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We study the statistics of a passive scalar T (x, t) governed by the advection–diffusion
equation with variations in the scalar produced by a steady source. Two important
statistical properties of the scalar are the variance, σ 2 ≡ 〈T 2〉, and the entropy
production, χ ≡ κ〈|∇T |2〉. Here 〈〉 denotes a space–time average and κ is the mole-
cular diffusivity of T . Using variational methods we show that the system must
lie above a parabola in the (χ, σ 2)-plane. The location of the bounding parabola
depends on the structure of the velocity and the source. To test the bound, we
consider a large-scale source and three two-dimensional model velocities: a uniform
steady flow; a statistically homogeneous and isotropic flow characterized by an
effective diffusivity; a time-periodic model of oscillating convection cells with chaotic
Lagrangian trajectories. Analytic solution of the first example shows that the bound
is sharp and realizable. Numerical simulation of the other examples shows that the
statistics of T (x, t) lie close to the parabolic frontier in the (χ, σ 2)-plane. Moreover
in the homogenization limit, in which the largest scale in the velocity field is much
less than the scale of the source, the results of the simulation limit to the bounding
parabola.

1. Introduction and formulation
The most basic measures of the efficiency of mixing are the mean and variance

of the concentration field. Thiffeault, Doering & Gibbon (2005, referred to herein
as TDG) have recently posed the problem of bounding the variance of a passive
scalar T (x, t) in terms of the molecular diffusivity κ , and gross properties of the
advecting velocity field, such as the kinetic energy. These authors consider a scalar
contained in a closed domain. The scalar is maintained in a statisitical steady state
by applying a source S(x) whose domain average is zero. In this circumstance the
mean concentration is equal to that of the initial condition, and can be taken to be
zero. Thus the scalar variance

σ 2 ≡ 〈T 2〉 (1.1)

is the primary descriptor of ‘mixedness’. In (1.1) 〈〉 denotes a volume and time average,
defined explicitly below in (1.6). Deriving a useful bound on σ 2 would have important
applications in geophysics and engineering.

Passive scalar turbulence is unique in that it parallels many of the properties of true
turbulence while being more tractable to mathematical analysis (Shraiman & Siggia
2000). The scalar turbulence problem is therefore an opportunity to test mathematical
techniques whose application to true turbulence is speculative. It is in this spirit
that we apply variational techniques with parallel applications to the Navier–Stokes
equations (e.g. Doering & Constantin 1994; Nicodemus, Grossmann & Holthaus
1997; Doering & Foias 2002).
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Consider the forced passive scalar problem

Tt + LT = S, (1.2)

where L is the advection–diffusion operator

L ≡ u · ∇ − κ∇2. (1.3)

Here, κ is the diffusivity, S(x) is a steady prescribed source and u(x, t) is a prescribed
velocity with ∇ · u =0. If u(x, t) is a stationary random function of time, while S(x) is
a determinstic function with zero spatial average, then one expects the scalar T (x, t)
to eventually arrive in a statistically steady state.

The domain is either doubly periodic or a closed region with boundary conditions

u · n̂ = 0, n̂ · ∇T = 0, (1.4)

where n̂ is the outward normal at the boundary of the domain. With these boundary
conditions, the internal source S provides the only production of T .

We use an overbar to denote a time average

F̄ (x) ≡ lim
t→∞

1

t

∫ t

0

F (x, t ′) dt ′, (1.5)

and angular brackets to denote a space and time average

〈F 〉 ≡ 1

Ω

∫
F̄ (x) dx, (1.6)

where Ω is the area or volume of the domain. We characterize the statistically steady
state using both the variance in (1.1) and the entropy production:

χ ≡ κ〈|∇T |2〉. (1.7)

The entropy power integral,

χ = 〈T S〉, (1.8)

is obtained by multiplying (1.2) by T and averaging. The right-hand side of (1.8) is
the large-scale production of scalar variance σ 2 by the source S, and the left is the
small-scale destruction by diffusion κ . Notice that if the mean field T̄ (x) is known
then the right-hand side of (1.8) can be used to evaluate χ .

Following TDG, a second integral constraint is obtained by forming 〈C× equation
(1.2)〉, where C(x) is an arbitrary ‘comparison function’. We take C(x) to be time-
independent and to satisfy the same no-flux boundary conditions as T (x, t) given
in (1.4). The important feature of this restriction on C(x) is that the boundary
terms generated with integration by parts against ∇2T are all zero. Thus moving all
derivatives from T and onto C results in the integral constraint

〈T L†C − SC〉 = 0, (1.9)

where

L† ≡ −u · ∇ − κ∇2 (1.10)

is the adjoint of L in (1.3).

2. Bounds connecting χ and σ 2

We now construct a variational problem, built upon the two constraints in (1.8)
and (1.9). We seek to bound either the entropy production χ or the variance σ 2, or
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to find inequalities connecting these two statistical properties of T (x, t). We begin by
writing the variance as

1
2
σ 2 = 1

2
〈T 2〉 + α(χ − 〈T S〉) + β〈SC − T L†C〉. (2.1)

In this expression the scalars α and β are loosely recognized as Lagrange multipliers
enforcing (1.8) and (1.9). This approach differs from that of TDG by inclusion of the
entropy power integral; thus we recover the TDG bound by taking α =0.

Completing the square in T , we rewrite (2.1) as

1
2
σ 2 = 1

2
〈(T − αS + βA)2〉 + αχ + β〈SC〉 − 1

2
〈(βA − αS)2〉, (2.2)

where for brevity

A ≡ −L†C = κ∇2C + u · ∇C. (2.3)

Dropping the first term on the right of (2.2) we obtain a lower bound on σ 2:

1
2
σ 2 � αχ + β〈SC〉 − 1

2
〈(βA − αS)2〉. (2.4)

The right-hand side of (2.4) is a convex quadratic function of α and β . Thus one
easily maximizes over α and β simultaneously and obtains:

σ 2 �
〈A2〉χ2 + 2〈SA〉〈SC〉χ + 〈SC〉2〈S2〉

〈A2〉〈S2〉 − 〈SA〉2
. (2.5)

The integrals on the right are all determined explicitly once the advecting flow field
u(x, t), the source function S(x) and the comparison function C(x) are specified.
Minimizing the right-hand side of (2.5) over χ we obtain

σ 2 �
〈A2〉χ2 + 2〈SA〉〈SC〉χ + 〈SC〉2〈S2〉

〈A2〉〈S2〉 − 〈SA〉2
�

〈SC〉2

〈A2〉 . (2.6)

The final expression on the far right of (2.6) is the variance bound of TDG.
The scalar variance is bounded by using any comparison function in (2.6) which

satisfies no-flux boundary conditions. However to avoid guessing the C(x), one can
calculate the optimal comparison function C∗(x) by maximizing the right of (2.5) over
all C. To perform this variation we introduce the functional

F[A, B, C] ≡ N[A, C]

D[A]
+ 〈B(A + L†C)〉, (2.7)

where the functional N[A, C] is the numerator in (2.5) and D[A] is the denominator.
The Lagrange multiplier B(x, t) enforces the definition of A(x, t) in (2.3) as a
constraint. The variation δF/δA= 0 implies that

DB + 2(χ2 − λ〈S2〉)A + 2(χ〈SC〉 + λ〈SA〉)S = 0. (2.8)

The eigenvalue λ above is

λ =
N[A∗, C∗]

D[A∗]
, (2.9)

where [A∗(x, t), B∗(x, t), C∗(x)] is the stationary solution. Equation (2.8) determines
B in terms of A, C and λ. Setting the variation of F[A, B, C] with respect to B equal
to zero gives (2.3).

To perform the variation of F[A, B, C] with respect to C, recall that C is time-
independent, and that the angular bracket includes both a space and a time average.
Therefore variations in C(x) will yield a time-averaged equation for the optimal
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comparison function. For instance,

δ

δC
〈BL†C〉 = LB, (2.10)

where the overline is the time average in (1.5). In the course of proving (2.10), one
finds that in order for the various boundary terms to vanish, B(x, t) must also satisfy
the no-flux condition:

n̂ · ∇B = 0; (2.11)

this is the ‘natural boundary condition’ for the variational problem. The final result
for the C variation is

DLB + 2(χ〈SA〉 + 〈S2〉〈SC〉)S = 0. (2.12)

Eliminating DB between (2.8) and (2.12) one obtains a fourth-order eigenproblem
for C(x) and λ:

(λ〈S2〉 − χ2)LL†C + (χS − λL̄S)〈SL†C〉 − (〈S2〉S − χ L̄S)〈SC〉 = 0. (2.13)

Given a specific flow field and source, equation (2.13) may be solved to find the
optimal comparison function C∗(x) and, using C∗(x) to calculate the quadratures in
(2.5), we obtain an optimized lower bound for the variance. In the following sections
we consider three model flows and compare the lower bound in (2.5) with analytic
and numerical simulations of the advection–diffusion equation. Solutions of (2.13)
will be presented for these model flows.

3. The first example: a uniform flow
Our first example is a simple flow for which both bounds in (2.6) are exact. The

domain is doubly periodic, with 0 < (x, y) < 2π/k, and the source is

S(x) =
√

2S0 cos ky. (3.1)

The velocity is a uniform steady flow, sweeping across the domain: u = (u, v). The
steady solution of the advection–diffusion equation is

T =
√

2S0

κk2 cos ky + kv sin ky

(κk2)2 + (kv)2
, (3.2)

with variance σ 2 = S2
0/[(κk2)2 + (kv)2] and entropy production χ = κk2σ 2. It is easy

to see that the exact solution of (2.13) is C = S and that both inequalities in (2.6)
become equalities. In other words, both bounds are realizable and sharp.

This example is an instructive illustration of difficulties in interpreting the TDG
bound as a measure of the mixing efficiency of the velocity field. A uniform
steady flow does not amplify tracer gradients and so neither stirs nor mixes in
the classic sense (Eckart 1948; Welander 1955). However a uniform steady flow
sweeps fluid particles across source regions with both signs. Thus the tracer variance
σ 2 is reduced by limiting the action of the source, rather than by amplifying the
effect of molecular diffusion. The TDG bound captures this sweeping process and
consequently emphasizes the properties of the source (see also Doering & Thiffeault
2005). But the TDG bound takes no account of the entropy power integral (1.8), and
therefore does not include gradient amplification. The main advantage of (2.5) is that
gradient amplification is captured via χ . The next two examples show that this extra
information enhances the bound.
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4. The second example: the renewing flow
Next, we illustrate and test the bound in (2.5) using a popular model of a random

two-dimensional velocity field (Pierrehumbert 1994; Antonsen et al. 1996). Again the
domain is doubly periodic, with 0 < (x, y) < 2π/k, and the source is the sinusoid
in (3.1). The velocity alternately switches between v =0 and u = 0. Specifically, for
nτ � t � nτ + τ/2 the velocity is

[u, v] =
√

2U [cos(Nky + φx), 0], (4.1)

and for nτ + τ/2 < t < (n + 1)τ

[u, v] =
√

2U [0, cos(Nkx + φy)], (4.2)

where N is an integer controlling the scale separation between the source and the
velocity field, τ is the time over which the velocity switches occur and n is a positive
integer. The phases φx and φy change every t = nτ and are uniformly distributed
between 0 and 2π. The average squared velocity is 〈u2 + v2〉 =U 2.

The renewing flow is isotropic and homogeneous in the sense that

〈uiuj 〉 = 1
2
U 2δij . (4.3)

The important consequence of isotropy and homogeneity is that the operator LL†

in (2.13) is simply LL†C = κ2∇4C − U 2∇2C. Moreover, all of the coefficients in the
homogeneous equation (2.13) are constant. Consequently, with the single-mode source
in (3.1), the solution of (2.13) is simply that C is proportional to S =

√
2S0 cos ky.

Thus taking C = S is optimal, and (2.6) then gives

σ 2

S2
0

�
χ2

S4
0

+ 2

(
εχ

S2
0

− 1

kU

)2

�
2

(kU )2(1 + 2ε2)
, (4.4)

where ε ≡ κk/U is an inverse Péclet number.† In general σ 2 and χ are both unknown
so that the inequality in (4.4) constrains these two quantities to lie above a parabola
in the (χ, σ 2) parameter plane – see figure 1(a).

The simple C = S solution of (2.13) works because: (i) the flow is isotropic and
homogeneous; (ii) the source contains only one mode. Doering & Thiffeault (2005)
investigate the variance bounds obtained by retaining idealization (i) but relaxing
(ii) by considering more complicated sources, e.g. a steady, point release of tracer.

The bound in (4.4) relates the two unknowns χ and σ 2. The result is more
informative if one can supply additional information about either χ or σ 2. Thus it
is interesting that in the homogenization limit (N � 1) one can estimate χ . To make
this estimate, notice that the single-particle diffusivity of the velocity field in (4.1) and
(4.2) is

D =
mean squared x-displacement

2 × time between steps in the x-direction
=

U 2τ

8
. (4.5)

If N is large, so that homogenization applies, then we can make a Reynolds’
decomposition, T = T̄ (x) + T ′(x, t), and compute the mean field T̄ (x) from
−D∇2T̄ = S. With the sinusoidal source in (3.1):

T̄ (x) ≈ S(x)

Dk2
(provided N � 1). (4.6)

† When N = 1 the Péclet number used by TDG in their section 5 is Pe = ε−1.



294 S. C. Plasting and W. R. Young

5 10 150

50

100

150

200

250

300

N = 2

3

4

5

χ

σ2

2 3 4 5

2

6

10

14
N = 1

2

3
4
5

–log10 ε

σ2
—
σb

2

σ2
—
σb

2

0.5 1.0 1.5 2.0

2

6

10

14
N = 1

2

3
4
5

Ukτ

(a) (b)

(c)

Figure 1. Results of numerical simulations of the renewing flow model for N = 1, . . . , 5.
Simulations are run up to t = 500τ at which time reliable statistics may be calculated.
(a) Comparison of data points (χ, σ 2) from simulations at fixed ε = 10−4 and Ukτ = 1,
with the lower bound in equation (4.4). The vertical dashed line is χ obtained from (4.7). The
point N = 1 is off-scale at (χ, σ 2) = (8.1, 830). (b, c) The variance σ 2 is divided by the value of
the lower bound evaluated at the simulation value of χ , denoted σ 2

b . In (b) ε = 10−4 and both
N and Ukτ are varied. In (c) Ukτ = 1 and both N and ε are varied.

Then, using the entropy power integral (1.8), one has

χ = 〈ST̄ 〉 ≈ S2
0

Dk2
. (4.7)

The numerical results in figure 1(a) show that the mean-field estimate of χ in (4.7) is
surprisingly accurate even at N = 1. Moreover, as N increases, the points in figure 1
descend vertically along the line χ = S2

0/Dk2 and seem to approach the lower bound.
We conjecture that the bound is exact in the limit N → ∞.

Figures 1(b) and 1(c) compare simulation data points with the lower bound
evaluated at the simulation value of χ . They show again that when the scale separation
between source and advecting flow is large the data points are close to the lower
bound. In figure 1(b) we see that the velocity strength Ukτ does not significantly
change the ratio of the variance to the lower bound. However, in figure 1(c) there
is a much stronger dependence on the Péclet number. In the high diffusion limit the
simulation data points approach the bound, as they should, while in the opposite
limit of ε → 0 the bound performs less well. Over a moderate range of Péclet number
the lower bound performs well with most data points falling well within a decade of
the bounding parabola.
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5. The third example: oscillating convection cells in a channel
In this section we compare the lower bound on the scalar variance (2.5) with

numerical simulations of Solomon & Gollub’s (1988) model of oscillating convection
cells. The domain is a re-entrant channel with 0 < x < 2π/k. The channel is bounded
by walls at y = 0 and y = π/m. The incompressible velocity field is obtained from
(u, v) = (−ψy, ψx), where the model stream function is

ψ =
√

2ψ0 sinmy cos[k(x − a cosωt)]. (5.1)

As a source we use S(y) =
√

2S0 cos my. This example is more complicated than
the renewing flow: because of the walls the flow is spatially inhomogeneous and
anisotropic. Moreover, chaotic and non-chaotic Lagrangian orbits co-exist, i.e. the
phase space is mixed. Reflecting these complications, the eigenvalue problem (2.13)
has non-constant coefficients.

An easy bound is obtained by inserting the non-optimal comparison function
C(y) = S into (2.5):

σ 2

S2
0

�
χ2

S4
0

+
4

3

(
χε

S2
0

− 1

mkψ0

)2

, (5.2)

where the inverse Péclet number in (5.2) is ε ≡ (κm)/(ψ0k).
We improve on (5.2) by solving (2.13) to optimize C. Equation (2.13) is analytically

intractable when C = C(x, y), and hence we are less ambitious and consider only
one-dimensional comparison functions, C(y). In this case the overlines represents x

as well as t averages. For example v2 = k2ψ2
0 sin2 my and the quadratic operator term

in (2.13) is

LL†C = ∂y

[
κ2∂3

y − v2∂y

]
C. (5.3)

Other intermediate results are LS = κm2S and 〈SL†C〉 = κm2〈SC〉. Putting these into
(2.13) we have, after some rearrangements to isolate dependence on the eigenvalue λ,

µ∂ŷ

[
ε2∂3

ŷC − sin2 ŷ ∂ŷC − 2ε2〈C cos ŷ〉 sin ŷ
]

= 〈C cos ŷ〉 cos ŷ. (5.4)

Above ŷ ≡ my and the eigenvalue is

µ ≡
(
λS2

0 − χ2
)
m2k2ψ2

0

2
(
κm2χ − S2

0

)2
. (5.5)

Introducing G ≡ Cŷ , so that 〈C cos ŷ〉 = −〈G sin ŷ〉, and integrating (5.4) once in ŷ

yields the second-order eigenvalue problem

µ[ε2Gŷŷ − sin2 ŷ G + 2ε2〈G sin ŷ〉 sin ŷ] + 〈G sin ŷ〉 sin ŷ = 0. (5.6)

The no-flux boundary conditions on C imply that G(0) = G(π) = 0 and the natural
boundary condition in (2.11) requires Gŷŷ(0) = Gŷŷ(π) = 0. Thus in passing from (5.4)
to (5.6) the constant of integration is zero. This is consistent with even symmetry of
G = Cŷ about ŷ = π/2. These considerations imply that G may be represented as

G(y) =

∞∑
n=1

Gn sin[(2n − 1)ŷ], (5.7)

and Galerkin’s method may be employed to solve (5.6). It is convenient to impose
a normalization constraint, namely 〈G sin ŷ〉 = 1, and then solve the resultant matrix
eigenvalue problem numerically. The result of this eigenvalue calculation is shown in
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Figure 2. Optimal comparison function C(y) for the oscillating convection cell model.
(a) The solution G ≡ Cŷ to equation (5.6) for ε ≡ (κm)/(ψ0k) = 10−2. (b) The eigenvalue
µ(ε) defined in (5.5) plotted against the logarithm of the Péclet number.

figure 2. The associated bound is

σ 2

S2
0

�
λ

S2
0

=
χ2

S4
0

+ 2µ(ε)

(
χε

S2
0

− 1

mkψ0

)2

, (5.8)

where µ(ε) is the eigenvalue depicted in figure 2(b).
If ε ≡ (κm)/(ψ0k)  1 then the interior solution of (5.6) is

G ≈ 〈G sin ŷ〉
µ sin ŷ

. (5.9)

Boundary layers of thickness ε1/2, within which G =O(ε−1/2), are required to enforce
G(0) = G(π) = 0. However the integral 〈G sin ŷ〉 can be evaluated to leading order
using only the interior solution (5.9). Thus one finds µ(ε) = 1 + O(ε1/2), which is the
asymptote in 2(b). As ε → 0 the prefactor of the squared term in (5.8) is 2, compared
to 4/3 in (5.2), which represents a 50 % improvement.

Numerical solutions of the oscillating convection cell model were performed at
ε = 10−3 for various values of the modulation amplitude a between 0 and 3. The
(χ, σ 2) data points for these simulations are shown in figure 3. The maximum mixing
(smallest σ 2) is achieved by the steady flow (a = 0). The minimum mixing (largest σ 2)
is observed at around a =2.2. Snapshots of the scalar field at a = 2.2 indicate that
there seems to be a transport barrier separating the top half of the channel (where
S(y) < 0) from the bottom half (where S(y) > 0). The inset in figure 3 shows that the
simulations are mostly within a decade of the lower bound.

6. Discussion and conclusions
Using variational methods we have shown that the scalar variance σ 2 is bounded

from below by a quadratic function of the entropy production χ . This inequality
restricts statistics of solutions to lie above a parabola in the (χ, σ 2)-plane.

The variational problem utilizes a time-independent comparison function C(x) and
imposes the time average of the passive scalar equation (1.2). In the case of the
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Figure 3. Results of numerical simulations of the oscillating convection cell model. The data
points are obtained from simulations with ε = 10−3 and ω = k = m= 1. The smooth solid curve
is the lower bound (5.8) with µ(10−3) = 0.979. The modulation amplitude, a, varies between 0
and 3. Because of the range of numerical values the axes are logarithmic. The inset shows the
scalar variance, divided by the lower bound evaluated at the simulation value of χ , plotted
against the modulation amplitude.

renewing flow model, with large-scale monochromatic source and doubly periodic
boundaries, the optimal choice for C is simply the source function itself. However,
for the oscillating convection cell model the optimal equations for the comparison
function while being too complicated to solve in two dimensions, give rise to a
boundary layered comparison function when solved with a simplified comparison
function of a single coordinate C(y).

The closeness of statistics obtained from numerical simulations to the bounding
parabola is gratifying. In fact, most data points fall within a decade of the lower-
bound parabola. For the renewing flow model we postulate that the lower bound is
achieved as the scale separation between the source function and velocity field, namely
N in (4.1) and (4.2), becomes large. An interesting question is whether this sharpness
extends to situations where the source is not monochromatic and the advecting fields
are more complex.

Of key interest is the result that isotropic and homogeneous velocity fields lead to
simple solutions of the optimization equation (2.13). How bounding results extend
to more diverse source functions, such as a steady point release of scalar, under this
class of flow field is therefore an important ongoing area of research (Doering &
Thiffeault 2005).

We thank C. R. Doering and J.-L. Thiffeault for many helpful suggestions. This
work was supported by the National Science Foundation under the Collaborations in
Mathematical Geosciences initiative (grant number ATM0222109 and ATM0222104).
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