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ABSTRACT

A model for the vertical structure of the oceanic circulation is presented that combines elements of the
theory of the ventilated thermocline, given by Luyten, Pedlosky and Stommel, with the theory of Rhines and
Young for the wind driven circulation of an unventilated ocean.

Our model consists of a ventilated thermocline region above an unventilated zone in which motion is limited
to pools of constant potential vorticity. The model is nonlinear and hence the presence of ventilation affects
the dynamics of the unventilated motion and vice-versa. i

The planetary geostrophic equations are used and so the quasi-geostrophic assumption of Rhines and Young

is relaxed, allowing large isopycnal excursions.

It is shown that the presence of ventilation generally shrinks and weakens the size and vigor of the subsurface
pools of homogenized potential vorticity. At the same time, within those domains, the strength of circulation
in the ventilated zone is somewhat diminished as the subsurface layers carry a portion of the Sverdrup transport.

We argue that the (mathematically) consistent circulation in the absence of sub-thermocline constant potential-

vorticity pools is unstable.

The non-uniqueness of the nondissipative Sverdrup dynamics is demonstrated by the ambiguity in the
specification of potential vorticity in the deeper, unventilated layers. The study emphasizes the subtle importance

of dissipation in selecting a unique solution,

1. Introduction

Two theories have recently been advanced to explain
the vertical and horizontal structure of the wind-driven
oceanic circulation and the accompanying distribution
of density.

The first theory (Rhines and Young, 1982a, hereafter
RY); Young and Rhines, 1982) uses what we call an
unventilated model of the ocean. In the layered version
of this theory, only the uppermost layer is exposed to
" the surface and is forced by the wind stress. In the
absence of dissipation (that is, no smaller scale pro-
cesses such as mesoscale eddies), there are an infinite
number of steady solutions for the resulting flow. In
one possible solution all of the wind-driven flow is
confined to the uppermost layer. However, if the wind
forcing is strong enough, the isopleths of potential vor-
ticity in the next lowest layer will become sufficiently
distorted to overcome the S-effect and produce closed
geostrophic contours. Geostrophic motion is then not
prohibited by the no-flux eastern boundary condition.
RY argue that this motion will, in fact, be induced by
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baroclinic instability associated with mesoscale eddies
which redistribute the wind-driven flow vertically. The
motion on the closed geostrophic contours, which co-
incide with the potential vorticity isopleths, is not de-
termined uniquely in a dissipation-free model. Using
an extension of the Prandtl-Batchelor theorem and
the hypothesis that lateral diffusion of potential vor-
ticity is the dominant dissipative mechanism (Rhines
and Young, 1982b), it is argued that within the closed
geostrophic contours, the potential vorticity becomes
homogenized horizontally. As a result, the wind-driven
flow penetrates downward layer-by-layer forming pools
of constant potential vorticity within each deep layer.
The subsurface motion is then limited to a bowl-shaped
region in which the lateral extent diminishes with depth
and the overall extent depends on the vigor of the wind
forcing. Since the mesoscale eddy stresses are approx-
imately proportional to the gradient of mean potential
vorticity (Rhines and Holland, 1979), they vanish in
the region of homogenized potential vorticity. This
particular prediction is strikingly confirmed by Hol-
land’s (1983) numerical simulation of an unventilated
ocean.

The unventilated model described in RY uses the
standard S-plane quasi-geostrophic approximation.
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This allows only small overall departures of isopycnal
depths (or layer thicknesses) from their resting values.
A cursory inspection of an oceanographic atlas shows
that this condition is not satisfied by planetary scale
flows. In particular, when the forcing is strong enough
to produce closed potential-vorticity contours, it will
usually lead to significant excursions of isopycnal sur-
faces from their resting levels. Nor can the quasi-geo-
strophic theory describe the process in which isopycnal
surfaces strongly deform and intersect the sea surface
to expose deeper layers to wind forcing.

The second theory (Luyten et al., 1983—hereafter
LPS) uses a ventilated model of the ocean. The theory
is closer in spirit to the classical thermocline theories
(e.g., Needler, 1967; Welander, 1971) than is that of
Rhines and Young. It abandons the §-plane approx-
imation and allows large departures of isopycnal depths
on planetary scales. It is able to satisfy vertical and
horizontal boundary conditions in a more convincing
fashion than the classical theories although this is only
accomplished through the use of a layered model of
the oceanic thermocline. The key feature of the ven-
tilated model is the outcropping of isopycnal surfaces
at the sea surface. Fluid at the surface is subducted
beneath less dense fluid at more southerly latitudes,
from which point the fluid conserves potential vorticity.
The theory predicts the gross structure of the ther-
mocline and the associated deep motion field as a direct
consequence of the surface distribution of density and
Ekman pumping. In this second model subsurface
motion requires ventilation and subduction rather than
homogenization of potential vorticity. The two theories
predict different domains of subsurface motions.

An important assumption in LPS is that the layers
beneath the ventilated thermocline are at rest. This an
arbitrary choice. Although it is self-consistent, it is
merely one of an infinite number of possible steady
solutions. The nonuniqueness arises because LPS
completely avoid consideration of dissipative processes.
As in RY, a lack of uniqueness is present in the spec-
ification of flow in the unventilated region. If the layer
beneath the deepest ventilated layer is thin enough (or
equivalently if the forcing is strong enough), then po-
tential vorticity contours in the resting, unventilated
layer may close and, as in the first theory, a deep
recirculating gyre of homogenized potential vorticity
can be formed beneath a ventilated thermocline. In-
deed, a limiting case occurs when the unventilated
layers become so thin that, were they assumed to be
motionless, the ventilated layers would slice through
them from above forming strong lateral density dis-
continuities.

The purpose of this paper is to present a synthesis
of the ideas of the two theories. The new hybrid theory
incorporates desirable features of both the ventilated
and unventilated models. It supersedes the theory of
RY by including the effects of isopycnal outcrops, sub-
duction and ventilation and it further avoids the quasi-
geostrophic B-plane approximation. We believe it is
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superior to the LPS model because it explicitly con-
siders the effect of eddy-induced mean flow acceleration
around closed geostrophic contours in the unventilated
regions beneath the ventilated layers.

It is important to note that the synthesis of the two
models involves more than simply stacking the ven-
tilated model atop an unventilated zone. At each hor-
izontal location, the sum of the northward transports
in the two regions must satisfy the Sverdrup relation.
This condition links the ventilated and unventilated
regions in a nonlinear fashion. This nonlinearity ren-
ders the required analysis more complicated, if not
more difficult, than in earlier theories.

In common with the earlier theories, certain hy-
potheses must be made to avoid the underlying non-
uniqueness of the nondissipative dynamics we consider.
As in RY, we assume that dissipation by mesoscale
eddies acts to homogenize the potential vorticity in
unventilated regions whose bounding geostrophic con-
tour is either closed or, if not closed in the oceanic
interior, at least avoids intersecting the eastern bound-

.ary of the ocean. There is also an assumption about

the western boundary layer dynamics: lerley and
Young (1983) show that homogenization does not oc-
cur if the boundary layer is diffusive. However, we
wish to stress the important point which emerges un-
equivocally from the present study that the planetary
geostrophic, ideal-fluid equations do not have a unique
solution. Some dissipative process is required to select
a solution and a different weak dissipative process will
select a different solution. If one argues that a particular
solution is more “realistic’ than another one, one is
asserting that a particular dissipative process is dom-
inant in the ocean. In this article, as in RY, we hy-
pothesize that the dominant dissipative process, due
to mesoscale eddies, is lateral diffusion of potential
vorticity.

Another very subtle role of dissipation and mixing
is implicit in our use of finite layers for some aspects
of the model. The use of a continuous, nondissipative
model implies that fluid cannot cross a density surface
no matter how slight is the density contrast with a -
neighboring density surface. The use of finite layers
may actually better model the situation where the re-
straint against cross-isopycnal mixing only occurs for
finite intervals of density change. An alternative sug-
gestion is that very thin layers will be so strongly cou-
pled by vertical stresses that their dynamics is equiv-
alent to that of fewer, thicker layers (Ierley and Young,
1983).

In this paper, as in the earlier theories, the actual
process of thermal forcing is not explicitly considered.
Rather, this process is translated to a specification of
the density distribution at the sea surface and along
the ocean’s eastern boundary (or equivalently, in our
model, on the latitude of zero Ekman pumping). This
specification is the implicit result of some deep non-
geostrophic process, such as deep convection. Alter-
natively, some of the specification of the density field
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required by our model may be the result of dynamic
processes in the western boundary-current region which
is beyond the scope of the present theory.

As in the earlier theories, the fundamental physics
used is very simple. The motion is assumed to be com-
pletely geostrophic, hydrostatic and density conserving.
At the sea surface an Ekman pumping velocity wg is
specified. It is negative in the subtropical gyre and
positive in the sub-polar gyre and vanishes at the lat-
itude where Coriolis parameter is f. Throughout, we
assume that the geostrophic zonal velocity must vanish
at the eastern wall, x = a.

In the following sections we present several simple
models that describe the interplay between ventilation
and potential vorticity homogenization. In Section 2
we describe a model in which the ventilated region
consists of only one homogeneous layer which overlies
a continuously stratified unventilated region. The
buoyancy frequency is a linear function of depth in
the unventilated zone. This model is the extreme limit
of a unventilated domain with very thin (here infin-
itesimally so) isopycnal layers. The effect of Ekman
pumping in the subtropical gyre is felt quite strongly
in the unventilated zone. In fact, to preserve continuity
of density deep motion is required. In Section 3 we
use a layered model of both the unventilated and ven-
_ tilated regions. This allows us to describe somewhat
more general stratification of the unventilated zone
-and to determine the effect of outcropping and en-

hanced ventilation on the zones of constant potential
vorticity. In Sections 2 and 3 we find that since pools
of constant potential vorticity carry some of the re-
quired Sverdrup transport, they diminish the strength
of flow in the ventilated region. Section 3 also dem-
onstrates a further coupling, namely that the presence
of ventilation and outcropping shrinks the size of the
pools of constant potential vorticity.

Section 4 is a discussion of the flow in the sub-polar
gyre using the model of Section 2, and it stresses the
absence of unique solutions. We conclude in Section
5 with a discussion of our results.

2. Continuously stratified models of the subtropical
gyre
a. Equations of motion

Throughout this article we use the planetary geo-
strophic equations (Phillips, 1963, or Pedlosky, 1979,
Section 6.20). This approximation is appropriate when
the Rossby number (U/fL in standard notation) is
small and the horizontal length scale of the flow is
comparable to the radius of the Earth (i.e., BL/f < 1
but not <1). The S-plane approximation is not made
so that in the equations of motion, fis a function of
the north-south coordinate y. Here 3 is defined by

af

) =4’ (2.1)
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and it is also convenient to use the notation
Jo = f0). (2.2)

The coordinates (x, y, z) are Cartesian. Gill (1982)
shows how to transform the equations of motion in
spherical coordinates into the Cartesian system below.
The vertical coordinate z is positive upwards and
z = 0 is the base of the mixed layer. The velocity is
(u, v, w), and the motion is forced by Fkman pumping
or suction at the base of the mixed layer:

w(x, y, 0) = wgl(x, y). (2.3)

The three components of the momentum equation
are: 4

—fo = - B (2.4a)
Po
fu=-2, (2.4b)
Po .
0=p.+ g (2.4¢)

where p is the pressure, g the gravitational acceleration,
p the density and p, is the mean density of the fluid.
The Boussinesq approximation is made so the fluid is
incompressible:

Uy + v, + w, = 0. (2.5)

It is convenient to represent the density as
p = poll — g~'B],

where B is buoyancy.
By eliminating the pressure from (2.4) one obtains
the three components of the vorticity equation

fo. = By, (2.6a)
Ju, = —B,, (2.6b)
Bv = fw,. (2.6¢)

Egs. (2.6a,b) are the thermal-wind relations while (2.6¢)
is the Sverdrup balance connecting vortex stretching
and north--south velocity.

A result we will use frequently is obtained by elim-

‘inating v between (2.6a) and (2.6¢)

fzwzz = ﬂBx

The final equation which closes the system is conser-
vation of density

2.7)

uB, + vB, + wB, = 0. (2.8)

Differentiating (2.8) with respect to z and using (2.6)
gives conservation of potential vorticity:

(2.9a)
(2.9b)

ug, + vq, + wg, = 0,
q=fB,.

Finally, in a layer model in which the density changes
are localized at surfaces, (2.6a and b) are
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Sf(év) = (6B)h,, (2.10a)
f(6u) = —(8B)h,, (2.10b)

where (6u, 6v) is the jump in velocity at the surface,
6B is the jump in buoyancy and z = —A(x, y) is the
position of the surface separating the two layers.

b. A ventilated model of the subtropical gyre

In this subsection we present a “ventilated” model
of the wind driven circulation. The term ventilated
refers to the assumption that only the density layers
directly forced by the wind are in motion.

The underlying stratification is shown in Fig. 1. It
consists of a layer of fluid with uniform density,
B = 0, riding over a continuously stratified fluid. For
simplicity, it will be assumed that the buoyancy of this
unventilated region is

B = N*z+ H,). 2.11)

At the eastern boundary, x = a, the stratification is
undisturbed by the forcing (e.g., RY and LPS) and the
layer of homogeneous fluid has uniform thickness Hy.
Thus, at the eastern boundary there is a buoyancy
jump,

0B = N%(H, — H,), (2.12)

and static stability requires Hy > H, . Away from the
eastern boundary the thickness of the upper layer will
be denoted by D(x, y) (see Fig. 1). The surface
z = —D(x, y) separates the ventilated fluid from the
motionless unventilated fluid below.

The assumption (2.11), together with the assumption
that there is only one surface density layer can be
relaxed. In fact, one can, in principle, take the un-
derlying stratification to be an arbitrary function of z
and also, as in LPS, insert additional density layers
that surface at prescribed latitudes in the subtropical
gyre.

w. < 0
R
P=p 7="H
-0/4“
=
———————————— P,
7
1\

FI1G. 1. A schematic zonal density section of the subtropical gyre.
The stippled area above z = —D(x, y) represents fluid of uniform
density injected from the Ekman layer at z = 0. Below z = —D(x,

~ y) the fluid is stratified and the dashed lines represent undisturbed
isopycnals. Note how the strength of the density jump at z = —D
increases with depth.
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To solve the equations of motion, begin by observing

that at z = —D there is a buoyancy jump
8B = N¥D — H,). (2.13)

Now from (2.6a,b) the velocities are independent of z
in the ventilated region. Vertically integrating (2.6¢)

from z = 0, where w = wg, to z = —D, where w = 0

(because the unventilated layers are motionless) gives
Swg

v="—"0C, 2.14

73 (2.14)

At z = D, the density is discontinuous, and (2.10) and
(2.13) give

fo=N¥D - H,)D,. (2.15)
Eliminating v using (2.14) gives a simple differential
equation for D:

[P
Ng "’
Integrating the above from x' = x to x’' = a gives
Ipp-lpe

3 D 5 D*H,

2 a
(G [ =)

Note how the above satisfies the boundary condition
D = H, at x = a. It is straightforward to show that
the cubic in (2.17) has one physically reasonable so-
lution: the spurious solutions are rejected by recog-
nizing that static stability requires D > H,.

Once D has been calculated from (2.17) one has

(D — Hy)DD, = (2.16)

w = wg[l + (z/D)] (2.18)
and then from (2.6c):

e
v= 8D (2.19a)

2
= (l)(D - HD,, (2.19b)

S

2

u= —(]—Vf)(p — H,)D,. (2.20)

c. Some comments on the density field

Perhaps the most unrealistic feature of the model
described here is the intersection of the resting, flat
isopycnals below z = —D with the fluid injected from
the mixed layer (see Fig. 2, 3, 4 and 5). It is important
to realize that similar singularities would occur if the
unventilated region were layered: LPS avoided this
intersection by implicitly assuming that the uppermost
unventilated layer was sufficiently thick. However, it
is easy to see that in general the surface z = —D would
progressively slice through thinner, quiescent unven-
tilated layers. The calculation in the preceding sub-
section exaggerates this effect (or perhaps represents it
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accurately) by using a continuously stratified model
of the unventilated region. One can think of the LPS
solution and the present solution as endpoints of a
continuum of models in which the vertical resolution
of the unventilated region is increased by making the
layers finer and finer.

d. Summary of the ventilated model

The calculation in the previous subsections is sum-
marized in Figs. 2, 3, 4 and 5. In these figures the
subtropical gyre is the region y < 0 where wz < 0. The
circulation patterns shown in the region y > 0 (i.e.,
the subpolar gyre where wg > 0) are calculated using
the theory of Section 4. Also, in all these figures it has
been assumed that

H, = Hy =0, 2.21a)
B _ o  (2.21b)
dy

Figure 2 shows a meridional section. Here D has
been calculated from (2.17) using (2.21) and

fwg =]52Wo(ﬂ—y) .

Jo

Thus y = 0 is the boundary between the gyres and

(2.22) is a local approximation to the forcing function

at this latitude. Note that the stratification is undis-
turbed at y = 0.

Figure 3 shows a sequence of zonal sections through
the gyres. Below the surface z = —D the density field
is undisturbed and is given by (2.11) with H, = 0.
Also at y = 0, where the Ekman pumping vanishes,
the isopycnals are flat and the fluid is motionless.

In order to visualize the circulation in a complete
double gyre system (refer to Section 4 for the theoretical
discussion of the subpolar gyre) consider the forcing
pattern

(2.22)

FIG. 2. A meridional section showing the density field (the dashed
lines are isopycnals) in the vicinity of the latitude where wz = 0.
The surface z = —D(x, y) is the solid curve. The section is at
x = 0 and wg = 0. The surface z = —D(x, ) is the solid curve. The
section is at x = 0 and wg is given by (2.22). The north-south
distance is nondimensionalized by some arbitrary length scale L and
the depth is nondimensionalized by (foaLwo/3N?)'3,
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FI1G. 3. A sequence of zonal sections through the gyre: (a) a zonal
section in the subpolar gyre, (b) a zonal section at the boundary
between the subpolar and subtropical gyres and (c) a zonal section
in the subtropical gyre. The dashed curves are isopycnals while the
solid curve is z = —D. It has been assumed that dwg/dx = 0 so
D o (@ — x)'” and H, = 0. In (b) the basic stratification is undisturbed
since D = 0 at this latitude. ‘

e ().

wheré —L < y < L. When y < 0, wg is negative while
when y > 0, wg is positive. Thus (2.23) models the
Ekman pumping in a double gyre system where once
again y = 0 is the boundary between the gyres. In Fig.
4 contours of constant pressure are plotted at two
depths: z = 0 and z = {Dp.x, Where

6fa*woa
D, = S

is the maximum depth of the gyre. These pressure
contours are “streamlines” for the nondivergent vector
field ( fu, jv). Fig. 5 shows a meridional density section
through the double gyre system.

Perhaps the most peculiar feature of the ventilated
model is the way in which the isopycnals intersect. It
is likely that although these are exact solutions of the
planetary geostrophic equations, other processes must
intervene and prevent the flow in Figs. 2~-5 from be-
coming established. The process favored by RY is ver-
tical stress transmission produced by mesoscale eddies.
A variety of simple arguments suggest that this mech-
anism may produce large mean flows when there are
closed geostrophic contours, i.e., unimpeded free flow
paths. Now it is apparent from Fig. 2 that the geo-
strophic contours in the motionless, stratified fluid im-

(2.23)
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FiG. 4. A plan view of the pressure field [actually (p/py = gz
= IN?2z%)/UN?D?%,,)] in a double gyre system at two depths, (a)
z=0and (b) z = {Dpa-

mediately below z = —D track the base of the gyre.
Thus the region immediately below z = —D in Fig. 2
is particularly susceptible to mean flow acceleration.
This argument suggests a model where there is a region
of ventilated fluid with density p,, injected from the
mixed layer, riding above a region where eddy stresses
have removed all the closed geostrophic contours by
homogenizing the potential vorticity. This alternative
leads to the model developed in the next subsection.

-4/l

Pl 0 10
g.,._ 1. L
i? 0.5 o
S g
3° -1.04-
N O
w
2l

FIG. 5. A meridional density section through the double gyre
system. The solid curve is z = —D(x, y) while the dashed curves are
isopycnals.
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e. A partially ventilated model of the subtropical gyre

In this section we present a partially ventilated model
of the wind-driven circulation. The designation of par-
tial ventilation refers to the assumption that the density
layers below those directly forced by the wind are also
in motion. This notion allows one to construct a cir-
culation which does not have some of the singularities
found in the earlier section (e.g., intersecting isopyc-
nals).

As in the previous section, fluid of density pq is
pumped out of the Ekman layer. This fluid collects
above a region where the potential vorticity is uniform
(see Fig. 6). As in RY, the value of the constant po-
tential vorticity in this region is determined by con-
ditions at the boundary between the subtropical and
subpolar gyre. As in the previous subsections, this
boundary is at y = 0 where f = f;. Below the region
of uniform potential vorticity lies motionless fluid in
which the stratification is given by (2.11).

Thus the ocean is divided into three regions
(Fig. 6):

1) Region I where 0 > z > —D(x, y) and p = po or
equivalently B = 0.

2) Region II where —D(x, y) > z > —G(x, y) and
q = fB, = fyN? The potential vorticity is uniform on
isopycnals and because of the special assumption (2.11)
uniform across isopycnals.

3) Region III where —G(x, y) > z > —oo and
B = N¥z + H,) as in (2.11) while (4, v, w) = (0,
0, 0).

We have assumed that the basic stratification is given
by (2.11). In general the functional relationship be-
tween g and p in Region II is obtained by eliminating
z between B and f B, at the northernmost point of the
subtropical gyre (RY). Young and Rhines (1982) dis-
cuss a case where the stratification is exponential with
depth. At this point the fluid is motionless at all depths

we <0
PP ¥ v ¥ YV z2-a
P A
e = G N
__________ P3
7
\

FIG. 6. A schematic zonal density section of the subtropical gyre.
The dashed curves represent isopycnals. Above z = —D lies the fluid
with density po injected from the mixed layer. Between z = —D and
z = —Q@, the potential vorticity is uniform. Below z = ~G, the fluid
is motionless. At x = g, the stratification is undisturbed.
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and the basic stratification is undisturbed. It seems
likely that one could construct a family of solutions
by assuming different functional relations between ¢
and B in Region II. The choice of uniform ¢ is mo-
tivated by the Prandtl-Batchelor theorem discussed
by Rhines and Young (1982b).

In Region Il where ¢ = fB, = [N

B= ( oN?
S
One can now obtain two relations between the three
unknowns G, D and b by matching the density field
at z = —D and z = —G.
At z = —D we require that the same buoyancy jump
occurs at the base of the ventilated region as occurs
at the eastern boundary. Thus

[ (})NH) + b:| = N¥H, — H,)

2, it follows that

)z + b(x,y), —=D>z>-G. (2.24)

or

b= (;)NZD NXH, — H,)

so that when —D > z > —G,

(2.25)

B= (;)Nz(z + D) — N¥H, — Hy). (2.26)

At z = —(G we require that the density be continuous.
Thus putting z = —G in (2.26) and (2.11) and equating
the two, one has

p=c ()] (D

Now if we can calculate G, we have a complete
solution. To do this substitute (2.26) into (2.7) and
integrate vertically upwards from z = —G. In order to
make the transition to the motionless region below
z = —(@ as smooth as possible we choose the constants
of integration so that v and w vanish at z = —G. One
finds

o~ YA~ (e 00

L@ ere com

Let ¥ and W denote the values of v and w at z
= —D. In Region I, the fluid has uniform density so
v = D throughout the region and (2.6c) is

BOD = flwg — (2.29)
Atz = —D there is a jump in buoyancy .so (2.10a) is
f[® — v(z=—D)] = éBD,,

where v at z = —D is evaluated from (2.28a). The w
is determined by noting that w is continuous, so

w = w(z = —D).

| (2.27)

(2.28a)
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Using the above relations, one can eliminate d, W and
D from (2.29) and obtain an equation which deter-
mines G :

% AG — Hy* + % B(G — Hy)* + C(G — Hy)

—— [ e, yyax, @30

- (A1)
o= (2]

x{to+ [ 1= (£) o - mo}
c- (- (B

Because A4, B and C are positive (provided fdecreases
as one moves south) it is easy to show that the cubic
in (2.30) has one physically sensible solution, i.e., one
solution for which G > H,.

where

N

A

J Local analysis of (2.30) near y = 0

It is informative to analyze (2.30) near y = 0. This
is the boundary between the subpolar and subtropical
gyres. Suppose further, as in Figs. 2-5, that

H*=H0=0

2.31
@=0 (2.31)
dy .

Because of (2.31), B and C vanish, and
2
=R
Jo/ \Jo
If in addition we employ (2.22) as a local approxi-
mation to wg then (2.30) gives

-

Thus, in this second partially ventilated model of the
wind-driven circulation, the depth of the circulation
is not zero at the northern boundary when H, = 0.
This is also apparent in the meridional density section
shown in Fig. 7. The dotted curve in Fig. 7 indicates
the depth of the circulation (z = —D) according to the
earlier model. This figure should be compared with
Fig. 2. The two theories predict very different flow
patterns at the boundary between the two gyres. In
the earlier theory, the depth of the gyre goes to zero
‘(if Hy = 0) as y — 0, whereas in the present theory
the circulation is deepest at the northern boundary. A

)wo(a — X). (2.32)
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FIG. 7. A meridional section (x = 0) through the density field in
the neighborhood of the boundary between the subtropical and sub-
polar gyres. The isopycnals are dashed. The boundaries z = —D and
z = —@ are solid. For comparison z = —D from (2.17) and (2.22)
is shown as a dotted curve. )

deep northern boundary is more consistent with tra-

ditional descriptive ideas (e.g., Montgomery, 1938).
Note that the above remarks depend to some extent
on the choice (2.31). To emphasize this point, consider
the case
Hy=H, +0. (2.33)

In the neighborhood of y = 0, one can approximate
(2.29) by

% O+ 2 =E, (2.34a)
2 —
E= g%z_ofﬁ , (2.34b)
¢= (—G—I_{—@ : (2.34¢)
0

where once again (2.22) is used as a local approxi-
mation to wg at y = 0,

Now if E is small, as it must be in the vicinity of
the eastern boundary, then the approximate solution
of (2.34a) is

¢~ EV2, (2.35)

or G — H, is proportional to (a — x)"/2. This is qual-
itatively different from the solution when H, = 0: see
(2.32).
) When F is large, the approximate solution of (2.34)
is

¢~ (3E)'~. (2.36)
The transition between the two limits (2.35) and (2.36)
occurs when E = O(1). If wy = 10™* cm s™', (N/fo)
=900,8=1.6 X 1072 cm™ s! and H, = 800 m (as
in LPS), then E is of order 1 when
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N\’ Hp?

a—x= 6(f) 2wy 3700 km.

This distance is so large that the transition would prob-
ably not occur. However, the distance is very sensitive
to the value of Hj. In the estimate above, H, was 800
m so that a large fraction of the thermocline is modeled
by a single layer. If Hy is reduced to 400 m, then the
transition occurs at 460 km, and (2.32) is accurate
over most of the basin.

g Summary

The results of the calculation in this section are
summarized in Figs. 8, 9 and 10. In these figures the
circulation sketched in the subpolar gyre has been cal-
culated using the theory of Section 4. Also, as in the
earlier figures

Hy=H, =0,

and (2.23) has been used as a model of Ekman
pumping.

Two zonal density sections, one in the subpolar and
the other in the subtropical gyre, are shown in Fig. 8.
Because D, G — 0 as x — aq, the stratification is un-
disturbed everywhere along the eastern boundary. Fig.
9 shows a meridional section through the double gyre
system. Note how the isopycnal spacing increases pole-

(A) gL = %, m.//o =%

(8) /L = -, pL//Q =%

Fi1G. 8. Two zonal density sections in a double gyre system where
wg is given by (2.23): (a) a zonal section, through the subpolar gyre
and (b) A zonal section through the subtropical gyre. The dotted
curves are isopycnals. The surface z = —g(x, y) is the solid curve.
In (b) the solid curves are z = —D(x, y) and z = —G(x, y).
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ward to ensure that the potential vorticity is uniform.
Fig. 10 shows plan views of the pressure and density
fields at two depths in the double gyre system. Fig.
10a is for z = 0 while Fig. 12b is for z = —12G(0, 0).
The stippled region in Fig. 10b has uniform density
and is motionless. Many of the qualitative features of
- the circulation patterns above are already present in
the simpler quasi-geostrophic model of Young and
Rhines (1982).

3. Layered model of the subtropical gyre

In this section we consider the circulation in the
subtropical gyre where the Ekman pumping wg is neg-
ative and represent the circulation by the layered model
shown in Fig. 11. In the model there are only two
layers, with thicknesses /4, and A, which are exposed
to the surface, although it is straightforward to add
more ventilated layers. The layer with thickness 4,
exists only south of the outcrop latitude where f is
equal to f,. The Ekman pumping vanishes at ' = f,
> f;. Below these two ventilated layers there are an
arbitrarily large number of layers. We insist only that
at least the very deepest of these layers be at rest. At
the latitude where wr vanishes, the layer thicknesses
are constant and given by

h,=H, n=0,1,2.+-N. 3.1)
The density of each layer is constant and given re-
spectively by p,, po, 01° * *pn* * * pv-

) BL/f e
—yL—>

o ok 0
z 010 1.0
§

305

]

=2

.V{_LO ..........

=

@

haad _4.5—44

w

(B)BL//%

FIG. 9. Meridional density sections in a double gyre system: (a)
BL/fo = V5 and (b) BL/f, (c.f. Fig. 5). The dotted curves are isopycnals.
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(W g:0, BL/fy <%

e F - %G,

FIG. 10. Plan views of the pressure field [actually (p/p + gz
— IN22%)/(4N?G,?)] and the density field (actually B/N2G,) at two
depths in a double gyre system: (a) z = 0 and (b) z = —1G(0.0) = G,.
The isopycnals are dashed while the isobars are solid. In (a) the fluid
in the subtropical gyre has uniform density at this depth. Note the
change in the contour interval between (a) and (b). The shaded
region represents motionless fluid.

Consider the case where » unventilated layers are
in motion. Aside from an irrelevant term dependent
only on depth, the pressure in each layer is given by

wy<0

\,,V
T
_ —

!

W =0
{

b

hn
f=f,

y .
f=f =0
FiG. 11. A schematic meridional cross section of the layer model
of the subtropical gyre. The layers with thicknesses #y and 4, are
ventilated. The latter outcrops on the latitude where f = f,. The
Ekman puraping vanishes at f = f.
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-

P < ylhot ot )
P e+ B+ - by
ot Rt - h)
B = b+ o+ < h) ’ .
= 4 vurlhot ho+ - chyy)
+ oceevi(hy + ho + by)
DPo = D1+ volho + hy)
Py = Do+ Yohy )
where
n=Pn+1_Pn . n=0,1,
po (3.3)
Yo = Pu_"‘P_og
Po

and the Boussinesq approximation, p;+; — p; € po, has
been used.

In each layer, the meridional and zonal velocities
are geostrophic, i.e.,

0 Du 9 Dn
n ===, fup=— o
Pon= o Pn fin 0y pn
The Sverdrup relation relates the total meridional

transport to the surface Ekman pumping. In a region
where n unventilated layers are in motion

3.4

BLS. vl + voha] = fivs.

Jj=0

3.5)

The geostrophic equation for v and the relation be-
tween the pressure and layer thicknesses allows (3.5)
to be rewritten as

% {'Yn[hv + ho + h1 + .. ’hn]2

+ Ynallo + o+ <« B PP+ ¢ e yolho + A
fz
+ 'yvhuz} =2 E Wg.

If only j < n unventilated layers are in motion; (3.6)
still applies since, in that case

hy+ ho+ hy + ---hk,'j<k<n,

will be constant and equal to its value on the eastern
boundary. Thus (3.6) may be immediately integrated
to yield

'Yvhvz + 'YO(hv + h0)2 + VI(hv + hO + h1)2
+ oo eyy(by+ By + i+ -y
= ’YO(DOZ + Cn)’

(3.6)

3.7
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where
YoCrn = +v0Ho®
+ oo yu(Hy+ H + - - -H,)’, (3.82)
2 e :
Do*(x, y) = — = | we(x, p)dx'. (3.8b)

Yo Jx

In (3.8a) we have anticipated the result that the
depth of the outcropped ventilated layer 4, must vanish
on the eastern boundary (LPS).

The basic hypothesis in our theory is that whenever
an unventilated layer is in motion, it must have uni-
form potential vorticity. Thus when the kth unven-
tilated layer is.in motion

S constant.
Py

At the latitude where wg vanishes, A, is presumed
known, i.e., h, = Hy there, thus

f_ L

D 3.9

he=L e, 1<k<

«=7 Hy, 1<k<n (3.10)
Jo

It is important to point out that our theory presumes
that at f = f;, the density—depth relation (vy, Hy) is
known. Some process in addition to geostrophy must
set this arbitrarily given density distribution. Our theory
simply describes the way the distribution is altered
within the gyre.

Since H; and v, are arbitrary the density—-depth dis-
tribution our layered model can represent is fairly gen-
eral. Of course, the limitation to a layered rather than
a continuous model is at first sight a drawback. How-
ever, given the existence of oceanic regions of low
static stability, so-called pycnostads, the layer model
may have its own claim to realism not shared by the
continuous model with constant buoyancy frequency.
We prefer to think of both models as accessible,
tractable, limiting endpoints of the natural system,
each of which reflects important aspects of the general
problem.

Since the thicknesses of the unventilated layers are
known, (3.7) becomes a single equation for the two
unknowns, /g and 4,. As in LPS, this problem may
be solved by first considering the region north of
[=f; where A, is zero and then using potential vorticity
conservation to relate A, to i, when the A, layer sub-
ducts beneath the uppermost warm water layer.

- Consider the region

ho=f=1

in which 4, vanishes: then (3.7) may be solved for 4.
The solution for Ay and (3.10) completely determines
the flow where 7 layers are in motion. A little thought
reveals, however, that the resulting solution cannot be
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valid for all x. Each p, must be independent of latitude
at x = a to avoid zonal flow into the eastern wall and
from (3.2) this implies that each layer must have con-
stant thickness at the eastern boundary. This condition
is clearly violated by (3.10). Clearly, fluid cannot move
southward along the eastern boundary and simulta-
neously have constant thickness and constant potential
vorticity. Thus in some region x; < x < a only the
uppermost layer can be in motion. In that region
hi, = H, for all k = 2 while from 3.7

ho = (Do* + HP)V?,  x1(3) <

- as in LPS and Young and Rhines (1982)%.
The thickness of the unventllated layer beneath the
uppermost layer is

hl = H1 + Ho - ho
= Hl + Ho - (l)o2 + H02)l/2 ’ (312)

while all A, k > 1, are constant. Only the uppermost
layer is moving. In principle, (3.11) and (3 12) are
possible solutions for all 0 < x < a. Thxs, in fact, is
the solution given in LPS. However, since Dy’ is an
increasing function of (@ — X), as long as wg < 0, at
some distance from the eastern boundary A, will vanish
when Dy’ satisfies

Doz(xc’ J’) = 2HIHO + H129 (3-13)

and the thinner the unventilated layer, the closer to
the eastern wall this will occur. Vanishing layer thick-
ness is equivalent to the intersecting isopycnals in the
earlier model, e.g., Figs. 2 and 3. Of course, if H, is
. large enough, A, will remain positive and (3.11) and
(3.12) are then acceptable solutions. However, east of
the line, x{f), where h; would vanish, the potential
vorticity isopleths in Layer 1 become so distorted that
they intersect the western rather than the eastern
boundary. Along that critical curve, x;(f),

S _h
moH’

and west of the curve the uppermost unventilated
layer may move with constant potential vorticity (our
choice). The value of that constant potential vorticity
we specify is the value it assumes on the bounding
contour, fo/H,, in order to maintain continuity of g,
as in RY. Note that regardless of how small H, is
chosen fo be, our assumption that the unventilated
layer is in motion will avoid vanishing layer thicknesses
and intersecting isopycnals. To find that boundary,
x1(f), we need only insist that 4, and A, be continuous
along x,(f). Thus,

(3.11)

x<a,

(3.14)

2 More precisely they find in the quasi-geostrophic theory
ho = Hy + $Do*/Hy
which is the weak forcing limit of (3.11).
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h=H Z— H, + Hy —
1 == =H, o — Mo (3.15)
Jo
from (3.12) and (3.14). Thus, along x,(f)
hy = Ho + H\(1 — flfo), (3.16)

while continuity of Ap implies that (3.11) must be iden-
tical to (3.16) or that x,(f) is given implicitly by

Do’ (xi(f), »)

= 2H0H,(l —f—f;) + H, (1 —f{)z. 3.17)

Note that (3.17) implies that this contour always occurs
east of the point where 4, would vanish if the lower
layer were motionless. The reader is also asked to verify
that only the first unventilated layer can be moving
in the region just west of x;(f).

Consider the case where wg is a function only of
latitude, or equivalently, only of £. Then

2
DZ——(a—X)%%WE(f)

Therefore, the contour separating the regions of one
and two moving layers is given by

-5 w1 )

+ H, (1 —ff)z:l/ we(f). (3.19)

(3.18) -

la —x(N)] =

As fapproaches fy, both numerator and denominator
of (3.19) vanish. Using L’Hopital’s rule, the intersection
of x,(f') with the northern boundary of the subtropical
gyre occurs at

a~—x{f)= 'Yo f3 = HoH, a;r (fo)
a .
HoH, / 2% (fo).  (3.20)

A schematic sketch of x,(y) 1s showr in Fig. 12. The
contour x,(f) lies generally on a line that moves
southwestward from = f;. At f= f, the continuation
of the isopleth of constant potential vorticity is the
portion of the latitude circle between the intersection
x1(fo) and the western boundary. If the magnitude of
wg increases rapidly enough south of f'= f;, the curve
may bend southeastward first but will eventually bend
westward and intersect the x = 0 meridian wherever

2
D0, f) = ~ % ws(f)

= 2H0(1 "]{;) + le(l —f{)z.
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Xg(fé} Xz(fo} Xf{fo}

=

A,

=0

FiG. 12. The domains 4, of flow when there is one ventilated
layer. East of x,(f'), only the uppermost layer is in motion. In the
regions X,(f) < X < x,-(f), n — | unventilated layers are also
moving with constant potential vorticity. The domains are nested
about the northwest corner of the gyre where the deepest pools of
constant potential vorticity are found.

If wg(0) is finite, this interaction must occur for a value
of f> 0, i.e., the sector bounded by x,(f) must ex-
clude the low-latitude ocean.

In the region just west of x;( /), there are two moving
layers. The thickness of the motionless, second un-
ventilated layer will then be a function of the motion
above it. By a repetition of the previous argument, the
thickness of this layer may sufficiently alter so that its
potential vorticity isolines thread back to the western
boundary layer. This will occur on the curve xx(f)
< x)(f)—and so on. An obvious repetition of this
argument, along with our hypothesis of potential-vor-
ticity homogenization yields a nested series of curves
x,(f) east of which there are n moving layers and west
of which there are n + 1 moving layers; # of them at
constant potential vorticity. On x,(f), by a simple
extension of the argument leading to (3.16)

ho(xn) = Ho + (Hy + Hz+ - - H,)X1 — fifo) (3.21)

which with (3.7) yields the general equation for the
extent of the constant potential-vorticity pool in the
nth unventilated layer,
S
oif -
" o

 De*(x,) = 2voHo(H, +
f)2
2 l 2
H,) ( z

+ ‘Yo(Hl + H2 + -

+ 2y.(Hy + HEs + -+ H)|1 - %0)
2

+ oy (Hy 4 - - - +H,,)2(1 ‘}‘:) A

+ 2y, (Ho+ - -+ + H,_)H, ( jj":)

S
+ Y H,,z(l —-=
Yn-1 fb

2
) (3.22)

of which (3.17) is the special case, n = 1.
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Once the domain of the constant potential-vorticity
pool in each layer has been determined, (3.7) and (3.9)
determine the layer thickness and therefore the motion.
Asin RY, the pools shrink with depth and slope north-
westward. Of course, the solution for x,(f) given by
(3.22) may lie entirely outside the ocean, i.e., for x,(f)
< 0, so that, in general, only a finite number of un-
ventilated layers will be moving.

Consider the simplest case where only x;(f) lies in
the interval 0 < x, < 1. In the region to the west of
the x,(f), (3.7) yields

Y1
X, y) == +
ho(x, y) o P, [(yo + 1)
X {yoDo> + YoHo* + vi(H; + Ho)*}
- 'Yo‘Ylhlz]l/z, (3.23)
where

S

h = H =

1 l_ﬁ)

while east of x;(f), hy and h; are given by (3.11)
and (3.12).

Figure 13a shows the upper layer thickness when
only the Ag-layer is in motion (as in LPS) in the entire
oceanic domain (i.e., no ventilated outcrop at f, and
no eddy-driven motion in the unventilated region.)
For this calculation we have chosen

D = H02(1 - );C) sinr L

Jo
4ﬂ=l \
Hy 2 '
Yo 125
Y1

Fig. 13b shows the same upper-layer thickness contours
when the first unventilated layer is moving. The only
change occurs in the northwest quadrant of the ocean
where the upper layer deepens less rapidly to the west
than in the previous case. Since the unventilated layer
is moving, it carries some of the Sverdrup transport
and, therefore, the shear across the first interface is
weaker than in the case of only one moving layer and
the slope of the interface between them is correspond-
ingly less. The meridional transport in the upper layer
is

YoT 71 + v, dhy

Ty = hyvy = f ho , x<xi, (3.24)
and in the unventilated layer
T1=hlv,——f—h, ho, x <X.
Thus
; (1 + 7") :‘: (3.25)
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FI1G. 13. (a) The thickness of the upper layer when (a) all unventilated layers are motionless and (b) when the uppermost unventilated
layer is in motion. (c) The thickness of the uppermost unventilated layer. Its domain of motion is easily seen as the region where its
thickness is independent of longitude. (d) The upper-layer [compare with (a)] and (e) the lower-layer streamline pattern. (f) The lower-

layer streamline when H, is doubled over its value used in (e).

This shows that at f = f;, where &, = H,, the vertical
partitioning of the transport between ventilated and
unventilated layers is determined by how one specifies
the density field. In particular, if Hy = 0, then all of
the transport will be in the unventilated layer. Since
hy increases southward while /1, decreases, the tendency
is for the transport to shift into the upper ventilated
layer as one moves south or west.

Figure 13c shows the lower layer thickness. The re-
gion in which the isopleths of 4, are east-west delineate
the constant potential-vorticity pool. With the param-
eters above, the presence of the pool has a small effect
on the meridional transport in the uppermost layer
although it has a significant effect on the configuration
_ of the layer depth and hence the isopycnal distribution.
Fig. 13d shows the streamline pattern in the upper
layer. In the present case, it is hardly distinguishable
from the one-moving layer model whose streamlines
are coincident with the curves in Fig. 13a. Fig. 13e
shows the streamlines-in the unventilated layer for the
case H, = iH,. As H, or H, is increased (see 3.17) the
pool of constant potential vorticity is crowded into the
northwest corner. Fig. 13f shows the streamline pattern
in the case H, = Hy. Only a small portion of the flow
is affected by the pool of constant potential vorticity.

This contrasts considerably with our example of the
preceding section. In that case, the basic stratification
is limited to the unventilated zone and the pools of
homogenized potential vorticity extend all across the
basin at depths immediately below the ventilated zone.

Those results would obtain here in the limiting case
H, — 0. (Note that while the ratio Hy/H determines
the vertical distribution of the transport, it is the prod-
uct HyH, that governs the extent of the pool.) It remains
unclear to us how to go from the layer model to a
continuous model'in both ventilated and unventilated
regions. If both regions are represented, in a gross way,
by layers as in this section, the effective lateral extent
of the pools becomes limited. Increasing the resolution
in only the unventilated region as in Section 2, increases
the pool size by allowing shallower zones in eastern
regions. We speculate, however, that at the particular
latitude where wg = 0, (i.e., at f = fp), the limit v, —
0, H, — 0 may recover features of the continuous
model. In that case, at that latitude, the pool of constant
potential vorticity would be gyre-wide. It is not clear
how this can be extrapolated to lower latitudes. How-
ever, at / = f;, the external forcing is, by definition,
zero. Were it to remain weak for f < f;, we know the
pools of constant potential vorticity would not extend
southward since the isopleths of ¢ would quickly be-
come latitude circles.

Now let us turn our attention to the region south
of the outcrop latitude f = f, < f; where the layer of
thickness 4, is subducted beneath A,. There are two
separate cases to consider. If the latitude of the density
outcrop, /= f;, occurs south of the pool of homogenized
potential vorticity defined by x,(f), then the flow south
of f= f,is identical to that already given in LPS. There
are then two moving layers; the subducted layer of
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thickness /g and the upper warm-water layer of thick-
ness /,. The more interesting case for our present pur-
pose occurs when the outcrop latitude occurs athwart
the pool of constant potential vorticity. In that case
both the theory of LPS and the calculation of the flow
in the unventilated layer are mutually modified.

As in our earlier discussion for the region north of
f= /s, the flow is usefully separated into several domains
and these are shown schematically in Fig. 14.

As in LPS, there is a shadow zone between the east-
ern boundary and the curve x,(f), labeled 1 in the
figure, in which only the upper layer is in motion. The
reason for the separation of the subducted layer’s flow
from the eastern wall is again simply the inability of
a fluid column to have constant thickness (to satisfy
the zonal flow condition) and conserve potential vor-
ticity while moving along the eastern wall. In this
shadow zone [Note that 4, vanishes on x = a as an-
ticipated by (3.8a).]

1/2
hu = (ﬁ Doz)
Y

v

(3.26)
ho = Ho - h,,

hl =H1

In the region immediately to the west of x,(3), both
the upper layer and the subducted layer are moving
and the latter preserves potential vorticity, i.e.,

L Glho + h),
P

where G is an arbitrary function of the pressure. The
unventilated zone is at rest. Since A, vanishes at

[ = £, it follows, as in LPS, that for all points south of
the outcrop

(3.27)

_ S
G(ho + hy) ho + B
f<hy
x, (F)
f:fy
O
i ®
®
x=0 X-'é:o

FIG. 14. The domains of flow in plan view when there is one
unventilated layer in motion and when the outcrop latitude f = f,
intersects the pool of constant potential vorticity. The critical curves
X f), X(f) and x,(f) are described in the text.
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so that, as in LPS,

ho=L o+ )
P , (3.28a, b)
h, = (1 -j-i)(ho + hy)
while the Sverdrup relation yields
2 23172
ho + h, = — L0 Ho) (3.28¢)

'Y 1/2 *
(1 12 —f/ﬁ)z)
Yo

The separating contour x,(f) is determined by in-
sisting that 4, and 4, are continuous along x,(f), and
this yields

Yo A1 S 2
-1
o (Xv, V. o Ho 7

v

(3.29)

while
hl = H() + Hl - (h() + hu). (3.30)

Aside from a trivial change in notation, the solution
in Regions 1 and 2 is identical to those given in LPS.

However, the center of our attention is focused on
Region 3. Here three layers are moving. Two are ven-
tilated (one of them having been subducted), while the
lowest one is unventilated with constant potential vor-
ticity.

In Region 3,

hl = I H 1s
Jo
while the intermediate layer has potential vorticity
constant on geostrophic streamlines, i.e.,

(3.31)

hi = Klyitho + hy + k) + volho + ho)l.
0

On f = f,, h, vanishes while 4, is a constant
(=f.//oH}). Thus, it is easy to see that

(3.32)

K@) = 2t 1f }M , (3.33)
60— v = H,
Jo

where 4 is the argument of K. Using (3.32) and (3.33),
it follows that

=.[g _J: Y1 =5
he f""(‘ f.,)+yl+7oH‘ o

When (3.34) and (3.31) are inserted into (3.7) (for
n = 1), a quadratic for 4, is obtained which completes
the solution in Region 3. The form of the quadratic
is sufficiently complicated that little insight is achieved
by considering it directly. Perhaps the most important
physical result is the effect of adding a new ventilated
layer on the extent of the pool of constant potential

(3.34)
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vorticity, i.e., what is the continuation of x,(f) in the
region f < f,.

In the region east of x;(f), the unventilated layer
is at rest so that

h1+ho+hv=Ho+H|.

That is, the base of the unventilated layer must be at
the same level as at the eastern wall. On the other
hand, if A, is continuous across x,(f), hy = H, flfy.
Thus, on x,(f)

(ho + hy) = Ho + H\(1 — flfo) (3.35)

which should be compared to (3.16). Evaluating (3.7)
on x,;(f) where (3.35) holds yields

vDoz(xh y) = 2H0H1(1 _fz)
0

) .
+ le(l - I) +Xp2 (3.36)
Jo Yo
A comparison of (3.36) with (3.10) shows that the
effect of adding a new ventilated layer of depth 4,
shrinks the pool of constant potential vorticity and
crowds it farther to the western side of the ocean. We
can use (3.34) together with (3.35) to calculate 4, on

xl(f)9 i-e-9

po= (1 - DY n[ 2L (1= )]

on

x = x(f), 3.37)

and thus determine the boundary of the pool of con-
stant potential vorticity. Fig. 15 shows the result of
such a calculation. The parameters are identical to
those used in Fig. 13. We have chosen v,/v, = 1. The
curve marked O in the figure is the continuation of
(3.17), i.e., the boundary of the pool in the absence
of an additional ventilated layer. The curve marked v

f,/%

0 | 1 I 1 1 1 1 1
0 05 10
x/a

FIG. 15. South of the outcrop latitude /= f,, the pool of constant
potential vorticity shrinks in size from the domain bounded by the
curve labeled 0 to one bounded by the curve labeled v as a consequence
of the addition of another ventilated layer.
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in the figure shows how the pool shrinks south of the
outcrop at f = f, when a new ventilated layer is added.

The physical reason for the shrinking size of the
constant potential-vorticity pool is both simple and
important. In the region of the ventilated thermocline,
the addition of more layers leads to a fall-off, from
layer to layer, of the strength of the wind-driven cir-
culation. As more ventilated layers are added, there is
a tendency to trap the motion in the upper warm-
water layers. This produces a weaker compression of
the stationary unventilated layers and only in the west-
ern regions, where Dy? (and hence the thickness vari-
ations) are greatest, can geostrophic contours distort
strongly enough to allow the fluid in those layers to
move. The pool of constant potential vorticity is shrunk
accordingly. With the parameters chosen above, in the
region south of f,, the Sverdrup transport is carried
primarily in the upper ventilated layérs. However, there
is a change in the isopycnal distribution in the un-
ventilated region due to (3.31). ‘

For the sake of completeness, we need to mention
the fact that the solution is not yet formally complete.
A buffer region, between the solid and dotted curve
in Fig. 14 is required to match the solutions in Regions
2 and 3. In this buffer region between x,(f) and %,(f),
the unventilated region is at rest, but fluid in the sub-
ducted layer which conserves potential vorticity sweeps
into this region from the west of the point x;(f;) and
its K function (3.32) must be altered to reflect this fact.
Given the relative smallness of: the transport in the
unventilated region at these latitudes, the details of the
flow are not presented.

4. The subpolar gyre
a. A ventilated model of the subpolar gyre

In the subpolar gyre, as in LPS, we look for a solution
in which the unventilated isopycnals rise to the surface.
In LPS each layer is motionless until the one above
it outcrops (see Fig. 15). What is the continuously
stratified analog of this solution? The appropriate gen-
eralization of the layered LPS solution is obtained by
arguing that in the region where the fluid is in motion
the density is uniform vertically. Thus suppose there
is a surface z = —D(x, y) below which the fluid is
motionless with B given by

B=N?z 4.1)
(see Fig. 16).

Above z = —D, the fluid is being removed by Ekman
suction at z = 0 and so (u, v, w) # (0, 0, 0). In this
region B, = 0. Continuity of B at z = —D implies

B=—N?D, if z>-D, (4.2a)
because
B = N?z, if z< -—D. (4.2b)
Now from (2.7)
f*w,, = —BN’D,, 4.3)
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(b)

F1G. 16. Schematic meridional density section of the subpolar
gyre. (a) Layered stratification—Only the uppermost layer is in mo-
tion. All of the Sverdrup transport is confined to the stippled area.
{b) Continuous stratification—The dashed lines represent isopycnals.
Below z = —D, the fluid is motionless. All of the Sverdrup transport
is in the stippled region above z = —D. As in case (a), only the
uppermost density layer is in motion. Case (b) is the limit of case
(a) as the number of layers is increased.

and integrating the above with respect to z gives

1 {BN?
w= — -2’ (?‘)DX(Z + D)Z, “4.4)

where, in analogy with LPS, w = v =0atz = —D.’

Finally, D is determined by applying the boundary
condition at z = 0

we = = 5 (BNUFIDD, “5)
or integrating to the eastern boundary x = a
1 D3 = (f—z) f ’ we(x', y)dx' (4.6)
6 Nz} ), Ry

[compare this with (2.17)].
The subpolar circulation patterns sketched in Figs.
2, 3, 4 and 5 are based on the calculation above.

b. A partially ventilated model of the subpolar gyre

One peculiar feature of the circulation model in the
previous subsection is the vertical isopycnals. As an
alternative, we now construct a solution in which the
ocean is divided into three regions (see Fig. 17):
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1) Region I where 0 > z > —D(x, y) and B, = 0,

2) Region II where —D(x, y) > z > —G{x, y) and
q = fB, = foN?,

3) Region III where —G(x, y) > z > —oo and
B = N?z as in (3.1) while (u, v, w) = (0, 0, 0).

The dynamics of Region I are similar to those of
the subpolar gyre in Section 3. Region II on the other
hand has uniform potential vorticity.

Begin by observing that in Region II

B= (Nzﬁ}f) +b(x,y), if -G<z<-D. (4.7)

Continuity of B at z = —G gives

5= (e B)e- (1-8)d]. ¢ -6 <z<-p

4.8)

Continuity of B at z = —D gives B everywhere in

Region I

B=—(N2§2)I:D+(l —jj—é)G], if -D<z<0.

4.9)
One can now calculate w from (2.7). As in the pre-

vious examples one integrates upwards, starting at z

= —( where
v w=w,=0.

Thus in Region II

w=— % (-ﬁfizz)(f _fﬁ’)(z + G)*G,, (4.102)

(20w

In Region I we again obtain v and w from (2.5) and -
(4.12). Since the density is continuous, v and w are
continuous at z = —D. One finds

(4.10b)

FIG. 17. Schematic meridional density section of the subpolar
gyre. The dashed curves represent isopycnals. Above z = —D, the
isopycnals are vertical. Between z = —D and z = —G, the potential
vorticity is uniform. Below z = ~G, the fluid is motionless.
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_ % (ﬁf_*"z’z)(f_;)(z +DPD,, (4.11)

if 0 > z > —D(x, y).
Finally since w = wg at z = 0 one has

(4N o]
Wg 2(f2 )[( 7 G°G, + szDx . (4.12)
This equation is only one relation between the two
unknowns G and D. Thus there are an infinite number
of solutions since one is free to specify an additional
arbitrary relationship between G and D.

One choice is G = D, in which case (4.12) reduces
to (4.6). In this case there is no Region II and the
isopycnals are vertical in the subpolar gyre. This is just
the model from the previous subsection.

An alternative (and more plausible) choice is
D = 0. In this case there are no vertical isopycnals
and the potential vorticity is uniform everywhere in
the subpolar gyre. This is essentially the solution given
by RY.

This particular set of solutions illustrates one of the
principal conclusions of this article: there are an infinite
number of solutions of the planetary geostrophic equa-
tions all of which satisfy the same boundary conditions.
Other physical processes, not explicit in the equations
themselves, must be invoked to pick a solution. For
example, a priori it seems unlikely that isopycnals are
vertical in the subpolar gyre so D = 0 in (4.15). On

“the other hand, one might argue that there is very
strong thermally driven vertical mixing in the subppo-
lar gyre which vertically homogenizes the density field
to some depth D. One could probably construct a sim-
ple model in which D is determined by the heat flux
from the ocean to the atmosphere. This interesting
possibility reinforces the original conclusion: additional
physics is required to obtain a unique solution.

The subpolar circulation patterns sketched in Figs.
7, 8,9 and 10 are obtained from the calculation above.
In these figures we have taken D = 0, so there are no
vertical isopycnals.

5. Conclusions

We have presented a model in which the ventilated
thermocline theory of LPS is linked with the theory
of potential vorticity homogenization of RY. There
are several important conclusions we wish to empha-
size. :
First, although the regions of ventilation and ho-
mogenization are spatially distinct, they interact and
affect one another non-linearly since the regions must
combine to carry the Sverdrup transport. Second, the
partition of the transport between the ventilated and
unventilated regions depends on the gross stratification
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in each region. In Section 2, where the ventilated zone
consists of a single homogeneous layer bounded below
by a uniformly stratified zone, the transport in the
unventilated region is a rather large proportion of the
total and the pool of constant potential vorticity oc-
cupies a large extent of the subtropical gyre. The layered
model of Section 3 shows how the presence of ven-
tilated outcrop layers can shrink the size of the pools
of constant potential vorticity in the unventilated lay-
ers. The addition of these extra ventilated layers in the
northern part of the subtropical gyre (where 3Dg?/dy
< 0) raises the possibility that, as in LPS, new pools
of constant potential vorticity will appear up against
the western boundary within the ventilated layers.

We have also argued that the layered model of Sec-
tion 3 may be a good representation of the continuous
model as the layer thickness goes to zero at f = f, where
wg vanishes. Then, at least at f = f; the constant po-
tential vorticity pool must extend across the basin
without regard to the stratification ‘in the ventilated
zone. However, its southward extent in the general
case is uncertain.

In both models, the pools of constant potential vor-
ticity are basin-shaped, deepen to the northwest, and
are similar in structure to the pools found in the quasi-
geostrophic, 8-plane models of RY.

Third, we wish to emphasize that the ventilated
thermocline model without potential vorticity ho-
mogenization is most likely at least locally unstable.
The condition that the potential vorticity isopleths of
the unventilated layers significantly depart from lati-
tude circles deformed by the B-effect is qualitatively
similar to the usual necessary conditions for quasi-
geostrophic instability on the mesoscale. In these re-
gions where we have hypothesized the result will be
homogenization of potential vorticity, the geography
of the density surfaces of the unventilated regions will
be affected. As we have remarked above, this may or
may not significantly affect the transport in the ven-
tilated region.

Finally, we would again like to stress the hypothetical
nature of our solution for the flow in the unventilated
zone. Our hypothesis of potential vorticity homoge-
nization depends implicitly on the nature of mesoscale
potential vorticity mixing and on the interaction of
the mid-ocean gyre with the western boundary current
regions (see especially Ierley and Young, 1983). These
are all uncertain elements in our theory. This study
emphasizes the importance of dissipation in selecting
a unique solution. It is ironic that after twenty years
of contriving similarity “‘solutions” which are unable
to satisfy both horizontal and vertical boundary con-
ditions, it is now a simple matter to construct a variety
of solutions all of which satisfy the same physically
reasonable boundary conditions.

We would prefer to consider models that have com-
pletely continuous distributions of density and velocity
in all regions of the flow. So far that goal has eluded
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us and we have been forced, especially in the ventilated .

region, to represent the solution in terms of finite layers
of uniform density. The exact relation of these models
to a continuous model is still obscure. In these layered
models the structure of the wind-driven flow is sensitive
to the initial specification of the density field [e.g., in
determining the size of the constant potential-vorticity
pool, the effects of decreasing Hy, H; and v, in (3.20)
are multiplicative]. Clearly more observational or
theoretical guidance than the present study has brought
to bear on this issue is required.
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