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ABSTRACT

Density-compensated temperaturc and salinity gradients are often observed in mixed layer fronts. A possible
explanation of this observation is that there is a systematic relation between the “‘strength’’ of a front, defined
as the buoyancy jump across the front, and the thickness of a front. If stronger fronts tend to be thicker, then in
an ensemble of random fronts, in which the temperature and salinity jumps are independent random variables,
the temperature and salinity gradients will be correlated. This correlation between the thermohaline gradients is
such that heat and salt make antagonistic contributions to the buoyancy gradient—that is, there is buoyancy
compensation. The statistics of heat and salt fluxes across nearly compensated fronts are counterintuitive: strong
heat fluxes can occur across a front with weak thermal gradients and strong salinity gradients, and vice versa.

As a specific model that relates the width of a front to the strength of a front, a pair of coupled nonlinear
diffusion equations for heat and salt are used. The nonlinear diffusion coefficient, proportional to the square of
the buoyancy gradient, arises from quasi-steady shear dispersion driven by thermohaline gradients. This nonlinear
mixing prevents stirring by mesoscale advection from indefinitely filamenting mixed layer tracer distributions.
The model predicts that the thickness of a front varies as the square root of the strength and inversely as the

one-quarter power of the mesoscale strain.

1. Introduction

The mixed layer (ML) density field is often char-
acterized by ‘‘density compensation’’ between temper-
atare and salinity gradients. Often these compensated
thermohaline features are found in the individual fronts
that make up ‘‘frontal zones.”” An example is the sub-
arctic frontal zone in the North Pacific: the observations
of Roden (1977) and Yuan and Talley (1992) contain
abundant examples of fronts with temperature and sa-
linity gradients that nearly cancel in their joint effect
on density. Figure 1 shows the top 100 m of the Mar-
athon II (152°W) CTD section. In the subarctic frontal
zone, at around 42°N, there is considerable structure in
the salinity and temperature fields that has no expres-
sion in the density field. In the North Pacific subtropical
frontal zone the observations of Samelson and Paulson
(1988) show a sequence of fronts, many of which have
some degree of compensation. In the subantarctic fron-
tal zone of the Argentine Basin, Roden’s (1986) Fig.
12 shows another example of remarkable density com-
pensation in the ML.

One explanation of these observations is that atmo-
spheric forcing conspires to create and juxtapose water
masses with nearly compensating properties. A more
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satisfactory explanation is the upper-ocean frontogen-
esis model of MacVean and Woods (1980). These au-
thors use an oceanographic version of the model of
Hoskins and Bretherton (1972). MacVean and Woods
show that for some initial conditions the isotherm and
isohaline patterns make a front appear to be much thin-
ner and deeper than does the isopycnal pattern.

The solution of Hoskins and Bretherton ignores tur-
bulent mixing of heat, salt, and momentum. Because of
these idealizations the model predicts singularities in
which density gradients and vorticity become infinite
in a finite time. In this article we turn to the question
of the dissipation, which arrests the formation of the
singularity and produces a front with a finite width. The
mechanism we discuss is shear dispersion driven by
horizontal buoyancy gradients. This dissipative process
is nonlinear because the shear dispersion coefficient is
proportional to the square of the velocity (Taylor 1953 )
and the velocity is proportional to the horizontal buoy-
ancy gradient.

2. Thermohaline shear dispersion in the mixed layer

Dissipation in the ML is the result of processes that
span many decades of length scales. In this section we
formulate a model, which is intended to resolve ther-
mohaline structure with horizontal length scales on the
order of 1 km to 10 km and timescales longer than a
few inertial periods. Motions that have smaller lengths
and higher frequencies than this (e.g., Langmuir cir-
culations and shear flow instabilities) are parameter-
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Fic. 1. Salinity (), temperature (T), and density (o,) in the upper
100 m of the Marathon II (115°W) CTD section in the North Pacific.
The subarctic frontal zone is at around 41°N. The units are con-
structed so that the contour intervals in the three panels correspond
to comparable jumps in density.

ized as ‘‘mixing.”’ In particular, all of the mixing pro-
cesses that maintain the vertical homogeneity of the
ML against the shear driven restratification discussed
by Tandon and Garrett (1994) and Young (1994) are
lumped into this mixing.

The mixing parameterization we introduce below is
a nonlinear, downgradient diffusivity for heat and salt.
The nonlinear diffusion arises because the horizontal
transport of heat and salt is by shear dispersion, and the
shear flow doing the dispersing is driven by the hori-
zontal buoyancy gradient (e.g., Young 1994). Thus,
the strength of the shear dispersion increases as the
horizontal buoyancy gradients become larger—in fact,
the diffusion coefficient is proportional to the square of
the buoyancy gradient.

The complement to mixing is ‘‘stirring’’ (e.g., Eck-
art, 1948). Because of the relatively small scale of ML
fronts the mesoscale eddy field can be modeled as ad-
vection by a velocity field whose length scale is much
larger than that of the front: this prescribed advection
is “‘stirring.”” A popular idealization of mesoscale de-
formation is :

u=xx,

V==X, (2.1)

(e.g., Garrett 1983; Hoskins and Bretherton 1972;
MacVean and Woods 1980; Young et al. 1982). The
typical rate of mesoscale strain, x, can be estimated by
supposing that there is 10 cm s ! difference in velocity
over a distance of 100 km so that y ~ 107857,

In adopting the velocity field in (2.1) we have in
mind a ML front embedded in an externally imposed
mesoscale strain field. The Cartesian coordinate system
in (2.1) translates with the front and is aligned with the
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principal axes of the rate of strain tensor (e.g., Batch-
elor 1958).

The simplest model combining mesoscale stirring
with shear dispersive mixing is coupled advection—dif-
fusion equations for the vertically averaged ML tem-
perature and vertically averaged ML salinity:

S: — x¥S, = (DS,),, T,— xyT, = (DT)),, (2.2a,b)

where T(y, t) is the ML temperature and S(y, t) is the
ML salinity. In (2.2) D is a positive definite diffusivity,
which depends nonlinearly on the buoyancy gradient:
this is mixing by shear dispersion. Thus, making the
approximation that the equation of state is linear, the
ML buoyancy is

B(y,t) = gorT(y, 1) — gasS(y, 1), (2.3)

and two models for the nonlinear diffusivity in (2.2)
are

D\(B,) = v|B,|, D:(B,)=1vyBj. (24ab)

For expositional purposes we also consider the linear
case in which D is uniform.

If one forms an appropriate linear combination of
(2.2a) and (2.2b), then one can write a single closed
equation for the evolution of the ML buoyancy B(y, t)
in (2.3). Once this equation has been solved, one can
turn to (2.2a) and (2.2b) individually. Thus, in this
paper we do not consider processes that break the dy-
namical symmetry between T and S (e.g., thermal feed-
back between the atmosphere and the ocean or the
large-scale effects of double diffusion).

The parameterization in (2.4a) is the transfer law
proposed by Stommel (1961, 1993): if one takes a two
grid-point discretization of (2.2) with (2.4a) and sets
x = 0, then one recovers Stommel’s two-box model
with its ‘‘capillary flow’’ rule in which the exchange
is proportional to the absolute value of the pressure
difference between the two boxes. The partial differ-
ential equation in (2.2) can be thought of as a contin-
uum of coupled boxes and in this sense (2.2) is a de-
velopment toward higher resolution of Stommel’s
model.

The parameterization in (2.4b) is a representation of
thermohaline shear dispersion. This nonlinear diffusiv-
ity, increasing with the square of the buoyancy gradi-
ent, is one of the ML processes described by the sub-
inertial mixed layer (SML) approximation. The SML
approximation is a filtering of the three-dimensional
equations of motion (Young 1993). The independent
variables of the SML approximation are the vertically
averaged salinity S(x, y, t), the vertically averaged
temperature 7(x, y, t), and the streamfunction for the
vertically averaged velocity ¢(x, y, t). If these three
fields have spatial variation in only one direction (3,
= 0) and ¢ = —xxy, then the SML approximation
reduces to (2.2) and (2.4b).

The collapse of the SML approximation to the cou-
pled nonlinear diffusion equations in (2.2) is to be ex-
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pected on the basis of experience with nonrotating
problems involving density-driven shear dispersion.
This problem was first addressed by Erdogan and Chat-
win (1967) and was reviewed by Young and Jones
(1991). The thermohaline case, in which the density is
jointly determined by heat and salt, was previously dis-
cussed by Cessi and Young (1992).

The cubically nonlinear diffusion law in (2.4b) re-
sults from a frictionally balanced, density-driven shear
flow transporting the buoyancy field down its own gra-
dient. The down-pressure-gradient velocity is linearly
proportional to the horizontal pressure gradient which,
in turn, is linearly proportional to the horizontal buoy-
ancy gradient. But the shear dispersion coefficient var-
ies as the square of the velocity (Taylor 1953) so that
the effective diffusivity in (2.4b) is proportional to the
square of the horizontal buoyancy gradient.

In the case of unidirectional variation the effect of
rotation is confined to the expression for y in (2.4b):

y = a0+ )RR (25)
(Young 1994). In (2.5) & is the undisturbed depth of
the ML, fis the Coriolis parameter, 7 is the timescale
for the vertical mixing of heat and sait, and p is a non-
dimensional parameter

1

frv’
where 7, is the timescale for the vertical mixing of
momentum in the ML. If the vertical mixing is modeled
with an eddy viscosity v and an eddy diffusivity k, then
T ~ J*/x and T, ~ v/ J*. The nonrotating limit is
recovered from (2.5) by taking the limit x — o so that
v =~ JC1H7TI12 ~ HB/v?k [cf. Eq. (39) in Young and
Jones (1991)].

As nominal numerical values, suppose that the ML
depth is & ~ 100 m and that f ~ 10™*s™' while 7
~ 7y =~ 10° s. In this case x ~ 1/10 and y ~ 10"
m? s*. This estimate of 7 is used throughout this paper.
We emphasize that -y is not a uniquely defined constant
but rather depends on adopting the ‘‘relaxation’’ time
denoted by 7. Roughly speaking, 7 is the interval be-
tween the mixing events that vertically homogenize the
mixed layer. In the sequel, the crucial assumption is
that the various parameters in (2.5) are independent of
the horizontal buoyancy gradient B,. This ensures that
the dependence of the nonlinear diffusivity in (2.4b)
on the horizontal buoyancy gradient is D ~ B2 .

A buoyancy gradient is estimated using the value AT
~ 0.4°C over Ay ~ 1 km observed by Samelson and
Paulson (1988) in the North Pacific subtropical frontal
zone. With a7 =~ 2.5 X 10™* K~! the buoyancy gradient
is

“ (2.6)

AT o
By'z:gAaT—A—yN 1076572, (2.7)
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With these figures the order of magnitude of the non-
linear diffusivity in (2.4b) is

D=yB2~102m?s"". (2.8)

This is a very large diffusivity for a submesoscale pro-
cess, and we emphasize that we have used a horizontal
buoyancy gradient in (2.7 ) that is characteristic of fron-
tal regions. Because of the quadratic dependence in
(2.4b) the diffusivity is much smaller outside of frontal
zones.

It is interesting to contrast the order of magnitude of
the ML diffusivity in (2.8) with an estimate of the shear
dispersion diffusivity due to internal waves in the ocean
interior. In the interior regime, Young et al. (1982)
estimated that the oscillatory velocity fields of internal
waves produce a horizontal diffusivity about 1000
times the vertical diffusivity. Using the recently mea-
sured order of magnitude 107> m* s~' for the interior
vertical diffusivity (Ledwell et al. 1993) gives a hori-
zontal diffusivity of order 1072 m? s~'. This interior
horizontal diffusivity is smaller by a factor of 10* than
the ML diffusivity in (2.8).

3. Thermohaline fronts

In this section we turn to the solution of (2.2) and
the statistical implications of this solution for a frontal
zone comprising an ensemble of fronts. The main point
here is that if a front exists with large gradients in tem-
perature and salinity then, in order for the front not to
diffuse away, the temperature and salinity gradients
must make antagonistic contributions to the buoyancy
gradient. This reasoning needs a few qualifications,

~which we make in section 5.

a. The width of a front: The balance between
advection and diffusion

Consider a configuration like that in Fig. 2 where a
thermohaline front is created by the deformation field
in (2.1) pushing together two water masses with dif-
ferent salinities and temperatures. The frontal boundary

b/2 l,
A

VaVAVAAVAVAAVAAVAAY)

-b/2

FiG. 2. A sketch of a thermohaline front of thickness A formed by
the deformation field in (2.1) pushing two water masses with different
properties together.
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between the two masses has a thickness that reflects the
competition between advection and diffusion. For in-
stance, if the diffusivity D in (2.2) is constant, then this

frontal scale is
D 1/2
)\Iincur = (‘)
X

(e.g., Garrett 1983). Notice that with this linear model
the thickness of the front is independent of the buoy-
ancy jump across it.

Now consider what happens with the nonlinear dif-
fusivity in (2.4b): the balance between advection and
nonlinear diffusion is established when the thickness of
the front is of order

t/4
A= <1> b]'7,
X

where b is the buoyancy jump across the front. We refer
to |b| as the “‘strength’’ of the front. The resultin (3.2)
can be established with dimensional reasoning and it is
supported by a detailed calculation in appendix A.

The implication of (3.2) is that with the nonlinear
diffusivity stronger fronts are also thicker fronts. The
exact dependence of thickness on strength is model de-
pendent: with the alternative model in (2.4a) the result
analogous to (3.2) is A ~ |b|'’*. Throughout this paper
we use (3.2) because the SML approximation provides
a physical justification for the antecedent (2.4b). But
the main conclusions apply to all models in which there
is a systematic relation between the thickness of a front
and the strength of a front. The relation between thick-
ness and strength is a nontrivial result of thermohaline
shear dispersion: (3.1) shows that if the diffusivity is
linear then thickness is independent of strength.

To estimate an order of magnitude for A in (3.2) we
use our previous estimates that y ~ 10'* m? s* and x
~ 107® s™'. If the buoyancy jump corresponds to 1 K,
then b ~ 2.5 X 107" m s ? and A ~ 5 km. The buoy-
ancy gradientis b/\ ~ 5 X 1077 72 ~ 50 f2.

We now turn to the consequences of (3.2) for the
thermohaline gradients. As measures of the salinity and
temperature jumps across the front, we introduce

0 = ga, AT (3.3)

so that the buoyancy jump is b = @ — o. The gradients
within the front then scale with

(3.1)

(3.2)

o = gasAS,

f= % = x4y 149 — o| V2,
=_€= 1/4, —1/4 0 — —1/20
g=y=x"r""6 0ol
b 2
h= X = x4y " sgn(@ — 0)|6 — a|'?. (3.4a,b,c)

The final equation (3.4c) shows that the buoyancy gra-
dient, h = g — f, scales with the square root of the
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strength |b|. But the salinity and temperature gradi-
ents, fand g in (3.4a,b), do not have a simple depen-
dence on |b|. In Fig. 3 we show some isolines of con-
stant salinity gradient, f, in the (o, €) plane.

b. An ensemble of random fronts

Now imagine creating an ensemble of ‘‘random
fronts’’ by selecting points in the (o, 8) plane of Fig.
3 according to some simple probability density func-
tion. [ Below in (3.5) we use a Gaussian density func-
tion centered on the origin.] The ensemble of fronts
generated by such a procedure has a smooth distri-
bution of widths, N\, and buoyancy gradients, A, be-
cause neither of these quantities are subject to large
fluctuations when a point near the line b = 0 is se-
lected.

But if one picks a point very near to the b = O line
in the 6—¢ plane, then there are large fluctuations in
fand g, which have no expression in A and 4: a point
near the b = 0 line corresponds to a very weak
density front, which is also very thin because \
~ |b|'"?. This must be a density compensated front
in the sense that there are large and antagonistic
gradients of temperature and salinity: these two
gradients are large simply because weak density
fronts are systematically thinner than strong density
fronts. This is the essential physics in (3.2) and this
is what produces the ‘‘near-zero divisors’’ in (3.4a)
and (3.4b).
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FiG. 3. Some contours of constant salinity gradient, f, in the o, 6
plane calculated from (3.4a) with y = 10" m> s’ and x = 107° 572,
Both o and # are in the buoyancy units (m s~?) defined in (3.3). The

contours of f are labeled in units 107% 572,
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Fi1G. 4. This figure summarizes the results of a Monte Carlo
simulation in which 200 000 random fronts were created by
picking the temperature and salinity jumps from the Gaussian
distribution in (3.5) witha; = as = 2.5 X 107" ms™2 (a) A
scatterplot of § versus o. (Axis units are m s72.) (b) A scat-
terplot of f versus g. (Axis units are s72.) The two gradients
are correlated and tend to compensate in their effect on density
gradient. (c) Three histograms showing the PDFs of f, g, and
h. The units of the horizontal axis are s~ The densities of f
and g have long tails corresponding to the subpopulation of
compensated fronts.

We illustrate this argument with a Monte Carlo sim-
ulation in which the thermohaline jumps are selected
from a Gaussian distribution

1 o? 9?
9) = —= -2 _ 7, 5
o, 9) 2masar exp( 2a’ Za%) (3-3)

where ag and a; are the rms fluctuations in o and 6. If
the rms fluctuation in the temperature jump is 1 K, then
ar = 2.5 X 107* m s 2. We adopt this as our standard
case and initially suppose that as = a; so temperature
and salinity make equal contributions to the density.
We alsouse y = 10 m?s*and x = 107% s~ as stan-
dard values in what follows.

- In Fig. 4 we show the result of selecting 200 000
random points according to the prescription in the para-
graph above. Figure 4a shows the density of points in
the (o, 6) plane. There is little to say except that the
random number generator works: there are no corre-
lations between the temperature and salinity jumps, and
there are exponentially few ‘‘outliers’’ in this Gaussian
cloud of points. Figure 4b is a scatterplot showing the
temperature and salinity gradients f and g defined in
(3.4a,b). The clustering along the compensation line f
= g is obvious. Thus, even though there are no corre-
lations between the temperature and salinity jumps in
Fig. 4a, the temperature and salinity gradients in Fig.
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FiG. 5. A scatterplot of o versus 6 for the subpopulation of fronts
with |f| > 6 X 107° s™2 These fronts, with very strong temperature
gradients, correspond to points that cluster along the line o = § as
one approaches the origin of the plane.

0.01

3b are correlated and tend to cancel in their joint effect
on buoyancy gradient. Figure 4c shows the probability
density functions (PDFs) of the three random gradients
f,g,and h.

Consider the very strong fronts in Fig. 4c. The his-
togram shows that there are few representatives in the
ensemble with buoyancy gradients, h, as large as 6
X 1077 572, But there are some fronts whose temper-
ature and salinity gradients individually are larger than
6 X 1077 s 72, These are the large fluctuations produced
when a point falls near the b = 0 line in the o, 8 plane.
Figure 5 shows the results of selecting from the ensem-
ble of 200 000 random fronts the subpopulation with
|[f] > 6 X 1077572 and then scatterplotting these
51 294 points in the f—o plane. The result is consistent
with the argument above: this subpopulation of very
strong salinity fronts clusters alongthe b =6 — o =0
line. More precisely, points with a large salinity gra-
dient, say |f| greater than some specified threshold,
lie between the constant f contours shown in Fig. 3.
The origin of the (o, #) is a point of singularity of the
function f (o, 8) so there is a finite possibility of having
large values of the salinity gradient, f, right at the peak
of the Gaussian distribution in (3.5). A more quanti-
tative characterization is given in appendix B.

The results in Figs. 4 and 5 were based on an ensem-
ble of random fronts in which temperature and salinity
fluctuations make equal contributions to the buoyancy
fluctuations. In Fig. 6 we show that the main conclu-
sions are unchanged if the two tracers make unequal
contributions. We constructed another ensemble of
200 000 random fronts but in the Gaussian density
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(3.5) we took ar = 2a5 = 5.0 X 107 m s 2 so that the
temperature jumps are twice as strong as the salinity
Jjumps. This is evident in the §— ¢ scatterplot in Fig. 6a.
Figure 6b shows the scatterplot of the thermohaline
gradients fand g. Again there is an obvious correlation
along the compensation line. Figure 6¢ shows the PDF
of the three gradients. Comparing this figure with the
PDFs, Fig. 3c, we notice that the PDF of the buoyancy
gradient, A, is unchanged apart from a rescaling. How-
ever, in Fig. 5c the PDF of the temperature gradient,
g, begins to resemble the PDF of the buoyancy gradient
h. This is what one would anticipate as the temperature
jumps become stronger. However, equally striking is
the long tail representing large salinity and temperature
gradients with no accompanying buoyancy gradients;
for example, there are very few representatives in the
ensemble with |h| > 7 X 1077 s~2. Also striking is
that for these large fluctuations the PDFs of the tem-
perature gradient fand the salinity gradient g are iden-
tical even though a; = 2as. This is another indication
that virtually every very strong temperature front is also
a very strong salinity front with compensation between
the two fields.

We also experimented with non-Gaussian PDF for 6
and o and found that the main conclusions are unal-
tered: the PDFs of fand g have long tails, which rep-
resent a subpopulation of density compensated fronts.

c. The statistics of thermohaline gradients

All of the results in the previous subsection can be
explained with a straightforward and tedious calcula-
tion of the various PDFs of \, f, g, and A. The results
are collected in appendix B. The most significant of
these results are those in (B12) and (B13):

)~ IF17, Pg) ~ gl (3.6ab)

where ? is the probability density function and where
the approximations apply if |f| and |g| are large.
Thus, the tail of large salinity and temperature fronts
in Figs. 4c and 6¢c has a power law decay. Because of
these large fluctuations the rms salinity and temperature
gradients are infinite: the integral [ £ *P(f)df diverges.
Thus, the statistics of thermohaline gradients are inter-
mittent (there are very large fluctuations) even though
the statistics of thermohaline jumps are Gaussian.

One final point concerns the detailed structure of the
joint PDF of (f, g). Figure 7 shows the data from Fig.
4b plotted in a rotated and anisotropically scaled set of
coordinates. (Some outliers on the horizontal axis are
not shown.) Figure 7 shows that characterizing the tem-
perature and salinity gradients as ‘‘compensated’’ is
accurate only for the large gradients. The extension of
the cloud along the vertical axis (f + g = 0) shows
that small gradients are actually ‘‘anticompensated.’’
Also evident in Fig. 7 is the void right on the compen-
sation line where g — f = 0. This empty region is
explained by the prefactor (f — g)? on the right-hand
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FiG. 6. This figure summarizes the results of a Monte Carlo
simulation in which 200 000 random fronts were created by
picking the temperature and salinity jumps from the Gaussian
distribution in (3.5) with a; = 2a; = 5.0 X 107* ms72 (a) A
scatterplot of 6 versus o. (Axis units are m s~2.) (b) A scat-
terplot of f versus g. (Axis units are s7.) The two gradients
are correlated and tend to compensate in their effect on density
gradient. (c) Three histograms showing the PDFs of f, g, and

-2

h. The units of the horizontal axis are s™>.

side of (B8): the PDF vanishes when f — g = 0. But
nonetheless, the large fluctuations cluster in two moun-
tains on either side of this valley because the exponen-
tial factor in (B8) has its largest value when f — g = 0.

4. Fluxes in the mixed layer
The salinity flux in our model is
Fs = xyS — yB;S,, 4.1)

where the first term on the rhs is advection and the
second term is nonlinear diffusion. If we evaluate this
flux at y = 0 (the center of the front), then the advec-
tive contribution vanishes, and the remainder is the

downgradient diffusive flux of salt through the center
of the front. This cross-frontal flux is tending to equal-
ize the salinities of the two water masses in Fig. 2.
Using our previous estimates of the thermohaline gra-
dients in (3.4, we see that Fs ~ yh’f. This motivates
the introduction of three new variables:

p= —7h2f= _,y|/4x3/4‘0 — 0.‘1/20.

q= —“;'hzg = _,y[/4x3/4|0 — o_l l/20

r= =kt =~y g0 — )]0 — o]
(4.2a,b,c)

that are measures of the salt, heat, and buoyancy fluxes
through the front.
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FiG. 7. A detailed view of the thermohaline gradient plane in Fig.
4b. (Axis units are m s~2.) The axes have been rotated and scaled
anisotropically to show the void along the line g — f = 0.

To estimate the size of these fluxes suppose that the
temperature jump across the front is 1° and there is no
salinity compensation so that b = 2.5 X 107 m s ™2,
Using ¥y ~ 10¥ m?s® and x ~ 10¢s ' gives A ~ 5
kmand r ~ 107 m?s 3,

There are no divisors in the definitions in (4.2), so
we anticipate that in an gnsemble of random fronts the
fluxes, unlike the gradients, will not have large fluctu-
ations. This expectation is confirmed by both the Monte
Carlo simulation in Fig. 8 and the analytic calculation
in appendix B. Figure 8 shows the PDFs of the three
random fluxes constructed using the same set of
200 000 random fronts used in Fig. 4. The calculation
of the PDFs in appendix B confirms the impression
from Fig. 8 that large fluctuations in the fluxes are ex-
ponentially rare.

This result in Fig. 8, if true of the ocean, has impor-
tant consequences for models of the large-scale circu-
lation. If the statistics of fluxes are relatively well be-
haved, then it makes sense to associate diapycnal fluxes
in the mixed layer with an ‘‘average front.”” This is in
contrast to the intermittent statistics that characterize
heat and salt gradients in the middle of fronts. None-
theless, although the flux statistics are not intermittent,
their dependence on the jumps in heat and salt across
the front are nonintuitive: without some theoretical
model the relations in (4.2) are not obvious.

The statistical consequences of (4.2) seem paradox-
ical if one attempts to correlate fluxes with gradients.
For instance, in Fig. 9 we show a scatterplot of the heat
flux, g, versus the temperature gradient g. All 200 000
points fall in the second and fourth quadrants because
flux, g, and gradient, g, have opposite signs [see
(4.2b)]. But the correlation has nothing else in com-
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FiG. 8. Histograms of the three fluxes defined in (4.2) (the units of
the horizontal axis are m? s™*). The Monte Carlo simulation is the
same as in Fig. 4.

mon with the results from a linear model. The vertical
arm of the cross in Fig. 9a shows that weak temperature
gradients can be associated with strong heat fluxes
while the horizontal arm shows the reverse. Thus, there
is a correlation between weak heat fluxes and strong

x107°
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qo; (TSR
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LA L S
:
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-1 ~05 0 05 1
8 x107°

FiG. 9. A scatterplot of the heat flux, g, versus the temperature
gradient, g, for the Monte Carlo simulation in Fig. 4. The points lie
on a cross indicating that there are two possible correlations: strong
fluxes associated with weak gradients (the vertical arm) and weak
fluxes associated with strong gradients (the horizontal arm).
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temperature gradients, and vice versa! The key to all
this is the salinity.

The extreme points on the vertical arm of the cross
in Fig. 9 are characterized by rather small values of §
and larger values of o with the opposite sign to 6; that
is, the buoyancy gradient is dominated by salinity and
the weaker temperature gradient reinforces the salinity.
Thus these points on the vertical arm are strong fronts
dominated by salinity. Although 6 is small, the heat flux
g in (4.2b) can be large because the factor |8 — o |'/?
is large. If one’s primary interest is modeling or mea-
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FiG. 10. This figure shows how the cross in Fig. 9 deforms
into a single valued functional relation between flux and gra-
dient as the effect of temperature begins to dominate salinity.

suring ML heat fluxes, then this is a compelling reason
for directing attention at strong salinity fronts. (And,
of course, vice versa.)

The extreme points on the horizontal arm of the cross
in Fig. 9 are the buoyancy compensated fronts in which
the salinity and temperature gradients are large but an-
tagonistic. Thus, in this case, the factor |8 — o|'? in
(4.2b) is very small so that the heat flux g is small. To
summarize: the largest temperature fronts are buoyancy
compensated by salinity and very little heat diffuses

-across these regions of high temperature gradient.



DECEMBER 1995

A scatterplot of buoyancy flux, r, against buoyancy
gradient, k&, is a ‘‘semicubic’’ curve because from
(4.2c) these two variables are functionally related. This
leads one to enquire how the cross in Fig. 9 deforms
to the single-valued relation in (4.2c) as one increases
the strength of the temperature jump 6 relative to the
salinity jump o. In Fig. 10 we show a scatterplot of ¢
versus g when ar ranges from 2ag to 25a5. The slow
deformation of the cross into the single-valued func-
tional relation in (4.2¢) is clear.

5. Discussion

In this paper we have proposed a statistical expla-
nation for the observation of density compensated
fronts in the ML. The theory has two logically distinct
components:

(i) There is relation such as (3.2) between the
strength and the thickness of a front.

(ii) The laws for the transformation of probabilities
then imply that thermohaline gradients are correlated.

The physical content of the theory is entirely in (i)
and it is here that we have appealed to thermohaline
shear dispersion, parameterized as a nonlinear diffusiv-
ity in (2.4b), to justify (3.2). But other physical mod-
els might lead to (3.2), and from that point forward the
calculations involved in (ii) are unchanged.

For instance, as an example of an alternative argu-
ment that leads to a relation between the thickness and
strength of a front, suppose that there is a reduced-
gravity g’ at the base of the ML. Further, suppose that
the front thickness, \, is proportional to the deformation
radius of the ML.:

A~ Vg' HIf. (5.1)

If one argues that a substantial fraction of the isopyc-
nals peel off the base of the ML and outcrop at the
front, then |b| ~ g’, and we arrive at A ~ |b|'?, as
in (3.2), by an entirely different route. But the subse-
quent implications of X ~ |b|'/? for the statistics of
thermohaline gradients are the same as those shown in
Figs. 4 through 7. This is the content of point (ii)
above.

The reasoning in the paragraph above makes no ref-
erence to nonlinear diffusivity or shear dispersion.
Thus it is not necessarily the case that the compensation
we have described in this paper occurs because a front
with large gradients in temperature and salinity diffuses
away unless these thermohaline gradients largely can-
cel in their joint effect on buoyancy gradient. It is our
opinion that such a process of diffusive selection likely
acts in ML frontal zones. But we emphasize that the
relation between frontal strength and frontal thickness
is the essential physics and that the same relation can
arise from entirely different models.

In section 4 we showed that thermohaline shear
dispersion makes some interesting predictions con-
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cerning the relations between fluxes and gradients in
the ML. The main point here is that the buoyancy gra-
dient determines the size of the diapycnal transports.
If one considers only the temperature gradient, and
ignores salinity, then it is difficult to reach any useful
conclusion about the diapycnal heat flux (e.g., Fig. 9).
This is in contrast to the usual linear model in which
heat fluxes are proportional to temperature gradients.

Acknowledgments. We are grateful for the support
of the National Science Foundation under OCE93-
01462 and the CHAMMP program (DOE DEFGO03
93ER61690). We thank Daniel Rudnick for useful
conversations during the course of this research.

APPENDIX A
Details of the Front Solution

In this appendix we collect the details of the frontal
solution used in section 3. We begin by introducing the
functions

n=eXy

1/,
—_ 1_1
4x<e )

and using (7, 7) as independent coordinates instead of
(v, t). The transformation rules

8, = X',
9, = e, + xno,

T =

(Alab)

(A2a,b)
can then be used to rewrite (2.2) and (2.4b) as
S, = y(B2S),, T,=vy(BT),. (A3ab)

Thus, the transformation in (A1) folds the effects of
advection into a coordinate change.

The transformed Eq. (A3) has a similarity solution
that represents the diffusion of a front (Smith 1982):

o 2 :
gasSn=m;V1—£2, if €] <1

0 2

gaTTn = m;\ll - 62, if Ifl < 1, (A4a,b)

and if || > 1, then T, = S, = 0. In Egs. (A4) the
similarity variable is
n

£= crt4?

(A5)

and the constants 6 and ¢ are the jump in temperature
and salinity across the front expressed in buoyancy
units [see (3.3)]. Thus the jump in buoyancy across
the front is

b=6-o, (A6)



3074

and the constant ¢ is defined by

.48

Cc E—z’ybz. (A7)
™ '

In terms of the original variables (y, t), one has

/ /
o=\ Sdn 6= f T,dn, (A8ab)
-1 Cd

where [(t) is the width of the front:
2 "\ 1/4
l(t) — e—xtc,’_lm — <1_21b2) (1 — e“"”)”“.
T X

(A9)

Because [(0) = 0, this solution shows how an initial
discontinuity is smoothed by the nonlinear diffusion.
When 4yt > 1, the front reaches its equilibrium thick-
ness, which is very nearly equal to the length A in (3.2).

APPENDIX B

The Transformation of Probability
Density Functions

In this appendix we collect the calculations required
to obtain the probability density functions (PDFs) of
the three gradient f, g, and h defined in (3.4) and the
width A defined in (3.2). We begin by noting that if
the jumps in temperature and salinity are given by the
Gaussian PDF in (3.5) then the PDF of the buoyancy
jump b = 8 — o is also Gaussian:

P(b) = ! ex (— b—z)
VZray T\ 243)°
where a2 = a2 + a?is the rms buoyancy jump. In this
appendix we use ? to denote a PDF and the argument
of ? will indicate the random variable to which we are
refering.
One can calculate the PDF of \ defined in (3.2) using
the rule for transformation of probabilities:

db
d\

= 4n 2K exp(-AYH(),

(B1)

P(R) = T2(b)

(B2a,b)

where N = (x/2ya3%)"*\ is a nondimensional front
width and H(X) is the Heaviside step function. The
Y in (B2a) is because A ~ |b|'"? so that one must
account for the two branches, b > 0 and b < 0, that
map to the same A > 0.

In the same fashion one can calculate the PDF of the
buoyancy gradient:

P(h) = 27 ~"?h exp(—h*), (B3)

where h = (y/2xa})""*h is a nondimensional buoy-
ancy gradient. Both of the PDFs in (B2) and (B3) de-
cay very quickly as their arguments become large. This
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exponential decay ensures that all moments exist. For
instance, for the buoyancy gradient,

iy = [ 1hiracidi,

+ 2
=_”2Fn )
ey

Putting n = 2 in the formula above and restoring the
dimensions, we see that the rms buoyancy gradient is
(2xa3/ym)'"*.

To calculate the joint PDF of the gradients fand g,
we begin by noting that the definitions in (3.4) imply

o= (v/x)"f(g —f)sgn(g - f)
= (y/x)'"?g(g —f)sgn(g — f). (B5ab)

One now regards (B5) as a mapping from the (f, g)
plane to the (o, 8) plane. The Jacobian of this mapping
is

(B4a,b)

0(o, 8)
o(f, 8)

The transformation rule, which gives the joint PDF of
fand g in terms of the Gaussian PDF of ¢ and 6 in
(2.5),1s

=2(y/x)(g - )* (B6)

0(o, 8)
o(f, 8)

The mapping in (B5) and (B6) applied to the Gaussian
PDF in (3.5) gives

(f. 8) = (o, 0) I . (B7)

” 4 A .
P(f, &) = —csc(2p)(€ — f)? exp[—(f - §)*
s

X (sec’(p)f? + esc?(p) €)1, (BS)
In (B8), p is
@ = arctan(ay/as), (B9)
and the nondimensional gradients are
(f, &, b) = (y/2xa})"*(f, g, h). (B10)

The angle /2 > ¢ > 0 is a nondimensional measure
of the relative contributions of the temperature and sa-
linity to the thermohaline gradients.

The marginal density of salinity gradients is

P(f) = dn~" ese(2p) f dg(g - f»’
X exp[—(f — §)*(sec?(p)f? + csc2(p)£)]
= 477" csc(2p) fm du u? exp[—u’(sec*(p)f?

+ csc2(@)(u + £)H)]. (Bllab)
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We were unable to find a convenient analytic sim-
plification of the integral in (B11b). But if [f| > 1,
then the integrand is strongly peaked round u = 0
and Laplace’s method gives the asymptotic expan-
sion

372

°P(f)~%sin2(2<p)f‘3, if f>1. (B12)

An analogous calculation gives the asymptotic' behav-
ior of the marginal distribution of temperature gradi-
ents:

3/2

P(g) ~ — sin*(20)§7, if £>1. (BI3)

Note that in this asymptotic limit the two PDFs are
equal no matter what the value of .

Whereas the PDF of the buoyancy gradients in (B3)
decays exponentially, the PDFs of the salinity and tem-
perature gradients in (B11) and (B12) decay only al-
gebraically. This relatively slow decay means that the
average,

(IF1m = f 7 1"#(F)df, (B14)
diverges if n = 2. Thus the rms salinity and temperature
gradients are infinite while the rms buoyancy gradient
is finite.

We turn now to the PDFs of the fluxes p, ¢, and r

defined in (4.2). The easiest is the buoyancy flux for
which

2 ﬂ,—l/zlfl—m exp(— Ifl‘w)»

) =3

(B15)
where 7 = 2734532y 7145 =34 is a nondimensional
buoyancy flux. The PDF in (B15) has an integrable
singularity at # = 0 but it decays exponentially if |7
> 1.

To calculate the joint PDF of (p, q), we begin by

noting that the inverse of the relations in (4.2a) and
(4.2b) is

o= _,y~\/6X—1/2lp _ q'~1/3q

6=—y ""?p~gq|""p. (Bl6ab)

The equations above define a mapping from the (p, q)
plane to the (o, #) plane. The Jacobian is

d(ao, 8) _ 2
o(p, @) 3

-1/3 -2/3

x'lp—ql™?, (BI7)
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so that the transformation analogous to (B7) gives

~2/3

A 4 . oAl . A
3, 4) = gcsc(Zw)Ip - 4| exp[—-1p — 4|

X (sec’(p)g* + csc’(p)p?)], (B18)
where the nondimensional fluxes are
(B, 4, 7)) =2""ag"?y " "x " (p, q,r). (B19)
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