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A recently proposed scaling theory of two-dimensional turbulent decay, based on the 
evolutionary pathway of successive mergers of coherent vortices, is used to predict the rate 
and end state of the evolution. These predictions differ from those based on the 
selective-decay hypothesis and traditional ideas of spectrum evolution, and they are in 
substantially better agreement with numerical solutions at large Reynolds number. 

The spectrum evolution of decaying two-dimensional 
turbulence at large Reynolds number shows movement of 
energy toward larger scales and dissipation of vorticity 
variance (enstrophy) at smaller scales. However, its evo- 
lution is also characterized by the emergence of and dy- 
namical control by coherent vortices. The mechanism 
known as selective decay has recently been reiterated as apt 
for this system.’ In this Brief Communication, we present 
an assessment of this hypothesis on the basis of the scaling 
theory we recently proposed,’ as well as two high- 
resolution numerical solutions.“3 In particular, we exam- 
ine (1) the pathway and rate by which the system ap- 
proaches the dipole-vortex flow configuration that marks 
the cessation of significant nonlinear evolution and (2) the 
relation between that final dipole and the ftow configura- 
tion predicted by the selective-decay hypothesis. 

We find that scaling theory predicts a longer time to 
reach the final dipole than classical estimates of spectrum 
evolution and that the final dipole has a larger enstrophy, 
larger maximum vorticity, and smaller radius than that 
predicted by selective decay. Furthermore, these distinc- 
tions are supported by the numerical solutions. 

Inviscid two-dimensional flow conserves both energy 
$ and enstrophy Z, where 

;lu12dx, Z-(2;L12 j- ,pdx, 

(1) 
and c = %VXU is the vorticity. [The domain is a doubly 
periodic one in (xa) over a distance 2?rL, and 2 is the unit 
vector normal to the plane of motion.] As a consequence 
any nonlinear evolution that tends to broaden the wave- 
number spectra will move the centroids of the energy and 
enstrophy spectra to larger and smaller scales, 
respectively.4 Because viscosity is preferentially dissipative 
on small scales, it is plausible that enstrophy should be 
dissipated more rapidly than energy. This argument moti- 
vated an early proposal5 for self-similar spectrum evolution 
in which %’ is conserved and is the only property of the 
initial conditions affecting the long-term evolution; hence 

Z-t-2. (2) 

A traditional view of the evolutionary pathway is that the 
peak wave number of the energy spectrum, k,, proceeds by 

geometric progression on a circulation tune scale, t,(t); 
i.e., dk,/dt- - k,/t,, where 

t,(t) =Z-1’2(t) =k,‘(t)$-“? 

This traditional view also implies (2). 

(3) 

The idea that enstrophy is dissipated more rapidly than 
energy also motivated the selective-decay hypothesis,6P7 
viz., that the evolution proceeds to an extremal state in 
which Z is minimal for a given (initial) %. Once the flow 
reaches the extremal state, there is no further nonlinear 
evolution, and a small viscosity induces only a slow diffu- 
sive decay. The configuration for this state is any superpo- 
sition, translation, or 90” rotation of parallel flow in the 
gravest wave number, cos (x/L). The superposition corre- 
sponding to a dipole is 

lj(x,y,t) = JzsF[cos(x/L) - cos(y/L) 1, (4) 

where II, is the streamfunction, u =&V$, and 
5 = V21c, [ = - $/L2 for (4)]. This flow has the properties 

(e.1&/2$, z=:, o=!gL, 
L (5) 

where j,,, is the vorticity extremum, and a, the radius of 
the individual vortices in the dipole, is defined as the dis- 
tance along a line connecting the vortex centers at which c 
decays to, say 5&2. Combining the selective-decay value 
of the final enstrophy (5) with the decay law (2) gives an 
estimate for the nonlinear final time tf for the arrival of the 
solution at the extremal state (4): 

tyL/ JF. (6) 

Note that L and @? are the only dimensional parameters in 
these results. 

It is evident from the numerical solutions that the prin- 
cipal pathway for spectrum evolution, once the vortices 
have become dominant, is merger of pairs of like-sign vor- 
tices. Merger occurs when the essentially inviscid and cha- 
otic mutual advection among all vortices brings a pair close 
enough together. The average peak vorticity of the vortices 
is relatively constant throughout the evolution3 Over a 
sufficiently long time, the chaotic advection will effect all 
possible mergers, and when there remain two vortices, one 
of each sign, the advection becomes regular and the evo- 
lution ceases to be significantly nonlinear.17 A vortex di- 
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pole is a uniformly propagating stationary state of the in- 
viscid dynamics, called a modon in some contexts.8’9 

We now contrast the predictions in (4)-( 6) with those 
of scaling theory,’ which asserts that there is a second 
conserved quantity (in addition to g) affecting the long- 
term evolution: the average peak vorticity inside the vortex 
cores. We denote this extremal value of [ by ceXt. The 
emergence of coherent vortices from random initial condi- 
tions occurs on a time scale to- l/&,,- t,(O). Thereafter, 
the evolution of the spectrum is considerably slower than 
in the traditional view stated above, and thus one can use- 
fully speak of an arrest or suppression of the turbulent 
cascade by the coherent vortices;““’ this language is not 
intended to imply a total cessation of nonlinear evolution, 
as some have characterized it.’ Under conditions where the 
vortex population attributes are not broadly distributed, 
this stage of evolution exhibits scaling behavior in which 
both the means of these attributes (e.g., number N, peak 
amplitude I?&~, and radius a) and the bulk statistical mo- 
ments (e.g., ‘8 and Z) vary algebraically with time.2’3 Spe- 
cifically, 

N(t) =N(to)(t/tlJ) -c, z(t) =Z(t,)(t/t,) -f;/z, 
a(t) = a(to) (t/to) fi/4* Lt(t) = Ldto), 
s(t) = g(to). (7) 

The scaling relations result from associating the statistical 
moments with the vortex attributes: 

8 - Nczxta4/L2, Z- N&a2/L2. 

The exponent 5 has been found in both fluid and modified- 
point-vortex solutions to be j~O.70-0.75.~~~ Note that the 
enstrophy decay rate is much slower here than estimated 
by (2): i.e., c/2=0.37 ~2.0. 

The scaling theory was originally proposed to describe 
a turbulent fluid containing a large number of well- 
separated coherent vortices, and this is the regime in which 
it has been confirmed.‘.18 We now extrapolate the theory to 
small numbers of vortices, estimating the time tf required 
to reach the final dipole state by setting N(tf) = 2 in (7). 
The emergent vortices have size and spacing that can be 
related to the wave-number spectrum of the random initial 
conditions: they are reasonably closely packed, 
a(t,) -k; ’ (0), and their spacing corresponds to the dis- 
tance between neighboring extrema, L/N1j2(t ) 
-k ; ‘(0). Thus, N(to>a(to)“-L” . Using (7) and (s”) 
then gives 

(9) 

Compare this to the selective-decay estimate, (6), rewrit- 
ten as tf = &’ (l&,L/ @> ‘: The exponent here is larger, 
2/f;,-2.76> 1, indicating a much longer time to reach the 
Enal dipole. In the same manner, we can use (7)-(9) to 
estimate the peak vorticity, enstrophy, and radius of the 
vortices in the final dipole: 

l&,-NA’2( p/L), Z-NA’2( %‘/L2), a--N& 1’4L. 
(10) 

A comparison of (5) and (10) shows that scaling-theory 
estimates of the properties of the final dipole differ signif- 
icantly from selective-decay estimates when the initial vor- 
tex population is large. 

We have observed the inexorable but lengthy evolution 
to the final dipole in several low-resolution numerical so- 
lutions ( 1282), and one example at higher resolution 
(5 122) and Reynolds number has recently been reported.’ 
These dipoles have a qualitative similarity to (4) in that 
there are two vorticity extrema of opposite sign, separated 
by a distance of O(L), and there is essentially no further 
nonlinear evolution. However, the vorticity amplitudes and 
enstrophies are appreciably larger, and the radii of the vor- 
tices are appreciably smaller than in (5). Also, the rates of 
enstrophy decay are slower than (2), and the final times tf 
are appreciably larger than (6). 

The final dipole which emerges is a member of a family 
of dipoles with continuously varying orientation and sepa- 
ration, whose dynamics consists of relatively simple prop- 
agation. Considering that the pathway to the final dipole is 
a chaotic sequence of mergers of close same-sign vortices, 
there is no reason for a particular configuration to be se- 
lected. Indeed, although the final dipole found in Ref. 1 is 
very close to the orientation and separation in the station- 
ary, selective-decay solution (4)) some low-resolution so- 
lutions exhibit final dipoles with different orientations and 
separations. This range of final dipole shapes and configu- 
rations also contradicts the alternative statistical- 
mechanical proposal that the final configuration is given by 
the sinh-Poisson equation.12 

In solutions with a broadband random initial energy 
spectrum peaked at k, = O(L - ‘),lT13 there are relatively 
few large vortices in the emergent vortex population, along 
with many more small vortices. These large vortices dom- 
inate the chaotic mutual advection and relatively few 
mergers among them are required to arrive at the final 
dipole. Thus, the associated normalized vorticity ampli- 
tude and enstrophy will have only modest excesses above 
the selective-decay predictions (5). The relevance of our 
temporal scaling theory to broadband solutions is not yet 
clear (although some degree of spatial scaling behavior is 
observed14). For example, the enstrophy decay (Fig. 1 in 
Ref. 1) does not have a uniform power-law form, although, 
as pointed out by the authors, its rate is substantially 
slower than the traditional estimate (2); however, after 
t s 30, its decay exponent does appear to be close to - g/2, 
as in (7). 

Scaling theory is clearly apt for solutions with initially 
narrow-band spectra, in which the emergent vortex popu- 
lation attributes are not very broadly distributed. The so- 
lution in Ref. 3, which is in this class, has been integrated 
to t = 150, corresponding to approximately 1000 circula- 
tion times. This integration time is comparable to that in 
Ref. 1, but the larger k, (0) (and hence & and No) makes 
it impractical to run out to the final dipole; from (9), 
tf--,3500, which is strikingly larger than the traditional 
prediction (6), tf=: 1. In addition, at present numerical 
resolutions, the influence of diffusion over At = 3500 
would cause appreciable departures from the (infinite Rey- 
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FIG. 1. c(x,y) at (a) t=S and (b) t = 150. The contours are *12, 
&24,..., and the negative contours are dashed. 

nolds number) scaling theory. The vorticity fields at t = 5 
(with N = 223) and at the latest time, f = 150 (with N 
= 19), are shown in Fig. 1. It is clear from this figure that 

the vortices in the final dipole will be very much smaller 
and stronger than the selective-decay predictions (5), in 
accord with scaling theory ( 10). 

Recently, some new statistical mechanical arguments 
have been proposed for two-dimensional flo~.‘~,‘~ Ex- 
tremal hypotheses about the evolution of nonlinear dynam- 
ical systems, such as these and the selective-decay hypoth- 
esis, can in some instances be accurate in determining the 
end states of evolution. However, by their silence about 
dynamical pathways, they can also be misleading if the 
associated rates become very slow, or even zero if there 
does not exist an evolutionary pathway between a partic- 
ular initial state and the predicted extremal state. By in- 
corporating the pathway for two-dimensional turbulent de- 
cay, scaling theory provides new predictions for the rate 
and end state which differ from those of previous hypoth- 
eses and which are in substantially better agreement with 
numerical solutions at large Reynolds number. 
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