
(36) by b and average over the volume. Using the re-
storing boundary condition in (6), the result is

� 
 H�1�bsF0�, �40�

where

� � ��|�b|2� 	 �0
�*
H

�bz0
2 �. �41�

Above, angle brackets represent the volume–time av-
erage defined in (10) and  is regarded as the total
production of entropy by small-scale mixing processes.
The first term on the rhs of (41) is the interior produc-
tion of b2, the model analog to the entropy production
by molecular diffusion.5 The final term in (41) is the
production of b2 associated with the restoring surface
boundary condition. In the fixed-temperature limit
(�* → 0), the surface production vanishes. In the fixed-
flux limit (�* → �, with fixed �0bs/�*) the surface pro-
duction also vanishes.

Using (38) to eliminate F0(y) from (40), we obtain a
key constraint on the unknown flux function Q(y):

�Q
dbs

dy � 
 �� � 0. �42�

The right-hand side of (42) is negative so that on aver-
age the flux Q(y) and the gradient of the surface buoy-
ancy forcing, dbs/dy, have opposite signs. Thus the wind
stress cannot coerce the ocean to transport heat up the
surface temperature gradient everywhere.

Our goal is to relate the flux function Q(y) to the
imposed surface forcing bs(y) and �s(y). The simplest
assumption is a diffusive closure

Q � �D
dbs

dy
. �43�

This heuristic argument combined with (42) motivates
the definition of the large-scale diffusivity D as

��dbs

dy �2�D � �. �44�

We use D defined above as a convenient index of the
heat transport of the ocean. In Fig. 4 we compare Q(y)
to �Ddbs/dy for one of our computations (Run 2 in
Table 1). The agreement between the computed and
diagnosed heat fluxes is good except that the former is
concentrated in regions narrower than those predicted
by the diffusive closure, a feature shared by all compu-
tations. We emphasize that D defined in (44) is a mea-
sure of the bulk residual transport in the system. Here
D is a residual quantity, and will generally be much less

4 With � and basin geometry, the large-scale vorticity balance
�� 
 fwz implies that w depends on z.

5 An alternative interpretation, which avoids mentioning en-
tropy, is that (40) is the production–dissipation balance of b2 stuff.
This is similar to familiar buoyancy variance arguments, although
(40) is the budget for the total b2, rather than just the buoyancy
variance b�2.
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than the baroclinic eddy diffusivity. Because (40) re-
quires a two-dimensional surface integral, rather than a
three-dimensional volume integral, it is more conve-
nient to diagnose  and D from the entropy power
integral in (40), rather than the definition in (41).

6. The adiabatic interior and the thermocline
depth

a. A scale estimate of the thermocline depth h

We denote the depth of the homogenized, adiabatic
thermocline by h and relate h to other variables by
assuming that all three terms in the buoyancy equation,

���b��y 	 �w�b��z 	 wbz � 0, �45�

have the same order of magnitude. Several earlier in-
vestigators have assumed that (w�b�)z is negligible so
that there is further simplification in (45) to a two-term
balance between (��b�)y and wbz [see the discussion
surrounding (8) in Kuo et al. (2005)]. Thus we begin by
explaining why we believe that there must be a full
three-term balance.

Integrating (45) across the domain, the divergence
(��b�)y vanishes and using (16) we obtain

d

dz �0

Ly

w�b� dy 
 �
0

Ly 1
f

d�s

dy
bz dy . �46�

The right-hand side is strongly nonzero and positive be-
cause both d�s/dy and bz are proportional to cos(2!y/Ly).
More fundamentally, the useful wind work on the left-
hand side of (31) is obtained if one multiplies (46) by

z and integrates over the volume of the fluid. Thus in
order to supply energy to the baroclinic eddies the right
hand side of (46) must be nonzero.

Earlier works, which neglect (w�b�)z in (45), assume
quasigeostrophic scaling so that bz is dominantly a func-
tion of z only. In this case the rhs of (46) would indeed
integrate to zero. However, we find that the amplitude
of the “basic stratification,”

b̃�z� � Ly
�1�

0

Ly

b�y, z� dy, �47�

is comparable to the meridional buoyancy differences
left in b(y, z) � b̃(z). The exponential model (22) illus-
trates this zonally averaged buoyancy structure: b(y, z)
has the same range of values in the vertical and meridi-
onal directions. Thus, although the Rossby number is
small, quasigeostrophic scaling cannot be applied to the
zonally averaged buoyancy, while it can be applied to
the eddies (e.g., Pedlosky 1987, section 6.24). These
arguments, which apply with equal force to a closed
cylindrical geometry such as Karsten et al. (2002), show
that the vertical flux w�b� must be important in (45) to
balance the horizontal integral of wbz.

To apply scale analysis, we must find an independent
scaling ��b�, and thus we introduce

V2 � ���b
2�, �48�

where ��b(x, y, t) is barotropic component of ��(x, y, z, t).
We use V as an estimate of a typical eddy velocity. As
argued more extensively in Cessi and Fantini (2004),
the horizontal advection of buoyancy is dominated by
the barotropic component of the velocity. This is be-
cause, by thermal wind balance, the baroclinic compo-
nent of the horizontal velocity is largely orthogonal to
the buoyancy gradient. We also introduce the mixing
length, l, defined by

l2 � �b�2���by
2�. �49�

Using l and the domain scale Ly there is a scale sepa-
ration parameter

� � l�Ly. �50�

Here l is the length over which the changes in b� are
comparable to those in b; that is, Ly |�b�| � B, where B
is strength of the surface buoyancy forcing in (7).

The mean buoyancy and mean vertical velocity are
estimated as

b � B and w �
�

fLy
, �51�

where � and B are the surface forcing parameters in (2)
and (7). Because b and b� share the same vertical scale,

FIG. 4. The vertically integrated meridional transport of
buoyancy, HQ( y), (solid) is compared with the diffusive closure,
�HDdbs/dy (dashed) for run 2 in Table 1. Also plotted is the
surface flux F0 (thin solid), which should equal HQ( y) in statis-
tical steady state.

1886 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36



namely, h, balancing the second and third terms in (20)
gives

b� � �B, w� �
�

�fLy
. �52�

Notice that w� � w/" k w: this is why w�b� in (45) is
comparable to the other two terms.

Equation (31) shows that the eddies are driven
against bottom drag by the useful wind work �wEb�. To
estimate the volume average �wEb� we must keep in
mind that the correlation is nonzero only over the ther-
mocline, of thickness h, and not over the whole depth of
the fluid. Thus

�wEb� �
h

H
wEb �

h

H

�B

fLy
. �53�

With the estimate above, the eddy velocity scale V is
estimated using (31) as

h

H

�B

fLy
� rV2. �54�

From (17) and (21) we have ��b� � �sbz/f, and this
relation provides another scale estimate for V:

V �
�Ly

lfh
. �55�

Eliminating V between (54) and (55) we find

h � Ly� rH�

fBl2�
1�3

. �56�

We can also express the barotropic eddy velocity V as

V �
�

f l �fBl2

rH�
�1�3

. �57�

Our attempt to relate h and V to external parameters is
not completely successful because the mixing length l in
(56) and (57) is unknown. However, we can anticipate
that l, usually associated with the energy-containing
scale of the barotropic eddies (Larichev and Held 1995;
Smith et al. 2002; Riviere et al. 2004; Thompson and
Young 2006), will decrease as the bottom drag, r, in-
creases. This is because bottom drag arrests the inverse
cascade that accompanies the equilibration of the baro-
tropic eddies (Rhines 1977; Salmon 1980). Indeed, in a
flat-bottom, f-plane geometry bottom drag is the only
mechanism that can prevent eddies to expand to the
domain size, Ly. If this is true, then we anticipate that h
will have a dependence on r steeper than the 1/3 power
law explicitly identified in (56).

b. Comparison with simulations

As a practical measure of the thermocline depth h we
use

h2 � ��b � b̃�2����b � b̃�z
2�, �58�

where the basic stratification b̃(z) is defined in (47).
The definition (58) is easy to apply diagnostically to
model results. Moreover, (58) gives exactly the depth of
the thermocline if the vertical structure of b decreases
exponentially from the surface, with b(y, z) � b̃(z) #
bs(y) exp(z/h). Figure 5 shows the vertical profiles of b
at y 
 Ly/2 for five computations (cf. Table 1) that
share the same value of the bottom drag, r, but have
different values of �a or �s. Below the mixed layer,
when present, all profiles show an approximate expo-
nential decay. And if the vertical shape of b � b̃ is not
precisely exponential, then the diagnostic definition
(58) should still roughly coincide with scaling estimates

FIG. 5. The vertical profiles of b(Ly/2, z) are shown for five
computations listed in Table 1; all share the same value of r and
runs 2 and 4 have �s 
 0.
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of the thermocline depth. The values of h reported in
Tables 1 and 2 are calculated using (58).

For those calculations in Table 1 where the diffusivity
is increased in a near-surface mixed layer (runs 6–16), it
is appropriate to measure h not from the surface, but
from the bottom of the mixed layer, z 
 �hmix. We
define the bottom of the mixed layer as the depth at
which the diffusivity in (8) reaches 2 times the abyssal
value:

hmix � �s$2 log�$2���s��a�. �59�

Figure 6 (top) shows h � hmix as a function of r for all
the calculations in Tables 1 and 2. Figure 6 shows that
h � hmix depends on r but not on � (which was the other
parameter varied). All calculations in Table 1 collapse
on a line with a slope of $r, with the exception of
those with the highest value of �a and r for which the
adiabatic interior approximation fails.6 Figure 6 (bot-
tom) shows l, defined in (49) as a function of r, and all
calculations collapse on a line of slope r�1/4, consistent
with the notion that bottom drag arrests the inverse
cascade of the barotropic eddies. These slopes are in
quantitative agreement with the scaling in (56): h # r1/3

l�2/3 # r1/3 (r�1/4)�2/3 
 r1/2. Calculations using the
MITgcm (Table 2) show the same dependencies of h
and l on r as the doubly periodic runs of Table 1, though
the values of h and l are larger. We do not attribute
these differences to the choice of �* % 0 in the bound-
ary condition (6) since runs 5 and 17 share all param-
eter values, including �*, except for the numerical
implementation (cf. Tables 1 and 2). We hypothesize
that the alternative numerical solution techniques and
spatial resolutions are to blame. Nevertheless, the fit of
all the data to the proposed scalings, even across nu-
merical models, is encouraging.

c. Comparison with other scaling estimates of h

Several numerical and laboratory experiments before
ours have proposed scalings of the thermocline depth h
in idealized channel geometries. All of these works,

including the present, share the assumption of a quasi-
adiabatic interior where the mean and eddy buoyancy
fluxes balance. These assumptions lead to the scaling
relation ��b� � �B/fh. This relation can also be obtained
from Johnson and Bryden’s (1989) zonal momentum
balance. Moreover, all are unified by a common inter-
pretation of the eddy fluxes of buoyancy in terms of an
eddy closure of the form ��b� � (Vl) � (B/Ly). Com-
bining the scaling relations above one obtains

h �
�Ly

fVl
. �60�

The difference among these works resides in estimating
the transfer velocity, V, and the mixing length, l, in (60).

The interpretation of the laboratory and numerical
experiments of Karsten et al. (2002), Marshall and
Radko (2003), Cenedese et al. (2004) revolves around
arguments originally presented by Green (1970).
Green’s assumption is that the eddy transfer velocity,

6 The exceptional points falling above the line in Fig. 6 (top) are
runs 1, 6, and 10.

TABLE 2. The parameter values for the MITgcm model in the channel configuration are H 
 2000 m, Lx 
 2 � 106 m, Ly 
 2 � 106

m, �x 
 �y 
 15.625 km, f 
 10�4 s�1, � 
 10�4 m2 s�2, B 
 2 � 10�2 m s�2, and �s 
 0. The shapes of the wind stress and buoyancy
forcings are given by �s( y) 
 �� sin(!y/Ly) and bs( y) 
 �B cos(!y/Ly), respectively.

Run �a (m2 s�1) P �
*

(m) R (s�1) H (m) L (m) D (m2 s�1) Symbol

17 8 � 10�5 25 7.1 2.2 � 10�7 250 231 000 146 ◊
18 2 � 10�5 50 0.6 1.1 � 10�7 187 287 000 100 ◊

FIG. 6. (top) The vertical scale (m) of the zonally averaged
buoyancy, defined in (58) as a function of the bottom drag r (s�1),
for all runs of Table 1. For runs 6–16 the thickness of the mixed

layer, hmix 
 �s$2 log�$2���a��s�, is subtracted from h. The
continuous line shows a slope r1/2. (bottom) The mixing length, l,
defined in (49) is plotted as a function of r for all the runs in Table
2. The continuous line shows a slope r�1/4, which is in quantitative
agreement with the scaling (56).
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V, scales with the baroclinic component of the zonally
averaged zonal velocity, that is, u � ub in (13) and (14).
Thus V � Bh/( fLy). The mixing length is taken as the
external horizontal scale of the zonal flow, l � Ly. Put-
ting these estimates into (60), Marshall and his collabo-
rators obtain for the depth of the thermocline h �
$�Ly/B.

The calculations of Henning and Vallis (2005) retain
the dependence of the Coriolis parameter on latitude, f

 f0 	 �y, and include bottom relief, while our work is
on the f plane and has a flat bottom. Henning and Vallis
(2005)’s estimate of Vl in (60) stems from ideas rooted
in the geostrophic turbulence literature. Thus, as in our
(48), Henning and Vallis (2005) assume that the eddy
transfer velocity, V, is that of the barotropic eddies.
Henning and Vallis (2005) make an equipartition as-
sumption that the barotropic eddy kinetic energy is of
the same magnitude as the eddy available potential en-
ergy: V � (Bh)1/2l/Ly. The mixing length is associated
with the largest eddy scale, identified with the Rhines
scale, so that l � (V/�)1/2. The resulting scaling for the
depth of the thermocline is h � (�L2

y f)2/5B�3/5. The
implicit assumption of Henning and Vallis (2005) is that
� is the dominant mechanism to arrest the inverse cas-
cade. Thus, in contrast to our view, the barotropic ed-
dies are assumed to equilibrate at an amplitude inde-
pendent of the explicit dissipation parameters, such as
the bottom drag.

Our approach to estimating the eddy flux is also in-
spired by ideas from geostrophic turbulence theory,
and we follow Henning and Vallis (2005) and Cessi and
Fantini (2004) in identifying V as the barotropic eddy
velocity. However, our numerical calculations do not
support the assumption of equipartition of eddy energy
between the baroclinic and barotropic modes. Instead
we use the energy balance argument of section 4 to
estimate the eddy transfer velocity V; this inevitably
introduces the bottom drag r. Furthermore, our com-
putations do not support the inertial hypothesis of Kol-
mogorov, so we cannot use the arguments summarized
in Smith et al. (2002) to estimate the drag-induced halt-
ing scale, and unfortunately l remains unknown. Finally
we have proposed an objective definition of the mixing
length l in (49). Diagnosis of l using this definition in-
dicates that the mixing length is considerably smaller
than the domain scale Ly, but larger than the deforma-
tion radius.

7. The buoyancy transport for constant �

In (56) we related the thermocline depth, h, to the
external parameters and to the mixing length l. The
goal of this section is to relate the bulk diffusivity, D in

(44), to the external parameters. The determination of
D is equivalent to finding the surface buoyancy flux [cf.
(40) and (44)]. Because in all our computations the
surface buoyancy forcing is close (or equal) to the fixed
buoyancy limit, the amplitude of the buoyancy field is
known and of order B, but the surface flux, and thus the
net meridional heat transport, is unknown.

We first discuss the case with �s 
 0 in (8); that is, the
small-scale diffusivity �(z) is uniform and equal to the
small abyssal value �a. In the next section we turn to the
case with �s k �a.

The scaling hypothesis developed in this section and
the next is that the mean buoyancy field has the struc-
ture

b�y,z� 
 bint� y

Ly
,

z

h� 	
d

h
bsdl� y

Ly
,

z

d�, �61�

where d K h is the depth of the SDL; d is defined more
precisely below in (66). In (61), both functions bint and
bsdl vary by O(B) as their arguments range over the
domain; bint is the buoyancy in the adiabatic interior,
defined in (22), while bsdl is the boundary layer modi-
fication that is limited to the SDL; that is, if |z|/d → �,
then bsdl → 0.

Thus the change in b across the SDL produced by the
function bsdl is of order d/h K 1. So most of the struc-
ture in the mean buoyancy field is carried by the func-
tion bint, which is a creature of the adiabatic interior.
However the boundary layer function bsdl does produce
a change in bz of order B/h, which is of the same mag-
nitude as the contribution from bint. Thus we can
roughly say that in the regime where the buoyancy is
fixed at the surface, there is not a significant SDL
boundary layer in b, but that there is a significant SDL
boundary layer in bz. We now substantiate these asser-
tions and their implications for heat transport with di-
agnosis of the simulations and scaling arguments.

With reference to Fig. 5 it is clear that the constant �
simulations (runs 1–4) do not have a boundary layer in
b near the surface. Thus, we can make a scale estimate
of the buoyancy flux at the sea surface at the surface as

F0 � �abz0 � �aB�h. �62�

Given the relation �b2
sy�D 
 H�1�bsF0� from section 5,

we can use (62) to estimate that

D �
�aLy

2

hH
. �63�

Since h is independent of �a, (63) predicts that the net
transport of buoyancy (and thus of heat) is linearly pro-
portional to �a. In particular the buoyancy transport Q,
defined in (37), is
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HQ � �DH
dbs

dy
�

�aLyB

h
. �64�

The scaling relation (63) and (64) are confirmed by the
numerical calculation presented in Fig. 8. For the cal-
culations with constant diffusivity (� symbol), Dh has a
clear linear dependence on �a. Because h is indepen-
dent of �a, this implies that D depends linearly on �a.
We plot the product Dh in Fig. 8 because h does depend
on the bottom drag r. Thus if r is increased so that the
thermocline deepens, then the heat transport index D
must decrease to compensate. Runs 3 and 4 in Fig. 8
confirm this prediction. They have the same value of
�a 
 2 � 10�5 and different values of r : they produce
the same Dh in Fig. 8.

Now we inquire where the bulk of the heat transport
takes place. Is the heat flux carried throughout the ther-
mocline, concentrated within the diabatic surface layer,
or equipartitioned between the interior and the near-
surface regions? We define the cumulative entropy pro-
duction as

�̂�z� � � H�1Ly
� 1�

0

Ly dbs

dy ���H

z

�b � �by dz� dy.

�65�

The identity (42) shows that  ̂(0) 
  . We determine
the depth, d, to which significant transport occurs as the
value of z where  ̂ reaches 1% if its maximum  
(achieved at the surface). That is

�̂��d� 
 0.01�, �definition of d�. �66�

Figure 7 shows d as a function of �a for the compu-
tations listed in Tables 1 and 2. The crosses denote runs
without enhanced surface mixing, and d clearly de-
creases with �a: the solid line in Fig. 7 has a slope of
unity and indicates d # �a. If the bulk of the transport
occurred in the thermocline, then d should be propor-
tional to h and thus depend on the bottom drag, r,

rather than on �a, but this is not the case. In the fol-
lowing we argue that, if the meridional heat transport
occurs effectively within the SDL, then d should scale
linearly with �a.

Integrating the buoyancy equation from z 
 �d to
the surface we find

�y�
�d

0

�b dz � wb|z
�d 
 F0 � �bz|z
�d. �67�

We write �b 
 ��zb 	 ��b�. Integrating by parts and
using (15), (19), and (21), the balance (67) simplifies to

�y��
�d

0

��bz 	 ��b�� dz�
 F0 � �bz|z
�d. �68�

By definition, d is the deep boundary of the diabatic
region, and thus the diffusive flux at z 
 �d is much
smaller than the surface flux, F0: we can neglect the
final term in (68). Notice also that at z 
 �d the inte-
grand in the first term is virtually zero. Thus both sides
of (68) are insensitive to the exact location of z 
 �d.
A similar argument was used by Kuo et al. (2005) to
estimate the heat budget in the SDL.

To estimate the two remaining terms in (68) we as-
sume that ��b� does not have a boundary layer enhance-
ment as the surface is approached. This property is
clearly illustrated in the bottom panel of Fig. 3. In other
words, the assumption is that eddy transports are of the
same amplitude within the surface layer as in the adia-
batic interior. Within the SDL the precise cancellation
between �bz and ��b�, characteristic of the adiabatic
interior, does not occur. This is not surprising, given
that the eddy transport of buoyancy is effected by the
barotropic eddies. We can thus assume that ��b� has the
same amplitude from the surface to the thermocline
and estimate the left-hand side of (68) to be O[d�B/
( fhLy)]. Because the mean buoyancy field does not ex-
hibit a change in vertical scale as the surface is ap-
proached, we can estimate the right side F0 � �aB/h.
Combining these estimates we find that

d �
�afLy

�
. �69�

The constant � runs in Fig. 7 (indicated by �) support
the prediction in (69). At the smallest value of �a the
points fall above the prediction (69). However, with
�a 
 2 � 10�5 m2 s�1 it is difficult to resolve the
small-scale structure of the vertical derivative correc-
tion to bsdl.

8. The buoyancy transport for enhanced surface
small-scale mixing

We turn now to the case in which diffusion is aug-
mented near the surface; that is, �s k �a (8). This case

FIG. 7. The vertical scale (m) of the depth at which the cumu-
lative meridional transport [(37)] reaches 1% of its maximum
value is plotted as a function of �a for all of the runs in Table 1.
The solid line has a slope unity and indicates d # �1

a.
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is easier, both analytically and numerically. The mean
buoyancy field b still has the structure in (61). In par-
ticular, runs 11, 15, and 16 in Fig. 5 all have surface-
augmented mixing and clearly exhibit the relatively
thick boundary layer in bz. In this case the depth of the
SDL, d defined in (66), is proportional to �s 
 40 m,
and therefore also to hmix in (59). This is confirmed in
Fig. 7, which shows that in the runs with surface-
augmented mixing d becomes independent of �a (and
roughly of order 100 m) as �a → 0 with fixed �s.

An explicitly modeled mixed layer has consequences
on the total meridional transport so that the scaling for
F0 and D needs to be reevaluated. Integrating the buoy-
ancy equation from the bottom of the mixed layer to
the surface we find

F0 � �abz|z
��s
	 �y��

��s

0

��bz 	 ��b�� dz�.

�70�

This is the same expression as (68) except that now the
depth of the SDL, d, coincides with �s. The first term on
the right-hand side of (70) scales as the interior flux,
and the vertical scale of b is given by the vertical scale
of the thermocline, h, just as in the case of constant �.
The second term on the right-hand side of (70) can be
estimated by assuming that within the mixed layer the
eddy transport is of the same order as in the ther-
mocline. Thus we find

F0 
 O��aB�h� 	 O��s�B��hfLy��. �71�

Notice that the first term on the right depends on �a

and might become smaller than the second term when
�a is sufficiently small. Indeed, we see this in Fig. 7.
With large abyssal diffusion, �a 
 8 � 10�4 m2 s�1, d
becomes comparable to the thermocline depth h, even
though 8 � 10�4 m2 s�1 K �s. Thus there is numerically
significant �a correction to the ultimate scaling d # �s in
the runs with the largest (unrealistic) values of �a.

Using (44) and (40) the specific scaling for Dh pre-
dicted by (71) is

Dh 
 O��a

Ly
2

H � 	 O��s

�Ly

fH �. �72�

Figure 8 shows the quantity D h as a function of �a for
the runs in Tables 1 and 2. A constant, Dmix 
 2.4 �
�s�Ly/( fH) is subtracted from Dh for runs 6–16 (with
surfaced enhanced diffusion) to test the scaling (71).
The residual D(h � hmix) � Dmix shows a linear depen-
dence on �a just as the computations with constant mix-
ing. However, for the smallest values of �a the heat
transport is dominated by the mixed layer contribution,

Dmix, which is independent of the abyssal small-scale
mixing, but depends on the mixed-layer depth.

9. Conclusions and discussion

One important result is (64), which states that the net
meridional buoyancy transport (and thus the heat
transport) is linearly proportional to the diffusivity,
controlled by small-scale mixing. This is because the
meridional buoyancy transport is proportional to the
surface diffusive flux of buoyancy. Without the media-
tion of a mixed layer characterized by enhanced mixing
over a depth scale �s, the thermocline depth scale is
impressed onto the surface. For the arrangement of
wind stress and surface buoyancy distributions that are
typical of the ACC region, the depth of the thermocline
is independent of the small-scale mixing: the vertical
scale to which surface horizontal gradients are sub-
ducted is determined by a competition between mean
and eddy buoyancy fluxes, and neither are controlled
by small-scale mixing.

We find that the bulk of the meridional transport
occurs in a thin layer near the surface, and it is thus not
surprising that enhanced surface mixing has significant
effects. For surface intensified mixing, the heat trans-
port is increased and, when the abyssal diffusivity be-
comes small, is of order 1 � 10�5 m2 s�1, the buoyancy
flux at the surface is dominated by the convergence of
eddy transport within the mixed layer, whose vertical

FIG. 8. Plot of D(h � hmix) as a function of �a. Runs 3 and 4 have
the same value of �a, but different values of r, and yield the same
value of D(h � hmix). (top) A constant Dmix 
 2.4�s� Ly/(2!fH )
is subtracted for those runs with enhanced surface diffusion. Ac-
cording to the scaling (72), the additional transport of buoyancy in
the mixed layer is independent of the diffusivity.
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scale is set by mixed layer processes. As a result, the
total meridional transport becomes independent of the
small-scale mixing coefficient, but is linearly propor-
tional to the depth of the mixed layer. A similar result
of weak interior meridional heat transport in the ACC,
augmented by mixed layer processes, has been also
found by Gallego et al. (2004). The notion that the
mixed layer might be responsible for a larger fraction of
the heat transport than the deep ocean on the global
scale has also been advanced by Emanuel (2001).

We find that there are no substantial differences be-
tween a fixed and a relaxation boundary condition for
the surface buoyancy. This is because the roughness
depth, �*, is much less than the buoyancy depth scale, h,
for typical values of the bulk transfer coefficient of
heat, � � 40 W m�2 K�1. Equivalently, the relaxation
time to the apparent atmospheric temperature is faster
than the advection time due to the mean overturn, so
the mean surface temperature is clamped to the speci-
fied distribution.

Although the depth of the thermocline is indepen-
dent of the small-scale mixing, we find that it depends
on the bottom drag because this is the main source of
energy dissipation. Bottom drag controls the strength
of the barotropic eddies, which are responsible for the
eddy buoyancy flux. A similar result was also found in
Cessi and Fantini (2004) in the context of a purely
buoyancy-driven system. It is likely that the sensitivity
to friction of the eddy statistics is reduced by the pres-
ence of planetary vorticity gradients and, possibly, by
bottom relief. With planetary vorticity gradients, the
flow in the ACC is structured in multiple jets main-
tained by eddy momentum fluxes (Sinha and Richards
1999): this is an indication that eddies do not grow to
scales much larger than the deformation radius, a key
assumption in our scaling.

With a mixed layer, typical values of the bulk diffu-
sivity are small, D � 200 m2 s�1. We can use this value
in (43) to estimate the heat transported in the ACC
region as cp�HLxD(dTs/dy), where Ts is the surface
temperature associated with the specified surface buoy-
ancy. Using the values cited in Table 1, except that
Lx 
 2 � 107 m (as appropriate for the ACC), we find
a transport of about 0.5 PW. This value is in the range
obtained by Trenberth et al. (2001) using top-of-the-
atmosphere radiation measurements and atmospheric
reanalyses. Without a mixed layer and for values of the
diapycnal diffusivity of about 2 � 10�5 m2 s�1, the heat
transport is one-half to one-third smaller, in agreement
with the results of Gallego et al. (2004).

The linear dependence of the net heat transport (or
equivalently of the interior residual streamfunction) on
the strength of the diabatic terms (either �a or �s) is a

consequence of homogenization of Ertel’s potential
vorticity on isopycnals in the quasi-adiabatic interior.
This is in contrast with the hypothesis that the mixed
layer produces potential vorticity gradients in the adia-
batic interior, with an associated nonzero residual cir-
culation (Olbers and Visbeck 2005; Marshall and
Radko 2005, manuscript submitted to Progress in
Oceanography). In our direct numerical simulations ed-
dies homogenize potential vorticity both with and with-
out a mixed layer. Other eddy-permitting computations
in less idealized geometries indicate that this is a robust
result (cf. Henning and Vallis 2005).

The inefficient heat transport of the homogenized
interior implies that diabatic processes are confined to
a surface diabatic zone, primarily controlled by baro-
clinic eddies, a result anticipated by Kuo et al. (2005).

Other geometrical arrangements of the domain and
of the wind stress and surface temperature profiles
might lead to qualitatively different scalings both for
the depth of the thermocline and for the heat transport.
At the moment, few systematic studies of these scalings
in the presence of mesoscale eddies exist. There is no
doubt that eddies are essential in the ACC. Whether
they are important in closed and semienclosed regions
is an open question that deserves further examination.
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APPENDIX

The Eddy Quasigeostrophic Potential Vorticity

The large eddies have a typical length scale l defined
as the mixing length in (49). We assume the scale sepa-
ration

l K Ly, �A1�

and also that mean quantities, such as b and ��b�, vary
only over the large-scale Ly. Beneath the SDL the flow
is adiabatic and the leading order terms in the eddy
buoyancy equation are

b�t 	 ub�x 	 u�b�x 	 ��b�y 	 ��by 	 w�bz � 0.

�A2�

The vertical component of the eddy vorticity equa-
tion is
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��t 	 u��x 	 u���x 	 ����y � fw�z, �A3�

where &� � ��x � u�y.
The quasigeostrophic eddy potential vorticity is

q� 
 �� 	 f�b��bz�z. �A4�

Eliminating w� between (A2) and (A3) we haveA1

q�t 	 uq�x 	 u�q�x 	 ��q�y 	 ���by �bz�z 
 0. �A5�

If the zonally averaged buoyancy has homogeneous po-
tential vorticity, then (by/bz)z 
 0; that is, the final term
on the lhs of (A5) vanishes. In this case there is no
source of q� in (A5) and consequently q� 
 0 (Rhines
and Young 1982). The numerical computations summa-
rized in Table 1 do indeed confirm that q� 
 0 in the
quasiadiabatic interior.

It is interesting that the eddy Ertel potential vorticity,

�� � bz�� 	 fb�z, �A6�

satisfies

��t 	 u��x 	 u���x 	 ����y 	 ���y 	 w��z 
 0,

�A7�

where ! 
 fbz. Even with homogenized potential vor-
ticity [i.e., !(y, z) uniform on b(y, z) surfaces] one gen-
erally has nonzero !y and !z. Thus the sources in (A7)
are nonzero, and so is !�.

Last, suppose that

R K l, �A8�

where R � $Bh/f is the Rossby radius. In this large-
scale limit, the Reynolds stress divergence in the Char-
ney–Drazin identity

��q� 
 �u���y 	 f���b��bz�z �A9�

is negligible. Then, since q� 
 0 implies ��q� 
 0, one
has

��b� 
 �y�bz, �A10�

where �(y) is a constant of integration.
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