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ABSTRACT

If the momentum, energy and circulation of a fluid in a periodic, quasi-geostrophic,. B-plage channel are
specified, then there is a minimum enstrophy implied. This minimum enstrophy ﬂpw is ol_:tan'ned using the
calculus of variations and is found to be also a solution of the quasi-geostrophic equations. It is either a parallel

. flow or a finite-amplitude Rossby wave, depending on the aspect ratio of the channel and the amount of energy

and momentum within it. The most geophysically relevant case is a channel whose zonal length is substantially
greater than its meridional breadth, In this instance the form of the minimum enstrophy solution is decided by
the ratio of the energy to the squared momentum. When this parameter is below a critical value one has a
parallel flow, while if this value is exceeded, the minimum enstrophy solution is a Rossby wave.

Heuristic arguments based on the enstrophy cascade in two-dimensional turbulence suggest a “‘selective decay
hypothesis™. This is that scale-selective dissipation will decrease the enstrophy more rapidly than the energy,
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momentum and circulation. If this is the case, then the system should approach the minimum enstrophy

solution.,

1. Introduction

Hou and Farrell (1986) have recently obtained a class
of exact, nonlinear, stationary solutions for barotropic
waves in a S-plane channel. Using numerical experi-
ments they show that these waves can develop from a
variety of initial conditions. However, not all initial
conditions give rise to the wave; rather, if a persistent
wave is to appear, a critical energy must be exceeded.
If the initial energy is less than the critical value, then
the fluid settles into a parallel shear flow. The present
note discusses the emergence of these finite-amplitude
waves from a general initial condition using a “selective
decay principle” (Bretherton and Haidvogel, 1976;
Matthaeus and Montgomery 1980; Leith, 1984). The
essential idea is that the many invariants of the inviscid
barotropic potential 'vorticity equation evolve on dif-
ferent time scales when scale-selective dissipation acts.
For a 8-plane channel the invariants are energy, zonal
momentum and an infinite number of generalized en-
strophy integrals. The circulation in the channel is the
simplest of these enstrophy invariants. Scale-selective
viscosity alters these invariants and it is plausible that
the enstrophy invariants, which have a larger contri-
bution from high wavenumbers, are changed more
rapidly than the energy and momentum. This suggests
that with scale-selective dissipation the flow initially
evolves into a state which has the smallest enstrophy
which is consistent with the initial energy, circulation
and momentum. On longer time scales the momen-
tum, circulation and energy are gradually altered so
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that, in the absence of external forcing, the ultimate
state is one of rest. -

The heuristic argument above suggests a variational
principle: minimize one of the enstrophy integrals,
subject to the constraints that the energy, circulation
and momentum are constant. For tractability the qua-
dratic enstrophy is minimized in the calculation below.
The result is that in a channel with realistic aspect ratio,
if the energy is sufficiently large, or the momentum
small, then the minimum enstrophy solution is the
nonlinear barotropic wave discussed by Hou and Far-
rell (1986). Alternatively, for small energy or large mo-
mentum, the minimum enstrophy solution is a paraliel
flow.

It should be clear at the outset that the selective decay
principle, as stated above, is a heuristic tool which is
based on plausible assumptions about the enstrophy
and energy cascade in two-dimensional turbulence. As
a predictor of the evolution of arbitrary initial condi-
tions it is not rigorously deductive and is sometimes
wrong (e.g., Bretherton and Haidvogel’s experiment
2). Nonetheless, the variational calculation described
here is still a means of establishing some important
landmarks in parameter space. It is useful to know in
advance that if one prescribes the energy, momentum
and circulation of a fluid then the enstrophy must be
larger than a certain minimum. The amount by which
it exceeds this minimum (the “excess enstrophy”) is
an indication of how far the enstrophy cascade can
possibly proceed before it is interrupted by the mo-
mentum, energy and circulation invariants.
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2. The equations of motion and their invariants

The inviscid barotropic potential vorticity equation
in a S-plane channel is

q:tJ(¥,q)=0
q=0y+V¥, 2.1
with boundary conditions at the channel walls
Yolx, £b)=0
wWth)=xU (2.2)

where the overbar is an x average and U is a constant
velocity. We suppose that the flow is periodic

WX, Y)=¥x+a,y) (2.3)

with zonal wavelength a. One important point to note
is that there is a special choice of reference frame in
(2.2b). Conservation of circulation ensures that the
zonally averaged velocity at each wall is a constant.
But there is no loss of generality in adopting a frame
of reference in which the two wall velocities are equal
in magnitude and oppositely directed.

From the previous equations it is straightforward to
prove that energy

E= f V- VydA/2, (2.4)
and zonal momentum
M= nyﬂldi = f udA, 2.5

are constant. Additionally, there are an infinite number
of enstrophy invariants

Q=fF(q)dA

where F is an arbitrary function. One important special
choice is F(g) = ¢, which shows that the circulation in
the channel is constant and indeed this is equivalent
to the boundary condition (2.2b). Also of particular
importance to the present work is the quadratic en-
strophy invariant

(2.6)

Z= f (V) dAa)2 2.7

which is obtained by subtracting a multiple of (2.5)
from (2.6) with F(q) = ¢%/2.

It is convenient to adopt nondimensional variables,
temporarily denoted by an asterisk:

06, Y)=b(Xy,Vs)
¥ =8b%,

g=Bbgs = Bb(y + Vivs). (2.8)
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The nondimensional invariants are defined as

ayEy= f Vals* VilbadAy/2
ayM, = f ;V*Vi'l/*dA* = —f ‘l/*y.dA*

axZy= [ (iga7dAP2 29
where a, = a/b is the nondimensional channel length.

Before turning to the variational problem we list
some direct inequalities which follow from (2.9) and
the Cauchy-Schwarz inequality:

f f?dA f gdA= { f fgdA}z. (2.10)
First from (2.9a) with =y, and g = 1:
4a2E,> f ¢, 2dA f 1dA> a3 M3
ar
e=E/M%>. @.11)
Likewise from (2.9¢), with f = VX and g = y,
z=Z, /M B%. (2.12)

The result (2.11) is important because it tells us that
even though the energy and momentum can be spec-
ified independently, ¢ must exceed Y. Likewise, the
variational bound on the enstrophy can do no better
than (2.12); i.e., one anticipates that the minimum
enstrophy is greater than (3/4)M2%, whatever E,
and M,. :

3. The variational problem and its solution

The minimum enstrophy, subject to constant energy
and momentum as constraints, is found by minimizing
the functional:

Fl= [ Ao ran+s [ 1vy-vyas

+enyz\l/dA (ERY)

where 6 and ¢ are Lagrange multipliers which are de-
termined later. In constructing the functional, it is as-
sumed that ¢ satisfies the same boundary and peri-
odicity conditions as the solution of the equations of
motion, i.e., (2.2) and (2.3). This ensures that the total
circulation in the channel is included as a constraint
without adding a third Lagrange multiplier to (3.1).
The Euler-Lagrange equation, which is a necessary

condition for a minimum, is

Vi~ +ey=0. 3.2)
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The preceding equation must be solved with the
boundary conditions

Yelx, £1) =0
¥ (x1)=%U

Yx+a,y)=y¥(x,y). (3.3)

One then calculates the energy and momentum and
so finds € and 4. Finally, perhaps by examining the
second variation, one can determine whether the
stationary solution constructed above is actually a
minimum. '

Before discussing the detailed solution of (3.2), we
note that it implies

g=V¥+y=5{y+cy}
c=(1—¢)/s (3.4)

and solutions of the potential vorticity equation with
this functional relation between potential vorticity and
streamfunction are waves with phase speed c. [To see
this, look for finite-amplitude solutions of (2.1) which
have the form y¥(x ~ ct, y).] Equation (3.4) is precisely
the relation which underlies the shape-preserving,
nonlinear Rossby waves discussed by Hou and Farrell
(1986). Thus, their solutions are stationary (but perhaps
not extremal) points of the functional (3.1). However,
they did not discuss the solution of (3.2) from the per-
spective of variational calculus and the remainder of
this section is devoted to this task.

It is remarkable that the solution of the variational
problem is also a special solution of the quasi-geo-
strophic equations. There was no guarantee of this at
the outset, and indeed there are many examples in the
literature where the functions which extremize some
quantity subject to constraints are not solutions of the
dynamics which motivated the variational problem
(e.g., Howard, 1972). Thus, not only is there a mini-
mum enstrophy for given E, M and U, but this mini-
mum can actually be achieved by solutions of the quasi-
geostrophic equations. Moreover, in an ideal fluid,
these solutions must be stable because all the adjacent
~ states have more enstrophy and so are inaccessible if
enstrophy is conserved.

a. Symmetric solutions of the Euler-Lagrange equation

We first look for symmetric (i.e., independent of x)
solutions of (3.2). In this instance, one 1s solving an
ordinary differential equation and the result is

u=_¢y=_e_2{l_cosvy]+U51.n‘Yy if 5= —42<0,
v cosy siny
€ coshay sinhay |
=y, =1 f 5=a?>0.
“ ' vy a2[ cosha] sinha - *

(3.5
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With another integration one can obtain ¥, but this is
not necessary. After some straightforward albegra one
finds the energy, momentum and quadratic enstrophy
defined in (2.9). The explicit formulas are presented in
the Appendix.

b. Nonsymmetric solutions of the Fuler-Lagrange
equation

Nonsymmetric solutions of (3.2) have the form

V=9 +{¢'(x—ct,y) (3.6)
where _ _
Y= +ey=0
Vit ¥y —0y'=0 3.7

and c is given by (3.4b). If ¥ is to satisfy (3.3a, c) then
6 must be quantized )

=0 =Yt = Qumifa) + (nn/2)? (3.8)
where m and » are positive integers. If » is odd
¥'= ¢ cos(nmy/2) cos{2mm(x—ct)/a}, (3.9)

while if n is even, ¥’ is proportional to sin(nmy/2). In
(3.9), ¢ is an amplitude which will be determined sub-
sequently.

For the moment confine attention to the lowest
wavenumber

Y= [(x/2)* + (2n/a)’]""? (3.10)
and the corresponding candidate for a nonsymmetric,
minimum enstrophy solution is the gravest mode
¥’ = ¢ cos(my/2) cos[2x(x — ct)/a)]

=¥,

=emfi-il o
COSY 11

siny, y
Sin'y“

where +,, is given by (3.10).

The final step is to determine ¢ and ¢ using the
known values. of energy and momentum. All of the
momentum resides in the mean flow component. Thus,

1
M=f udy
-1

=2e/v1H{1 = v, tany,} (3.11)

and this is a simple connection between ¢ and M.
The energy is _
E=E(yu)+E

E'=¢y:,/4 (3.12)

where E(v,,) is defined by (Ala). The expression v,
is a known constant and the preceding is essentially a
simple relation between the known total energy E and
the amplitude ¢. As Hou and Farrell (1986) noted,
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there is a minimum value of E, E(5,,), which must be
exceeded if the wave is to exist. Finally, one calculates
the enstrophy of the nonsymmetric solution and relates
it to the energy:

Z=Z(y)+vilE=E(yi)]
where Z(v,,) is defined in (Alc).

(3.13)

c. Summary of the solution of Euler-Lagrange equa-
tion

The Euler-Lagrange equations have both symmetric,
(3.5), and nonsymmetric, (3.6)-(3.9), solutions. While
these are stationary points of the functional (3.1) we
have still to decide if they are extrema and whether the
minimum enstrophy is achieved by a symmetric or
nonsymmetric flow. This is the focus of the next sec-
tion. However, it may help to anticipate (or even avoid)
the detailed discussion which is given there. This is
done schematically in Fig. 1, which assumes that both
U and M are nonzero constants. (The important cases
of zero M or U require separate discussion.)

Figure | shows the energy-enstrophy relation which
results from eliminating the Lagrange multipliers. The
solid, multibranched curve is energy-enstrophy rela-
tionship of the symmetric solutions in (3.5). The La-
grange multiplier, d, is a parameter which moves along
this curve. Thus, the lowest point (B) corresponds to
0 = 0. The extreme left-hand section (AB) has § = o?
> 0. The remainder of the lowest solid branch (BCE)

Enstrophy

Zr)

Energy

FIG. 1. A schematic of the energy—enstrophy relations. The solid,
multibranched curve is the symmetric solution in (3.5), while the
dashed straight lines are the first two nonsymmetric solutions in (3.6),
(3.9) and (3.12). The Lagrange multiplier, ¥ or «, is a parameter
which “moves along” the solid curve, e.g., the lowest point B is
v=0.
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corresponds to —w? < 8 = —y? < (. The upper, cusped
branches, which are clearly not minimum enstrophy
solutions, have y > .

The dashed lines, which are tangent to the solid
curve, are the energy—enstrophy relations of the first
two nonsymmetric modes, v;, and v;. Unlike the
symmetric case, there is a simple analytic expression
for this relation, (3.13). This is a consequence of the
different character of the two solutions. In the sym-
metric case 6 is a continuously varying parameter,
whereas in the nonsymmetric case it is “quantized” as
in (3.8). Instead, the amplitude of the wave, ¢, is a
continuous variable whose elimination gives (3.13).

In Fig. 1 it is assumed that v, is less than = so that
the nonsymmetric solution bifurcates from the sym-
metric on the lowest branch, BCE. This is the case if
the length of the channel, g, is sufficiently large. In this
eventuality the minimum enstrophy solution is ABCD.
Thus, when the energy is less than E(y,;) it is a parallel
flow, while.if this treshold is exceeded it is a parallel
flow with a wave superimposed.

Of course, if a is reduced then v, is eventually larger
than 7 and all of the nonsymmetric solutions bifurcate
from one of the upper, cusped branches. In this case
the minimum enstrophy solution is a parallel flow even
when the energy is large.

4. Details of the variational solution
a. Special case (i): M = 0 and U = 0

The first special case is when both the momentum
and the circulation are zero. Consider first the sym-
metric solutions. There are two of these.

First, with U = 0 and ¢ # 0 in (3.5a), one has the
profile

4.1
COSY 4

u(y)= (e/vi)(l —9’37*—1),

where v, is determined by requiring that the momen-
tum in (Alb) is zero. Thus v, is the first nontrivial
zero of ¥ = tany or

Ye=4.4934 - - .. 4.2)

The velocity profile in (4.1) is shown in Fig. 2.

The second symmetric solution with zero momen-
tum is obtained by first setting ¢ = 0 in (3.5a) and then
taking a singular limit, U = 0 and v — = but holding
the ratio U/siny fixed at U,. The result is

w(y)= U, sinwy, 4.3)

which satisfies both the boundary conditions and the
zero momentum constraint. Again the velocity profile
is shown in Fig. 2.

Figure 3 shows the enstrophy-energy relations of
both (4.1) and (4.3). Clearly (4.3) has then smaller en-
strophy for given energy.



2808

™~
7

F1G. 2. The velocity profiles corresponding to the stationary en-
strophy solutions in (4.1) and (4.3). For fixed energy, the lower profile
always has less enstrophy than the upper. However, if the inequality
(4.5) is satisfied then there is a nonsymmetric solution with less en-
strophy than the lower profile.

The gravest nonsymmetric solution is

¥ = ¢ cos(my/2) cos[n(x — ct)/a) 4.4)

. and its wavenumber is
vy = (/2 + 2n/a)]

With fixed energy, the solution in (4.4) has less enstro-
phy than (4.3) provided +; is less than =, or equiva-
lently, .

a>2.31. 4.5)

Figure 3 shows the enstrophy-energy relation of the
gravest mode in a channel with a = 12. (Recall the
nondimensional north-south width of the channel is
2 so this choice is a region whose zonal length is six
times its meridional.) Thus, in this case, the minimum
enstrophy solution is the Rossby wave in (4.4). Note,
however, that if the channel is “square” (a = 2),
the minimum enstrophy solution is the parallel flow
in (4.3).

Also shown in Fig. 3 is the enstrophy-energy relation
of a “modon sea” (Stern, 1975). This is an ensemble
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of close-packed modons of radius one, which is the
largest size permitted by a channel with a > 2. Smaller
modons have even steeper enstrophy-energy relations.

b. Special case (ii): M = 0 and U # 0

The previous case was doubly special because both
U and M were zero. Now suppose that the momentum
is still zero but the circulation is nonzero. This char-
acterizes Hou and Farrell’s (1986) numerical experi-
ments.

First, consider symmetric solutions. From (A 1b) and
(A2b) if there is no momentum, then either

(a) ¢ = 0 and v is a continuous variable
(b) v = vy =4.4934 - . .,

(We ignore the larger solutions of ¥ = tany because
these are clearly not minimum enstrophy candidates.)
In case (a) the results are summarized in Fig. 4, which
shows Z/U? as a function of E/U? This is obtained
by the elimination of y or « from the expressions given
in the Appendix. Thus, § (=a? or —v?) parameterizes
the solid curve in Fig. 4. The lowest point of the curve
is 86 = 0. The left-hand branch, which has a vertical
asymptote (Z = oo as E = 0)is = o® > 0. The right-
hand branch, which asymptotes to Z ~ %2E + O(E'/?),
is 2 > y%* = —8 > 0. Figure 1 schematically shows that
there are many disjoint, cusped branches when ¥ > =2,
Only one of these is indicated in Fig. 4. Figure 5 shows
the velocity profiles which correspond to various in-
dicated points on Fig. 4. As E/U? becomes large, the
velocity profile becomes increasingly similar to (4.3),
and thus case (i) 1s recovered.

The solid curve in Fig. 4 is the enstrophy-energy

100 T T T T
80 |- =
&
¥ e -
60 |- .
£ & L
o 7
£ 4
& 40 |- .
2¢
12"
20 =
2 =\2)/
7=y Bl
o | 1 l
) \ 2 3 4 5
Energy

FIG. 3. Energy enstrophy relations when U = M = 0. In this case
the curves in Fig. 1 degenerate into straight lines. When @ = 12 the
minimum enstrophy solution is the gravest mode v,;.
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15.0

10.04

5.0

0.0

0.0 6.0

FIG. 4. The solid curves show the energy~enstrophy relation of
symmetric solutions in (3.5) with ¢ = 0 and v or « continuously
varying. Selected values of v or o are shown on the plot. The dashed
straight line is the energy-enstrophy relation [see (3.13)] of the gravest
nonsymmetric mode in a channel with ¢ = 12. It is tangent to the
solid curve [see (4.6)] at v = v, =~ 2.75.

relation of a symmetric flow. The enstrophy-energy
relations of the nonsymmetric modes, which from
(3.13) are just straight lines, bifurcate from the solid
curve when v = v,,,. Shown in Fig. 4 as a dashed
straight line is the relation for the gravest mode when
a = 12 and v;, = 2.741. This straight line is tangent
to the solid curve because

(0Z/FE)ypr=—0=7~ 4.6)

This important relation can be tediously verified by
direct differentiation of the results in the Appendix.
Alternatively, one can observe that because of the un-
derlying variational problem the difference between the
enstrophy of the symmetric solution and that of the
nonsymmetric must be of second order in the difference
between these two fields. Thus, the two curves must
be tangent at the bifurcation point. In any case, pro-
vided the inequality (4.5) is satisfied, the nonsymmetric
mode branches from the lowest curve and so if E/U?
is greater than E(v,,)/U?, the minimum enstrophy so-
lution is a wave.

However, Hou and Farrell (1986) used a “‘square
channel”, i.e., a = 2. In their case v;; = 1.127 so that
the gravest nonsymmetric bifurcates from one of the
upper, cusped branches. The persistent wave which de-
velops in their simulations is not a minimum enstrophy
solution—there is a parallel flow with the same energy,
momentum and circulation, but less enstrophy. Pos-
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sible reasons for the failure of the selective decay prin-
ciple are discussed in the conclusion.

So far our discussion has ignored the second sym-
metric solution, (b), with v = v,. The enstrophy-en-
ergy relation of this mode is easily obtained by sim-
plifying the expressions in the Appendix using (tan)y,
= v,. The result is

(ZIUH=~UEIUH+ 1. 4.7

Like the nonsymmetric solutions, this is a straight line
which is tangent to the solid curve in Fig. 4 at vy = v,.
The point of bifurcation or tangency lies on the upper,
cusped branch because vy, > . Thus, there is always
either another parallel flow, or a wave, with less en-
strophy for given energy and circulation. The linear
enstrophy-energy relation of this mode is not shown
in Fig. 4.

¢. Special case (iii): M # 0 and U =-0

Consider the complementary case where the circu-
lation vanishes but the momentum is nonzero. Again
we begin by examining the symmetric solution and
noting there are two types:

"‘r a=15 1 =0
~ U u
A
1 v 2.00 19 1= 2.75
'] >S5 U

-1 d

4.71

= 3.70 | "‘/ -

> U

~ “

HFIG. 5. Velocity profiles corresponding to various points on
Fig. 4. The bottom two profiles are on the upper, cusped branch.
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(a) e # 0, U = 0 and v is a continuous variable
(b) v = = with Uy = U/sinvy fixed.

The solid line in Fig. 6 is the enstrophy-energy relation
in case (a). The lowest point is 8 = ¥ = 0. The left-
hand portion, with the vertical asymptote (Z/M? —~
oo as E/M? — %), has 6 = a® > 0. The right-hand
section, for which Z/M? ~ ~2(E/M?) + O(E/M?)'7?,
has 0 > § = —y? > —+2. Bifurcating from this curve
aty = r is the family in (b). For this family the velocity
profile in (3.5a) can be rewritten as

u= %M{l + costy} + [2E —3M*/4] 2 sinty  (4.8)

and the enstrophy-energy relation of the above is
ZIM? = Y E/M?) — (7?/4). 4.9)

If the inequality (4.5) is satisfied, then the nonsym-
metric mode bifurcates first (i.e., at ¥ = y;; < 7) and
is the minimum enstrophy solution when E exceeds
E(v{)). On the other hand, if v,; > =, then the mini-
mum enstrophy solution is always symmetric. When
E < 3M?*/8 it is of type (a), while if E > 3M?/8 it is of
type (b) and the velocity profile is given by (4.8).

d. The general case: U # 0 and M #+ 0

Now consider the general case in which the circu-
lation and the momentum are both nonzero. Some

6.0

vV

4.04

2.04

0.0 T T =T T

0.0 0.2 0.4
/M

FiG. 6. The solid curve shows the energy enstrophy relation of the
symmetric solutions in (3.5) with U = 0 and 2500 > & > —16. With
this restriction on the range of 8, only a portion of the relation is
constructed above. Selected values of iy or « are shown on the plot.
The dashed straight line is the energy-enstrophy relation of the sym-
metric profile in (4.8) and (4.9).
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10.0

8.0+

6.0
b=
~
~

4.0+

2.0

um -0
0.0 ™ T
2.0 1.0 2.0 3.0

E/M

FIG. 7. Various energy—enstrophy relations when U and M are
both nonzero. The points at which vy = #/2 are indicated on the
curves U/M = 1 and U/M = 2. When U/M = 0 the point v = =/2
is very close to the minimum of Fig. 6.

typical symmetric enstrophy-energy relations are
shown in Fig. 7. Also redrawn on this expanded hor-
izontal scale is the solid curve from Fig. 6, i.e., the
symmetric enstrophy—energy relation when U = 0. It
seems plausible that as U/M is reduced and becomes
much less than one, the solid curves in Fig. 7 must
somehow continuously deform into the dashed straight
line in Fig. 6. This transition is illustrated in Fig. 8,
which shows the symmetric enstrophy-energy relations
when U/M = 0 (the solid curve) and U/M = Yz (the
dashed curve). The lowest branch of the dashed curve
is closely approximated by the minimum enstrophy
solution in Fig. 6. Thus, as E/M? increases, the sym-
metric solution with the smallest enstrophy for given
energy, momentum and circulation increasingly re-
sembles (4.8) and (4.9). However, as in the discussion
which follows those equations,-if the channel is longer
than 2.31, then the nonsymmetric solution bifurcates
from the symmetric relation in Fig. 7 and provides a
solution with even smaller enstrophy. In most atmo-
spheric applications the inequality (4.5) will be effort-
lessly satisfied. Consequently, when E > E(y,;), the
minimum enstrophy solution is a finite-amplitude
Rossby wave rather than a parallel flow.

e. Are the stationary solutions extrema?

The solutions of (3.2) are stationary points of (3.1).
They may be maxima, saddle-points or minima. A little
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10.0

8.0

6.0+

Y744

1.0

2.0+

1 U
0.75 1.25 1.50 1.75

1.00
E/M

FiG. 8. The solid curve is the right-hand portion (3 < 0) of energy-
enstrophy relation of the symmetric profiles when U/M = 0. This

same relation is shown in Figs. 6 and 7. The dashed curve the energy-
enstrophy relation of symmetric profiles when U/M = 4.

thought shows they cannot be maxima: by simply add-
ing very smail-scale vorticity to any flow it is possible
to increase the enstrophy without altering the energy,
momentum or circulation.

The most straightforward means of deciding between
saddle-points and minima is an examination of the
second variation of F. Thus, if

v=y;tn (4.10)

where ; is now the stationary point obtained from
(3.2), then
62F=J‘%(V2n)z+6%Vn-VndA. 4.11)
If 6 = o = 0, then the second variation is manifestly
positive and the stationary point is a minimum.

In fact, if —& < min(#?, v,,%), then 6*F is again pos-
itive. One proves this by minimizing the homogeneous
functional

Glal= [ vnrans [Vn-vnaa @)
where 7, is zero at y = *1 and n(x + 4, ») = n(x, ).
The smallest value of G turns out to be the smaller of
7* and v,,%. In the first case we conclude that the sta-
tionary, symmetric solution constructed earlier is in
fact a minimum. In the second case we know that the
stationary symmetric solution is a minimum up to the
point at which the nonsymmetric solution bifurcates
(l'e': Y= ‘Yll)'
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After the bifurcation to the nonsymmetric solution
~ is “frozen” at y; and the second variation is not
positive definite. In fact, it is easy to construct a per-
turbation for which it is zero: merely shift the phase
of the nonsymmetric part, {'. Thus, although 8%F is
not positive, it is nonnegative because the minimum
value of G in (4.12) is v,,%. Thus, apart from trivial
alterations in phase, which leave the enstrophy unal-
tered, the nonsymmetric solutions with ¥ =y, <7
are minima..

5. Conclusions

It has been shown that if one specifies the energy,
momentum and circulation of a quasi-geostrophic fluid
in a B-plane channel then there is a minimum enstro-
phy implied by these constraints. The form of the min-
imum enstrophy solution depends on the aspect ratio

. of the channel. If the zonal length of the channel is less

than 1.15 times its meridional width, then the solution
which minimizes the enstrophy is always a parallel flow.
However, in the geophysically relevant case when this
inequality is reversed, the form of the solution is de-
cided by the ratio of the energy to the square of the
momentum: e = E/M?. When this parameter is below
a critical value the minimum enstrophy solution is
again a parallel flow. When this critical value is ex-
ceeded, the minimum enstrophy solution is a finite-
amplitude Rossby wave.

It is easy to physically interpret and summarize these
results. Imagine fixing the momentum and increasing
the energy of the fluid. A plausible candidate for a
minimum enstrophy solution is a parallel flow which
increasingly resembles that in Fig. 2b as ¢ = E/M?
grows. This is essentially the solution in (4.8) and (4.9),
and intuitively one is storing energy in the term pro-
portional to sinwy without increasing the momentum.
However, an alternative is a wavy solution in which
the energy is stored in the asymmetric component.
Once again this can be done without increasing the
momentum. Not surprisingly, the flow with the small-
est enstrophy is just the one with the smallest wave-
number. This is the asymmetric solution if v,, <, or
equivalently, a > 2.30.

For an ideal fluid the stability of the minimum en-
strophy solutions is guaranteed by the variational con-
struction. All adjacent flows with the same energy and
momentum have more enstrophy, and consequently
are inaccessible. The stability of the stationary, but
nonextremal solutions is also of interest and some pre-
liminary results are in Barsugli (1986).

In a nonideal fluid the heuristic “selective decay
principle” suggests that the minimum enstrophy so-
lutions are not only stable, but attract arbitrary initial
conditions because scale-selective dissipation prefer-
entially destroys enstrophy. This is not a rigorous de-
duction of the preceding calculation and testing it re-
quires numerical computations beyond the scope of
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the present work. However, even if the selective decay
principle is invalidated by these calculations, the vari-
ational problem should still provide a useful framework
for interpreting and diagnosing them. For instance, one
can visualize the evolution of fluid in a channel as a
moving point on Figs. 4 or 6. The point must lie above
the minimum enstrophy curve and its orbit in the (z,
¢) plane might be useful means of summarizing a nu-
merical experiment.

It must be admitted that Hou and Farrell’s (1986)
experiments do not generally support the selective de-
cay hypothesis. This is because they used a “square”
channel (a = 2). With this modest, and perhaps un-
realistic, aspect ratio the minimum enstrophy solution
is always a parallel flow. Thus the persistent Rossby
wave which develops in their calculation is not a min-
imum enstrophy solution. It may be that their integra-
tion was stopped before the excess enstrophy was de-
stroyed by scale-selective dissipation. It would be of
interest to compare extended integrations in channels
with disparate zonal lengths.

Acknowledgments. This research was supported by
ONR Contract N00014-80-C-0273. I enjoyed many
useful discussions with Joe Barsugli and Glenn Flier]
during the course of this work.

APPENDIX
Algebraic Details of the Symmetric Solutions

From (3.5) one has the following expression for E,
M and Z when the solution is symmetric (independent
of x):

E(v,e, U)= (5/72)2{1 +% sec?y -—%'y_‘ tan»y}
+ (U?/2){cosec’y — " cot'y’}
M(y,e, U)=2(e/y?){1 — v ! tanvy}
Z(v, 6 U) = (e/yHH(v*2){sec’y —v ' tany}
+(UPy*/2){cosec’y + ' coty} |
(A1)
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ifé=—y2<0.
If 6 = o > 0, then
\
E(a, e, U)=(¢/a®)? {1 +% sech’a — % a’! tanha]
+ (U*/2){—cosech’a + a~! cotha}
M(a, e, U)=2(e/a*){] — o' tanha} } :
Z(a, ¢, U) = (e/a?)Ha?/2){ —sech’a + o~ tanha’}
+ (U?%a?/2){cosec’a + a~! cotha}

(A2)

The overbar in the above definitions emphasizes that
these are the energy, momentum and enstrophy of '
symmetric solutions. The final step of the variational
calculation is to solve for é and ¢ as functions of E, M
and U. One then expresses Z as function E, M and U
using (A lc) and (A2c). This has been done numerically
and the results are shown in several figures. If M is
nonzero it is convenient to use

e=E/M?* z=Z/M* UM (A3)

as independent variables. It is clear from (A1) and (A2)
that z is a function of U/M and e alone, so that the
definitions in (A3) reduce the number of independent
variables from three (E, M, U) to two (e, U/M). The
case M = (O requires a separate discussion.
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