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ABSTRACT

The question posed in the title of this paper is answered in the affirmative by investigating a two-layer,
quasi-geostrophic model of the wind-driven circulation. The two layers model the thermocline rather than
the whole depth of the ocean. The wind stress is balanced by interfacial and bottom drag. This is perhaps
the simplest baroclinic extension of Stommel’s (1948) barotropic circulation model. It differs from an earlier
model of Welander (1966) in that the vortex stretching nonlinearity is of primary importance.

In this model the dynamics of the frictional western boundary layer determine the vertical structure of the
wind-driven flow in the Sverdrup interior. Thus, in a sense, the boundary layer is “active” and cannot be
appended to an arbitrary interior flow; rather it partially determines the interior circulation by setting the
functional relationship between the streamfunction and the potential vorticity in the lower layer.

In previous studies (Rhines and Young, 1982b) this functional relationship has been calculated using a
generalized Prandtl-Batchelor theorem. This result does not apply to the present calculation because every
lower layer streamline passes through a frictional boundary layer.

1. Introduction

It seems overwhelmingly likely that the answer to
the question posed in the title of this paper is “yes”
and this is, in fact, our conclusion. A little reflection,
however, shows, that there are no previous theories
which directly address this issue. For instance, in all
homogeneous circulation theories, the potential vor-
ticity in the Sverdrup interior is prescribed at the out-

set, i.e.,
q = f/H,

where H{(x, y) is the depth of the ocean. In these
theories the potential vorticity distribution is unal-
tered by the flow in general and the western boundary
layer in particular.

In baroclinic circulation theories, the potential vor-
ticity distribution departs markedly from the envi-
ronmental distribution because of vortex stretching,
For instance, in Needler’s (1967) thermocline theory,
the potential vorticity is uniform on density surfaces.
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In this particular theory, as in most similarity solu-
tions, the distribution is specified a priori by the the-
orist, and analytic tractability, rather than physical
considerations, governs the choice.

By contrast, Rhines and Young (1982a) construct
a circulation theory in which a particular physical
process (down-gradient flux of mean potential vor-
ticity due to mesoscale eddies) determines the poten-
tial vorticity distribution. The western boundary layer
per se is not implicated in this process although one
has to make some rather strong assumptions (see dis-
cussion below) about its dynamics in order to apply
the quasi-geostrophic version of the Prandti-Batche-
lor theorem given by Rhines and Young (1982b).

In this article we use a simple two-layer extension
of Stommel’s (1948) homogeneous model. The two
layers are intended to represent the density structure
of the upper thermocline rather than the full depth
of the ocean. They are bounded below by a thick,
deep layer which is motionless in the Sverdrup in-
terior.

Our model uses the two-layer quasi-geostrophic
approximation (Pedlosky, 1979). It is wind-driven
and dissipation is provided by vertical friction. Rel-
ative vorticity is ignored, even in the western bound-
ary layer. The only nonlinearity then is the vortex
stretching produced by deformation of the interface
between the layers.
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This model is similar to that of Welander (1966).
It differs in that we use the quasi-geostrophic ap-
proximation and discuss the consequences of the vor-
tex stretching nonlinearity both in the Sverdrup in-
terior and in the western boundary layer. Welander
(1966) avoided the quasi-geostrophic approximation
and allowed the density interface to undergo large
vertical excursions and even surface. He assumed that
the lower layer is much thicker than the upper layer,
since this allows the rigorous neglect of the vortex
stretching nonlinearity. This restriction also ensures
that the fractional depth changes in the lower layer
are small so that the lower layer geostrophic contours
are dominated by the B-effect. Thus all the geo-
strophic contours intersect the eastern boundary so
that the general results of Rhines and Holland (1979)
and Rooth et al. (1978) show that there is no lower
layer flow in the Sverdrup interior. In the western
boundary layer, however, the stresses are large enough
to drive a frictional boundary layer in the lower layer.
Welander’s solution is summarized in Fig. 1. In We-
lander’s model the two layers represent the full depth
of the ocean. A very thick lower layer is then a natural
assumption. In the present model the two layers rep-
resent the thermocline waters, and so correspond to
the upper layer of Welander’s model. Thus, in a sense,
we are investigating the consequences of increasing

-1 . 1 !

FIG. 1. A schematic illustration of the streamfunctions ¢, and
¥, when the vortex stretching nonlinearity is absent (F = 0). As
in Welander (1966) ¥, is essentially zero in the Sverdrup interior
and all of the transport is in the upper layer.
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the vertical resolution of the thermocline in Welan-
der’s model. )

Increased vertical resolution in this region pro-
duces qualitatively new phenomena: stretching dis-
torts the lower thermocline layer geostrophic con-
tours to the extent that they close and no longer in-
tersect the eastern boundary. As in Rhines and Young
(1982a; hereafter RY) and Young and Rhines (1982;
hereafter YR), this allows substantial flows to develop
in parts of the lower thermocline layer Sverdrup in-
terior. The present model differs from RY and YR
in that the potential vorticity homogenization results
of Rhines and Young (1982b) are inapplicable. This
is because every streamline passes through a frictional
boundary layer where the streamfunction ¥, and the
potential vorticity g, are not functionally related.
Because the quasi-geostrophic version of the Prandtl-
Batchelor theorem given by Rhines and Young
(1982b) requires

9 = QY») (1.1)

everywhere on a closed streamline, the potential vor-
ticity is not uniform inside closed geostrophic con-
tours. The major theme of this paper is that (1.1)
remains valid in the Sverdrup interior and Q is de-
termined by the dynamics of the frictional boundary
layer where (1.1) itself is invalid. Thus in the model
discussed here the frictional western boundary layer
cannot be appended to an arbitrary interior flow;
rather, it determines the vertical structure of the in-
terior Sverdrup flow by setting the functional rela-
tionship between ¥, and ¢, in the Sverdrup interior.

2. Formulation—the two-layer quasi-geostrophic
model

Throughout the article we use the two-layer quasi-
geostrophic approximation (Pedlosky, 1979). Relative
vorticity is ignored even in the boundary layer, as in
the simple but self-consistent models of Munk (1950)
and Stommel (1948). The parameter range in which
the neglect is rigorously justified is probably not directly
relevant to either the ocean or eddy resolving general
circulation models such as Holland (1983). Direct ap-
plicability to other systems is not, however, the primary
purpose of models such as these. The limited goal of
understanding them on their own terms is a useful
intuition building exercise because it focuses our at-
tention on a specific process [in this case vertical stress
transmission in a western boundary layer and how it
affects the Sverdrup interior by determining Q in (1.1)].

a. The dimensional equations of motion

The dimensional two-layer quasi-geostrophic
equations are

JW1, ) = (owe/H) + vV — ¥1),  (2.12)
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JW2, q2) = sz('l/l — ) — 5V2‘//2, (2.1v)

where ¢, is a streamfunction, g, the potential vortic-
ity, wr the Ekman pumping and
84 dB 0A 4B
A, B)="—————
J4, B) dx dy dy ox
is a horizontal Jacobian. The potential vorticities are
given by

a1 = By + F¥, — ), (2.2a)

g2 = By + F(y» — ¥a), (2.2b)
where 8 is the north-south gradient of the Coriolis

frequency, i.e., -
f=r+8y

F = f*/g'H,

where g’ is the reduced gravity between the two upper
layers and H is the depth of each layer. For simplicity
we have made the nonessential assumption that the
layers have equal depths.

In (2.1) » is an interfacial drag which transfers
momentum vertically between the layers, and 4 is
drag on the bottom or on a motionless deep third
layer.

In Welander’s two-layer model, the two layers
comprised the full vertical extent of the ocean. Here
the two layers are intended to model the upper ther-
mocline waters which contain the wind gyre (see RY
and YR for scale estimates of the depth of the wind
gyre using a continuously stratified model). Thus the
two layers here correspond to the upper layer of
Welander’s model. A three-layer model reduces to a
two-layer model such as (2.1), if one allows the frac-
tion of the depth occupied by the deepest layer to
approach unity and also increases the density jump
between the middle and deepest layer. In this limit
it is physically intuitive that the lowest layer is at rest
and acts as an “effective” bottom for the two layers
above. In fact, it is easy to show that the precise con-
dition on the external parameters which justifies this
reduction from three to two layers is

g'>g,

where g” is the reduced gravity between the middle
and bottom layer.

(2.3a)
(2.3b)

b. Non-dimensionalization

We will temporarily denote non-dimensional
quantities by an asterisk. The scaling adopted is

(O, ¥) = Llxy, Vs), (2.4a)
¥n = ULyy,, (2.4b)
q = BLqgy, (2.4c)
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wg = Wwgy,

(v, 8) = BL(v+, 0x),

where 2L is the north-south width of the basin and
U is a typical horizontal velocity. The Sverdrup bal-
ance determines U in terms of external variables:

U= foW/BH. (2.5)

The non-dimensional version of (2.1) and (2.2) is

(2.4d)
(2.4¢)

T1xs d1x) = Wex + veVallox — Yis), (2.62)
J2x, G2x) = vaVara — Vou) — 8:Vadae, (2.6b)
dix = Vx + Fullar — ¥19), (2.60)
Gox = Yx + Fellisx — ¥24), (2.6d)
Fy = FU/B. (2.6€)

We will suppose that the friction is weak so v, and
0, are very small.

3. Theoretical analysis
a. The barotropic mode equation

We begin by forming the equation for the barotropic
mode. We add (2.6a) to (2.6b) to obtain

No _ wg — 8V, (3.1a)
ax
¥ =¥1+ ¢, (3.1b)

where we have now dropped the asterisks. Note how
the large nonlinear vortex stretching terms cancel. In
the Sverdrup interior, outside the frictional western
boundary layers, the last term in (3.1a) is small and

Vs = (x — awe(y), (3.2)

where x = a is the eastern boundary. In Fig. 2 we
show ¢z when

_L ) L

a=3—>x

FiG. 2. The barotropic streamfunction ¥ . The western boundary
layer is schematic while the interior pattern is calculated from (3.2).
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wg = —cos(2my) 3.3)

and a = 3. The choice (3.3) models Ekman pumping
in a subtropical wind gyre.

b. An equation for , and Yy
Using (3.1b) one can eliminate ¢, from (2.6b) to

obtain
Jb2, @) = WV — (0 + )V,

g=y+ Fp.

Eq. (3.4a) is an advection-diffusion equation in
which ¥V%); is a source term. It is intuitively useful
to think of g as a streamfunction producing a velocity
z X Vg which advects the “passive scalar” y,. The
“streamlines” are sketched in Fig. 3 for various values
of F. This interpretation in terms of an advection-
diffusion equation is a generalized version of Welan-
der’s (1968) thermal analogy.

The details of the western boundary layer are not
shown in this figure. It is clear, however, that since
Y5 = 0 on the boundary, a ¢ contour which starts at
¥4 on the eastern boundary must also hit the western
boundary at y,. This ensures that the horseshoe-
shaped contours in Fig. 3 close in the boundary layer
as shown schematically in Fig. 4.

(3.4a)
(3.4b)

¢. Thelimit F < 1

For orientation it is useful to first consider F < 1
so.that
q=) (3.5)

- and (3.1a) and (3.4a) are linear. The solution of these
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equations is shown schematically in Fig. 1. The limit
F < 1 corresponds to the case studied by Welander
(1966, 1968). In the Sverdrup interior ¥, is very small
(order ») because the eastern boundary condition

'pZ = 0’ (36)
together with the interior solution of (3.4a)
¥2 = G(g) + O), (3.7
implies
G =0. (3.8)

This argument relies on the fact that g is dominated
by y so all g contours intersect the eastern boundary
where (3.6) applies. However, when F is O(1) there
is a pocket of closed ¢ contours in the northwest cor-
ner of the basin (see Fig. 3). In this region (3.8) is not
forced by the boundary conditions and O(1) lower
layer flows can exist.

d. The extent of the region of closed q contours

We saw above that when a point in the interior is
threaded by a g contour which leads back to the east-
ern boundary there can be only weak flows at that
point. Thus our attention is now focused on the
closed contours in the northwest corner of the basin
where the boundary conditions (3.6) do not preclude
the existence of order one velocities.

The size of this region may be gauged by noting
that if the Ekman velocity is given by (3.3) then the
outermost closed ¢ contour (i.e., ¢ = 1) intersects the
northern boundary at

Xy = a— (2/7I'F)

(@) q=y+la vy

() asy+ryy

(d) q=y+2y,

F1G. 3. The lower layer geostrophic contours ¢ = y + Fig, for various values of
F. The outermost closed contour (dashed) is ¢ = 1. The contours which strike the
eastern boundary x = a = 3, are referred to as blocked.
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l,BOUNDARY_,“ _SVERDRUP _ ,l
LAYER INTERIOR

FI1G. 4. A schematic illustration of the way the contours in Fig.
3 must close in the western boundary layer. Because 5 is zero on
the boundary, a blocked contour which starts at y, on the eastern
boundary must also intersect the western boundary at y, .

If closed contours are to exist, then this point must
lie in the basin and so F must be greater than (2/=a).
Now suppose that H = 400 m, g’ = 0.5 cm s72, f
=10%s,8=16X10%ecm!'s, U=1cms™!,
then from (2.3b) and (2.6¢)
g1
XN 5 ’

so that if @ = 3, as in Figs. 1-3, then the contour
g = 1 intersects the northern boundary very close to
the eastern boundary and a large fraction of the lower
layer must be within closed g contours. Of course if
one increases the layer thickness or g/, then this region
becomes smaller but its extent changes continuously.
This physically reasonable behavior should be con-
trasted with that in a model where F = 0. In that case
the total Sverdrup transport is always in the top layer
no matter how small H and g".

e. Inapplicability of the generalized Prandtl-Batch-
elor theorem

When Fy in (3.4b) is large enough to overpower
¥, the g contours (which are essentially geostrophic
contours) close in the northwest corner of the gyre. It
is in these closed regions that RY and YR applied the
generalized Prandtl-Batchelor theorem to calculate G
in (3.7). In the present problem this theorem leads to
(see Appendix A)

v = (ZV: 6)[(y/F) + ¥l (wrong).  (3.9)

The above result is incorrect because the theorem is
inapplicable. The derivation in Appendix A assumes
that (3.7) applies everywhere around a closed g con-
tour. In the Sverdrup interior, (3.7) is correct because
the dissipative terms on the rhs of (3.4a) are small.
In the frictional western boundary layer, however,
these terms are large.

Nevertheless, one might hope that (3.9) is fortui-
tously correct, since it is an exact solution of (3.4a)
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inside the closed g contours, where it doesn’t violate
the boundary condition

Y2 = 0.

This specious argument was advanced by Young
(1980). The numerical solutions presented in Section
4 show conclusively that (3.9) is wrong and unequiv-
ocally support the simple theory presented in the next
subsection.

f- Solution of (3.4a) in the Sverdrup interior

In the interior, the terms on the rhs of (3.4a) are
small and

¥2 = G(g) + O, 9).

In blocked regions, where g contours lead back to the
eastern boundary, G = 0. In the closed region we will
show that G is determined by conditions at the outer
edge of the northern boundary layer where fluid en-
ters the interior.

(3.10)

g. Solution of (3.4a) in the northern boundary layer
where flow is into the interior

First, we consider the northern section of the
boundary layer where fluid is leaving the boundary
layer and entering the interior. For a general wp this
northern exit region is the region in which d[y
— aFwg(y)]/dy < 0.

The form of (3.4a) suggests the “ansatz”

V2= M3, (3.11)

where X is a constant to be determined. Substituting
(3.11) into (3.1a) and neglecting terms of O(4, v) gives

e _ s
o -A 2 (3.12)
where
£¢=x/8
is a boundary layer coordinate.
Substituting (3.11) into (3.4a) gives
Ns s
A——=[a— A\ 1 .1
3 [ = M2a + 1)] T (3.13)
where
a=p/é = O(1). (3.14)

If the ansatz (3.11) is to work, then (3.12) and
(3.13) must be the same equation. This condition
leads to

N — (1 + 20\ + a = 0. (3.15)
This quadratic has two solutions but only
A=[1+2a— (1 + 4a)")2 (3.16)

gives a physically acceptable solution.
The behavior of A as « is varied is interesting. If
a — oo, so that interfacial friction overpowers drag,
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A — 1/2. From (3.11) this means that the boundary
layer flow is barotropic as intuition suggests. If « —
0, so the interfacial friction is weak, A — « < 1. This
means that the lower layer flow is weak, again as one
might have anticipated intuitively.

h. Calculation of G by matching

We now calculate G in (3.10) by requiring that the
boundary layer solutions obtained from (3.11) and

(3.12),
s = —Aa(l — e ™ )we(y) (3.17)
and the interior solution
¥2 = Gly + F(x — a)wg ()], (3.18)
match in the intermediate region
1 x<l. (3.19)

Thus G is calculated by the elimination of y between
(3.17) and (3.18) using (3.19).
‘Suppose for example that

wg = —cos(my/2), (3.20)

then

G'(¥y) = (2/m) cos™'(Yo/Na) + (F/AW2.  (3.21)

With the forcing function (3.20) it is impossible to
give an explicit expression for G itself. This is not
important, however, since by comparing the theory
with the numerical solutions, one can plot the function

q-—- G—I(IPZ),
where G ! is defined in (3.21). We expect that
g-G'W)=@—-1)

in the blocked regions where ¥, = 0, (3.22a)

and
g — G™'(¢,) = 0 in the closed regions. (3.22b)

Finally, although it is not possible to invert (3.21)
exactly, it is easy to obtain a very accurate approxi-
mation by reversion of the Taylor series

1 1
cosHs)=-—s——s+ .-,

2 6
One finds
aF—1y, = 1 q-1)3
( v )'h_(q 1)+31r(aF—1 *

Because the largest value of ¢ in the basin is aF the
cubic term is always less than (37)™! and can usually
be neglected. Thus there is approximately a linear
relation between ¥, and g within the closed contours.
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i. Discussion of (3.4a) in the southern boundary layer
where flow is out of the interior

We have been unable to provide a simple analytic
description of the southern boundary layer region
where [y — aFwg(y)]/dy > 0. This is the region where
fluid is flowing out of the Sverdrup interior and into
the western boundary layer. In theories which include
relative vorticity this is the region where an inertial
boundary layer forms (e.g., Pedlosky, 1979, Section
5.6; and YR). It is ironic that in the simple frictional
model used here, this region apparently has more
complicated dynamics. Since the numerical calcula-
tions described in the next section confirm the theo-
retical analysis previously presented, we have not at-
tempted to provide a detailed theoretical discussion
of this region. One should probably regard the ar-
gument leading to (3.21) as a plausible heuristic as-
sertion which must be computationally verified.

There is, however, a simple analytic argument
which is informative. If we consider the approximate
form of (3.4a) in the intermediate region £ = Xx/6
> 1 and x < 1 to be explicit, we could take x = O(5'?).
In this intermediate region, the boundary correction
to the interior solution is small. It is then straight-
forward to obtain a linear, ordinary differential equa-
tion in x for the boundary-layer correction, by li-
nearizing (3.4a) about the interior solution. The coef-
ficients of this ordinary differential equation depend
on y parametrically.

One finds that in the southern region, where fluid
enters the boundary layer and g, > 0, all of the so-
lutions of this ordinary differential equation remain
bounded as x — oo. Thus in this southern region it
is possible in principle to construct a solution which
matches an arbitrary interior ¥, and also satisfies the
boundary condition at x = 0. Thus the southern
boundary layer is “passive”; it can be appended to
an arbitrary interior flow.

In the northern region, where fluid is flowing out
of the boundary layer and g, < 0, one of the solutions
of the ordinary differential equation grows exponen-
tially as x — oo. Thus this particular function must
be excluded from the solution. This means that only
the boundary condition at x = 0 can be satisfied. In
fact, as we have seen, the interior ¢, is determined
by the limiting behavior of the boundary layer so-
lution as x — co. In this sense the northern boundary
layer is “active”; it determines the interior flow.

j. The limit F> 1, (3/v) < 1

Finally, it is interesting to note that in the limit
above the two layers are locked together and behave
as one. Note that both conditions are required:
F > 1 ensures that closed' g contours occupy almost
the whole basin and (6/r) < 1 ensures that

Y1 = Y2 + O(3/v).
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This limit is potentially interesting because it suggests
that the layers of finite thickness may be more than
just a convenient mathematical approximation. Weak
interfacial friction and strong nonlinearity can con-
spire to couple several thin layers so that they behave
as a single thicker layer. Indeed, one may speculate
that because of this process, a continuous density
profile effectively behaves like a finite number of
layers.

4. Description of the numerical methods

For the purposes of numerical solution we consider
the time-dependent version of (2.6a, b)

Gy + I, @) = we + VWA, — ¥), (4.1a)

G + Iz, @2) = vV(Y — ¥2) — 8V,  (4.1b)

and form the equation for the baroclinic mode
=y — ¥ (4.2)

by subtracting (4.1b) from (4.1a) with the result

a0
—+
2F % Hag, 9)

6 8
= —Wg — —2' Vztﬁg + (21! + E)Vzﬂ. “.3)
The neglect of relative vorticity leaves Eq. (3.1a) for
the barotropic mode unchanged, i.e., barotropic ad-
justments occur instantaneously in this approxima-
tion.

Solutions of (3.1a) and (4.3) are represented in the

form
¢ 32 16
[ ;} -3 {“} OT(ZCNT,G).  (4.9)
i=0j=0 [ ¥ |

The western boundary layer imposes stringent re-
quirements on resolution in x. If we take ¢ = 0 ini-
tially, then a substitution in (3.1a) of the form

¥ = ¥5(x) cos(my/2) (4.5)
leads to the ordinary differential equation
s d? d 1r2)
(2dx2+dx_68 e = —1, (4.6)

subject to homogeneous boundary conditions at
x = =x1. (In describing the numerical solution it is
convenient to rescale the x axis so it runs from —1
to 1.) For small §, one of the homogeneous solutions

" ¥s = exp(—2x/8). @.7)

Expansion coeflicients for the Chebyshev represen-
tation of (4.7) are given by

2 f‘ dx
"= Tox)e ™" — 7,
\I/B TCn Iy (.X)é’ (1 . x2)1/2
2, n=0
Cp = (483)
1, n>0.
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The integral above is standard and one finds
2
¥, = — 1(2/9), (4.8b)
TCn

where I, is a modified Bessel function. [For steady-
state solutions when ¢ is nonzero, using the relation
V> = M found in Section 3 changes this result to
1,(1/28).] The behavior of the Bessel function for large
arguments (small viscosity) leads to a flat spectrum
which does not fall off until rather large values of the
Chebyshev index n. We therefore adopted a simple
mapping in x to stretch the boundary layer region,

i.e.
1 — e—(x+1)/v']
1

Ev="al e 4.9)

2(x) = 2[

In (4.9),  is a free parameter which is adjusted to
ensure stability and convergence of the numerical
procedure. Hence,

9 1 d

L I S
w7 T Dy

2
Z*=[T_e——w“]-

Some experimentation to find the optimal mapping
parameter resulted in the choice of v/ = 44. (Smaller
values of »' resulted in insufficient resolution of the
interior.)

For time stepping, a Crank Nicholson leapfrog
scheme was used, but for improved stability, a pre-
dictor-partial corrector refinement originally pro-
posed by Gadzag (1976) was added. Specifically, the
predictor step was

F gm+1 1[( 5) 2. dm+1 ~+|:|
Zgm— {2 + 2 R+
A 2I\7 72

(4.10a)
where
(4.10b)

F —1 1 6) 2,9m—1 m—-l]
=—9m 4= - +
Att? +2[(2v+2v0 9%

— wg + FJ&™, ™), (4.11a)

and a corrector step

2F l[( ﬁ) 2 gm+1 m+l]
At" 2 2v+2V0 + 97

—_2_1f m l é 2.9m m]
_Ato +2[(2v+2)V0 + 9%

— wg + g ™, ) + I, rl/’é’)] . (4.11b)

Most of the computation time is spent calculating
JO, YBY) in the corrector step, even with the use
of a fast Fourier transform.

To facilitate solution of the implicit operator, a
diagonalization scheme introduced by Haidvogel and
Zang (1979) for the Poisson equation was used. Sym-
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bolically, Egs. (4.11a, b) (and the ¥ equation) are in

the form
2 M + 2 0Nk = fi,
j !

(4.12)

where Mj; is the matrix representing the operator

8\ & a
—+— 1
(2'/, * 2) ax*  ax’ “13)
or, in terms of the variable z,
2v+ §/2 &
(V—/Z/) ( )2
v
+1 [1 ———(2" s 5/2)](2* 22 @1
v v 0z

Explicit forms for these operators in Chebyshev space
may be deduced from various recurrence relations and
a useful compendium may be found in Gottlieb and
Orszag (1977). The matrix M in the Haidvogel and
Zang proposal is decomposed as

M = eAe™!, 4.15)

where e is the eigenvector matrix, e its inverse and
A, the diagonal eigenvalue matrix. To apply their
scheme, the (33 X 33) matrix form of M must first
be reduced to (31 X 31) using the two highest Che-
byshev coeflicients to satisfy the homogeneous
boundary conditions on ¥, otherwise the eigenvalue
spectrum is undetermined. Multiplying (4.12) from
the left with e™! we obtain

A + X 9Ny = fa (4.16)
/

where
§ —1
dic = 2 e Py
J

and similarly for fi. The transformation of basis has
diagonalized the equations in x. The remaining prob-
lem of 17 coupled linear equations in y can be solved
rather easily because of the simple form of N. An ac-
curate and efficient procedure is briefly sketched in
Gottlieb and Orszag (1977) for reducing the equations
to a quasi-tridiagonal form which requires only about
SN operations to solve.

Several tests were made to ensure accuracy of the
results. The numerical solution for the uncoupled
barotropic equation was checked against the analytic
result in the form (4.3). Also the lowest decay mode
of the unforced, linear, baroclinic equation

9= e3> cos(% x) cos(g y)e_‘“ , (4.17a)

1 vy’

K= T6v,F  2F°

vy = (Zu + g) , (4.17b)

was used as an initial condition in time stepping. For
s = 0.15, F = 10; u = 0.11568871 and with At
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= (.01 this value obtained to the number of places
shown as inferred from successive ratios of ¢, ; and
0,5 Several equilibrated runs were stepped further
using a true spectral calculation of the quadratic non-
linearity and aliasing errors were found to be negli-
gible. Multiplying (4.3) by ¢ and (3.1a) by ¢ and
integrating over the domain, we obtain, after some
simplification,

IO :
F% =3 {Vypyy + (2v + 6/2)
X (VO + (we(Ws — 9)).  (4.18)
The quantity ((9*)y™*' — (§?)™)/ At was found to agree

with the right hand side to better than 0.5% for a
single step. Finally, the ratios ¢, ;/% ; and ¢;s/3;;,
were computed for the equilibrium solutions. The
first of these was typlcally 1/500, the second
about 1074,

5. Comparison of numerical results with theory

Five runs with various values of F and » were made,
all with 6 = 0.1, which represented the best approx-
imation to the inviscid limit which could be achieved.
In practice, eigenvector-eigenvalue computation failed
somewhat before the Chebyshev resolution limit was
reached so that there is a slight computational ad-
vantage in diagonalizing in y, but at the cost of added
programming effort to solve the resulting linear sys-
tem in x explicitly. The results presented here are for
F=2,6 =0.1 and » = 0.05. None of the other runs
in this range showed larger variation from theory than
the one presented here.

Figs. 5 and 6 show [g — G™!(y,) + 1] where, in the
first of these, the Prandtl-Batchelor theorem (3.9) was
used to determine G !, while in the second, Eq. (3.21)
was employed. The striking contrast of these figures
makes it quite evident that the arguments advanced
in Section 3 are correct and that the functional re-
lation between y, and ¢ is appreciably altered in the
passage of streamlines through the western boundary
layer. Fig. 7, which shows y,, exhibits the north—
south asymmetry produced by the compression of the
lower layer circulation into the northwest corner of
the basin. From Fig. 8, which illustrates y,, one can
see that the region over which [g — G ~'(¥,)] is constant
does coincide with the closed region outside of which
¥, is sensibly zero. Figs. 9 and 10 demonstrate the
relation between ¥, and ¥ at various latitudes. (That
is, yis fixed and ¥ vs. ¥z is plotted on a zonal section.)
For y > 0.4 one can see that the linear relation in the
boundary layer does not vary much as a function of
latitude. In the northwest corner, the slope of 0.288
agrees quite well with the theoretical value of:

1
A=1-——==0.293.
V2
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FIG. 5. ¢ — G7'(y») + 1 with G calculated by the incorrect ap-
plication of the Prandtl-Batchelor theorem [see (3.9)]. If ¢, were
correctly given in terms of g by (3.9), then the function in this figure
would be flat in the northwest corner where the g contours close
(cf,, Fig. 6).

In the inviscid limit the relation of y, and ¢z would
appear as a triangular figure (see Fig. 11) whose base
at Y, = 0 extends from the eastern edge (where ¥
= 0) to the border of the blocked region where
g = 1. The boundary layer relation y, = Ay extends
from the origin to the point [—awg(y), —Aawg(y)] and
finally the closed interior joins this last point to [(1
— )/F, 0]. The actual result for y = 0.8 shows this
qualitative behavior, the gap between the smooth re-
sult and the limiting triangle disappearing as
(v, 6) — 0.

FIG. 6. ¢ — G™'(¥2) + 1 with G calculated using the boundary
layer matching argument; see (3.21). The agreement between the-
ory and numerical calculation is indicated by the plateau in the
northwest corner of the basin which coincides with the closed ¢
contours.

FIG. 7. The upper layer streamfunction y;.

6. Conclusion

The simple model discussed is intended to em-
phasize a possibility which did not arise in the regime
studied by YR and RY—the failure of the Prandtl-
Batchelor theorem due to the passage of every stream-
line through a frictional boundary layer.

It is likely, however, that this theorem does apply
to interesting and complicated systems. One of its
clearest predictions is that the potential vorticity will
be uniform in certain parts of a wind-driven gyre.
This notion is supported by both ocean observations
(McDowell et al., 1982; Coats, 1981) and numerical
experiments (Holland, 1983; McWilliams and Chow,
1981; Bleck and Boudra, 1981).

If the above results are accepted as successful ap-

FIG. 8. The lower layer streamfunction ;. Outside
the region of closed g contours ¥, is small {O(y, 8)].



1762

0.36

v, 0.249

20

FI1G. 9. Streamfunctions ¥, versus y; on several east-west sections
across the gyre. On each section the relationship encloses an ap-
proximately triangular region in the y,-¢; plane. The three sides of
the triangle correspond to passage through three different dynamical
regimes: the western boundary layer, closed geostrophic contours
and blocked geostrophic contours (see Fig. 11).

plications of the theorem then the present study raises
several questions. Does the inclusion of relative vor-
ticity (and the consequent development of inertial
boundary layers where g, > 0) alter the dynamics so
that (1.1) is valid everywhere? This question can be
answered by restoring the relative vorticity in (2.2)

o.16
I V)
3 V.
¥, =0.293 ¥, /
8 4
Vi
[ py
"’2 0.08 I~ /
Jy=080
0.04 |- 0.88
0.96
V= R BN S
(o) 015 0.30 .45 0.60
W

8

FI1G. 10. Streamfunctions y, versus y5 on several northerly zonal
sections. Note that the slope of the linear relation between ¥, and
¥ in the boundary layer is independent of y and is very close to
the theoretical value of 0.293. As one moves south the slope departs
slightly from this value (see Fig. 9).
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HG. 11. The theoretically predicted relationship between ¢, and
¥ (solid triangle) compared with the numerically calculated re-
lation (dashed curve) at y = 0.8 and § = 0.1.

and solving the resulting system numerically. In nu-
merical experiments, such as Holland (1982), how
exactly does (1.1) hold in the western boundary layer?
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APPENDIX

An Erroneous Application of the
Prandtl-Batchelor Theorem

We begin by integrating (3.4a) over the area enclosed
by a closed ¢ contour. The Jacobian term vanishes
leaving

varpB-ﬁdl=(2v+6)fV¢2-ﬁdl (Al)

where fi is the unit normal to the contour. Now sup-
pose (incorrectly) that (3.7) applies everywhere around
the closed ¢ contour. Substituting this into (A1) and

using
f y-idl =0
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gives the incorrect result (3.9). It is important to note
that (A1) is correct and exact, and the error resides
in the incorrect substitutions.
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