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The large-scale 7-S relation in the oceanic mixed
layer has a density ratio that, in the mean, is close
to 2. There are large fluctuations around this average,
perhaps due to stochastic forcing such as rainstorms.
In this note we study a two-box model of the 7-S re-
lation in which the mass exchange between the boxes
is a function of the density difference, and the effect of
rainstorms is modeled as random precipitation and
evaporation. If the random forcing has a decorrelation
time much less than the deterministic evolution, then
a Fokker-Planck equation can be used to describe the
evolution of an ensemble of box models. We find the
equilibrium solution of the Fokker-Planck equation
and then use it to compute the average density ratio
of the ensemble. This average is close to 2, provided
that the random fluctuations are large and that the
mass exchange is proportional to the absolute value of
the density difference between the two boxes. (Other
models of the mass exchange lead to different average
density ratios.) The effect of forcing with a nonzero
time average (e.g., large-scale persistent gradients in
precipitation) is assessed, and we conclude that pro-
vided the stochastic component of the forcing is suf-
ficiently large, the average density ratio remains
near 2.

The vision of the mixed-layer 7-S relation, which
emerges from this very idealized model, is that enor-
mously variable forcing creates salinity anomalies that
are eliminated by some mechanism whose efficacy in-
creases with the density gradient. The combination of
large fluctuations and nonlinear mass exchange creates
a T-S regulator that holds the average density ratio to
values around 2.

1. The box model

The possibility that the observed mean distribution
of temperature and salinity in the surface layers of the
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ocean may be attributed to an interaction between the
mean horizontal temperature gradient and the sto-
chastic forcing of random rainfall and evaporation has
been raised by Stommel (1992). In this note we explore
the process in the simplest of physical systems: two
boxes (Fig. 1) connected by orifices at two different
levels. The two boxes represent two control volumes
at different latitudes in the mixed layer.

Box | has temperature fixed at 7, = 1 and box 2 at
T, = 0. The respective salinities are Sy and S; and y
= S, — S,. We use units so that the density difference
between the two boxes is proportional to (T, — T3)
- (S, — 8,) = 1 — y. Conservation of salinity is

S =%E(1 — (S, = S) +%P(t) and

. 1 1

S2 =3 E(1 = y)(51 = 52) =5 P(?) (1.1)
where the exchange of mass between the two boxes is
modeled by the “exchange function,” E(1 — y). A

specific model is the form introduced by Stommel
(1961)

E(1-ypy)y=11-yl. (1.2)

Our principal conclusions do not depend on the de-
tailed structure of the exchange function.

In (1.1) we have included precipitation and evap-
oration through the forcing function P(¢). We denote
the long-term mean of this function by u and write

P(t) = p + p(2), (1.3)

where the time average of p(¢) is zero.

Subtracting the two equations in (1.1) we have a
single equation for the salinity difference between the
boxes:

y=-E(l=y)y+u+p(). (1.4)

Thus, the state of the system is entirely defined by y(z)
and the remainder of this note uses (1.4) as the gov-
erning equation. Note that the asymmetry between
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FIG. 1. The two-box model with fixed temperature. The precipi-
tation is P(¢) and the salinity difference is y = §; — S,. The mass
exchange is determined by some function of the density difference
E(1 —y).

temperature and salinity in the model is introduced by
the assumption that the temperature difference between
the two boxes is fixed, while the salinity difference can
evolve. In particular, the exchange function E is an
even function of the density difference.

If there is no forcing, u = p(¢) = 0, then the system
evolves to one of the two steady solutions: y = 0 or y
= 1. If disturbed by a sudden, large positive pulse, say
p(t) = pod(t — to), the system jumps to y = py. There
¥ is negative, so y drifts down toward y = 1 where it
stops. At this point the system is in equilibrium because
the density difference is | — y = 0. This is a static state
with no mass exchange. But it is a “semistable” ' equi-
liorium because even a very small negative jolt moves
it to y slightly less than 1, where it again finds y < 0
and so y drifts away from y = 1 toward y = 0, where
it stops. At this point the system is in equilibrium be-
cause there is no salinity difference between the boxes.
This equilibrium is linearly stable and has a nonvan-
ishing mass exchange driven by the fixed temperature
difference between the boxes.

Note that a large negative pulse drives the system to
negative y, where y > 0, so that the system drifts back
to y = 0. But in this case there is no semistable equi-
librium point to hinder the return to y = 0.

If 0 < u < pu.and p(¢) = O then the system has three
equilibria: A, B, and C, where A and C are linearly
stable and B is linearly unstable. The precise value of
1. depends on the exchange function E(1 — y). For
instance, with the choice in (2), one finds p. = 1/4. This
is a simplified version of the Stommel (1961) model,
which has subsequently been elaborated into clima-
tological models (Bryan 1986; Birchfield 1989; Mar-
otzke 1989). Here we suggest that the Stommel (1961)

! The equilibrium at y = | is semistable because small positive
displacements are exponentially damped, so that y returns to 1,
whereas small negative displacements grow exponentially and ulti-
mately take the system to y = 0.
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model can also be used to illustrate the role of lateral
thermohaline variations within the mixed layer.

The primary focus of this note is the statistical prop-
erties of y(¢) when p(t) is a large-amplitude, rapidly
changing, stochastic forcing. This drives intermittent
reversals of flow between the two boxes and results in
sustained and unpredictable time dependence in y(¢).
We use standard results from statistical physics to ob-
tain the average properties of y(z), but before presenting
this theoretical calculation we concretely illustrate the
dynamics in (1.4) with a numerical solution.

2. Some numerical examples by time stepping
a. Periodic forcing

Figure 2a shows the results of forcing (1.4) with
= (0 and

(2.1)

The smaller orbit has p, = 2.5. There is no jump, just
a moving phase point, circling the attractor at y = 0,
but eccentrically with apogee extended toward y = 1.
This eccentricity is “due to” the other attractor at y
= 1. In this periodically forced two-box model the an-
alog of the oceanographic “density ratio” («¢AT/BAS
in conventional notation) is R = 1/{y) where {y) is
the average of y(¢) over a period. For the small orbit
in Fig. 2a R = 11.7—a large value. The two larger
ovals encircle both attractors. They have p; equal to 5
and 10 with R = 2.4 and 2.1, respectively. As the am-
plitude of the forcing increases, { y) approaches 1/, or
equivalently R approaches 2. Evidently the attractors
at the center of the large-amplitude orbit are so distant
that they are seen as a single point at y = 1/5.

p(t) = po cos(2nt).

b. Stochastic forcing

The cloud of points in Fig. 2b corresponds to sto-
chastic forcing of the form p(z) = 10(¢ — 0.5) where
¢ is a random number uniformly distributed in the-
interval 0 < £ < 1. £ is changed at every time step and
often it is large enough to alter the sign of the density
difference 1 — y. Once again we find that R = 1/{y)
= 2.26, that is, very close to 2. Thus, it seems not to
matter whether the forcing is periodic or stochastic.
Provided that the amplitude is large enough the system
orbits an “effective attractor™ at y = /5.

3. The Fokker-Planck equation and its equilibrium
density

The model in (1.4) is identical to the motion of a
particle with no inertia moving in a potential field,
H(y), defined by the force law

H
d—=yE(1 —¥) = u

& (3.1)
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FIG. 2. (a) The (y, ¥) plane. The fractured parabola shows that there are two equilibrium
states, y = 0 and y = | when u = p(z) = 0. The state at y = 0 is a thermally controlled
circulation with no salinity difference. The state at y = 0 is a static one with no mass exchange
because the density difference vanishes. When 0 < u < 1/4 there are three equilibrium points:
A, B, and C, of which B is unstable, the other two corresponding to thermal- and salt-dominated
circulations. For u > /4 there is only one equilibrium state—the thermally dominated cir-
culation. Trajectories for periodic p(¢) with three sample amplitudes are shown. The labels
indicate amplitude and R, respectively. As the amplitude increases the orbit tends to center
about y = 15 so that R — 2. (b) This shows the net result of 1000 random p(f) events
[individual points indicate stochastic spread of (¥, y)]. The points cluster about y = 1/ leading
toR ~ 2.

In this analogy y(¢) is the position of the particle, pis term, such as my, because we suppose that the medium
its velocity, —yE(1 — y) + u is the deterministic force is very resistive (e.g., grains of pollen moving with very
acting on the particle, and p(¢) is the random force small Reynolds number in water). We now introduce
due to molecular bombardment. There is no inertia the “density of states” ¢(y, ¢). In an ensemble of re-
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alizations of (1), ¢(v, t)dy is the fraction of the en-
semble in the interval (y, y + dy). The average of any
function of y is

fly, 1))y = f_w Sy, )e(y, )dy.  (3.2)

If the stochastic forcing has a short decorrelation time
(relative to the time scale of the nonstochastic differ-
ential equation y = —H,), then the evolution of the
density function is approximated by the Fokker-Planck
equation (e.g., see Wax 1954; Risken 1989; or van
Kampen 1984) ’
¢ — (Hyd’)y = D¢yy- (3.3)
In (3.3) the diffusion coefficient is given in terms of
the autocorrelation function of p(¢) by Taylor’s (1921)
formula
D= fo (p(to)p(to + t))dt. (3.4)
The critical assumption in approximating the evo-
lution of ¢(y, t) with the Fokker-Planck equation (3.3)
is that the correlation function, (p(to)p(to + 1)), de-
cays to zero on a time scale that is much less than that
of the deterministic evolution, y = —H,,.

a. The equilibrium density

The equilibrium distribution of y is now found by
taking ¢, = 0 and solving the steady-state version of
(3.3):

bea(y, &, 1) = N(a, p) exp(—aH(y, 1))

where oo = 1/D. The normalization function, N (a,u),
is calculated so that

(3.5)

1= [ b, a0 )y, (3.6)

The basic idea is that if we start with any initial
condition and wait long enough then the ensemble set-
tles into the equilibrium density in (3.5). Note that
with the density in (3.5) and the definition in (3.1),
the average exchange between the boxes is

(Hy) = f_z H,(y)N exp(—aH(y))dy = 0. (3.7)

Of course this must be true when the system is in equi-
librium.
b. An example

At this point we adopt the specific model in (1.2)
for which
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Y _Y\_ ;
o (2 3) ®y, if y<1
Y, u) =
l-ﬁ-%ﬁ —uy, if y>1.
3 2 3
(3.8)

Note that H(1, u) = (1/6) — u, that is, both the po-
tential and its derivative are continuous at y = 1. In
Fig. 3 we plot the potential H(y, u) for various values
of u. When 1/4 > p > 0 the potential has a “double
well.” The two valleys correspond to the stable equi-
librium points A and C in Fig. 1, while the peak is the
unstable equilibrium point B.

Figure 4 shows the equilibrium density in (3.5) cal-
culated with H(y, u) in (3.8) for three values of 1 and
four of a. When « is small the fluctuations are large
and the density function is broad and centered on (y)
~ /5. The structure of the equilibrium density is in-
sensitive to u. In the complementary limit, when « is
small, the fluctuations are weak and the shape of the
equilibrium density is sensitive to . In particular, when
0 < u < /3, the equilibrium density is bimodal.

The averages ) '

oy =N [ yrew-anonay  (39)

FIG. 3. The potential H(y, u) defined in (3.8) for various values
of the mean freshwater forcing p = 0, 1/j6, 13, 1/4 and 1. When 0
< u < /4 the potential has a double well structure because there are
two stable equilibrium points.
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FIG. 4. The normalized equilibrium density, ¢eq(y, o, 1), computed

from (3.5) and (3.8). Each panel shows a different value of u. Note
that when o < 1 the equilibrium density is insensitive to u.

10.0

can be calculated using numerical quadrature. The re-
sults are summarized in Fig. 5 and 6. Figure 5 shows
{y) as function u and «. Note that if u is fixed and
a = 0 (i.e., strong fluctuations) then (y) — 1/, so
that the density ratio is R = 1/{y) = 2. Figure 6 shows
contours of log10<y2> in the pu~a plane. The striking
result is that when a becomes small, {y?) is almost
independent of u.

The assumption a < 1 (strong fluctuations) can be
used to approximate the integrals in (3.9). For sim-
plicity, we also take u = 0. The results of a tedious
calculation are

32/3a1/3
=~ 2r(1/3)

1 3'31(2/3)a??
=3~ 12I(1/3)

= (1/2) — 0.06075a2/3,

N = 0.388a /3,
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where I'(z) is the gamma function (Abramowitz and
Stegun 1972).

The results in (3.10) assume a < 1 and x = 0. The
complementary limit, o > 1, is easy because the equi-
librium density can be approximated by

o 1/2 ayZ
Peq =~ (5;) exp[— —2—] .

Thus, in this weak fluctuation limit {y) ~ 0 and {y*)
~lja<l.

The strong fluctuation case in (3.10) is more relevant
to the ocean. In this limit the average density ratio is
R =1/({y) ~ 2. Note that (y*) ~ a™%* = D*?s0
that the fluctuations about {y) become very large as
D - oo. This is consistent with what is observed in
the oceanic mixed layer in the range of latitudes 40°
to 55° in both hemispheres of all five major oceanic
regions.

We found it interesting to compare the statistics ob-
tained from the equilibrium density in (3.5) with those
found from a direct numerical integration. Our nu-
merical scheme is foward Euler:

(3.11)

Yn+1 =yn__7|1 —ynlyn+7pn (312)

where the time step is 7 and p, is a random number
uniformly distributed in the interval —r < p, <r. The
random number p, is changed at every time step and
so the autocorrelation function is

2
(plto)plto + 1)) = <pg>(1 _ £) _ %(1 _5)
(3.13)

Using Taylor’s formula for the diffusion coefficient one
then has

r’r

D 5
For accuracy we take a very small value of the time
step, say 7 = 0.01, and generate a set of y, from (3.12).
By adjusting r, we control the size of the diffusion us-
ing (3.14).

Table | shows a comparison of this direct simulation
with both numerical quadrature of the equilibrium
density and the approximations in (3.10). The agree-
ment between the three methods is satisfactory.

(3.14)

¢. Insensitivity to u when a is small

One surprising result of these calculations is the weak
effect of average forcing (1 # 0) when the fluctuations
are large. For instance, in Fig. 5b we see that (y)
~ lfp, independent of u, when « is small. The expla-
nation of this insensitivity is the structure ¢q(y, p, o)
when « is small. When 0 < u < 1/4 density function in
(3.5) has two maxima separated by a minima (see the
middle panel in Fig. 4). These three extrema are located
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FIG. 5. (a) A contour plot of (¥ as a function of x and « = 1/D. (b) An expanded view of the region o < 1.
If u is fixed and « = 0 then (y) — 1/ for all p.

at the zeros of H, and correspond to the three equilib- them is very small, in fact of order «. Thus, in the limit
rium points A, B, and C in Fig. 2. The unstable point of large fluctuations the equilibrium density, ¢.q, has
B is the minimum, which falls between the two maxima essentially one broad peak, which spans the three points
at A and C. But when o < 1 the difference in height A, B, and C and is centered on y = 1/3. This is illus-
between these two peaks, and the valley separating trated in Fig. 4, which contrasts the equilibrium density
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FIG. 6. A contour plot of log;o{ y2> as a function of x and @ = 1/D. (b) An expanded view of the region a < 1
showing that () is independent of u as « — 0.
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TABLE 1. A comparison of three methods for calculating the sta-
tistical properties of the stochastically forced two-box model. In all
cases we took u = 0. Method 1 is direct numerical simulation as
described in text. Our time step was 7 = 0.01, and we calculated the
statistics from a dataset obtained with 10° steps. Method 2 is numerical
quadrature of the equilibrium density in (3.5) where H(y) is given
in (3.8). The averages are calculated using the prescription in (3.9).
Method 3 is asymptotic evaluation of the integrals using the as-
sumption that & = D™ < 1.

Method 1: Direct simulation

r D =1r6 € )
3 0.0150 0.016 0.016
10 0.1667 0.265 0.364
30 1.5000 0.460 1.350
100 16.6667 0.497 5.445
Method 2: Quadrature

D » oM
0.0150 0.01643 0.01644
0.1667 0.27818 0.37670
1.5000 0.45174 1.32635
16.6667 0.490608 5.41496

Method 3: Asymptotic analysis

D {y) = 1/2 = 0060750 (y*y = 0.776a7%
0.0150 —0.499 0.047
0.1667 0.299 0.235
1.5000 0.453 1.017

16.6667 0.491 5.063
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when a > 1 (two distinct peaks) with the density when
a < 1 (one broad hump).

d. Estimates of the time required to reach
equilibrium

Using scale analysis, one can estimate the time re-
quired to adjust from an arbitrary initial density func-
tion [such as ¢(y, 0) = 6(¥)] to the equilibrium so-
lution in (3.5). We continue to use the specific form
in (3.8) and take o < 1. The width of the equilibrium
density, w, is of order w ~ a~!'/3 and the time taken
to diffuse through this distance is tgqq¢ ~ w?/D
~ a'’3 < 1. Thus, in the strong fluctuation limit the
equilibrium density is rapidly established.

e. Some comments on different exchange functions

The results in sections 3b—d were based on the spe-
cific exchange function defined in (1.2). With one im-
portant exception, our qualitative conclusions are un-
altered if we adopt a different model of the exchange
function, such as E(1 — y) = |1 — y|”. When the
fluctuations are large the average salinity difference,
(), is independent of the mean forcing x. The afore-
mentioned exception is that the value of {(y) as D —
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oo depends on E(1 — y). For instance with E(1 — y)
= |1 — y|" one finds that (y) > n/(n+ 1)asa=1/
D — 0. To explain the observational fact that the ob-
served density ratio R = 1/{y) is close to 2, we must
take n = 1. This coincidence is a very appealing feature
of the specific exchange function in (1.2). Justifying
this model with a mechanism that is more plausible
than the capillary tube analogy of Stommel (1961) is
an open question.

1. The asymmetry of stochastic forcing

In our computation of D using (3.13) and (3.14)
we picked p(¢) for simplicity to be statistically sym-
metrical about p = 0. The real nature of p(¢) is asym-
metrical in the sense that the intervals of rainfall are
short and intense, whereas the intervals of evaporation
are longer and less intense. The reader will notice,
however, that to the order of approximation embodied
in the Fokker-Planck equation this asymmetry only
modifies the value of D. Once D is known the deduc-
tions from the Fokker-Planck equation are indepen-
dent of asymmetries in p(¢).

4. Conclusions

The main result of this study is that the mean dif-
ference of salinity between two boxes in a model of
density-driven convective circulation tends toward a
fixed “critical” value independent of the amplitude and
frequency of the stochastic forcing, provided that they
are both large enough. If the physics of the convection
requires that the amplitude of the circulation be linearly
proportional to the density difference, the “critical”
value of the mean salinity difference is that required
to cancel one-half of the density difference due to the
imposed temperature difference. Thus, the average
density ratio is 2.

By way of contrast to the aforementioned result for
stochastic forcing, if the precipitation and evaporation
is changed slowly, so the model moves quasi-statically
through a series of equilibria, it is known that there are
multiple equilibria. These multiple equilibria exist only
if the forcing lies in a certain range [e.g., 0 < u < /4
with the exchange function in (1.2)]. At the upper end
of this range with multiple states the salinity difference
has the same value as the critical value referred to
above. Of course the value of the salinity difference in
the steady state close to the upper end of the range of
multiple states is very sensitive to the amplitude of the
forcing, as it is close to the evanescence of the state
itself. This is what makes the idea attractive to clima-
tologists seeking sensitivities in their numerical models
of the joint ocean—-atmosphere system. On the other
hand, this sensitivity close to the observed salinity dif-
ference suggests that the amplitude of freshwater forcing
in a steady model requires a tuning exquisite beyond
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our present knowledge of its actual amplitude and geo-
graphical distribution.

For those interested in a possible explanation of the
observed fact that the observed state of the oceanic
mixed layer is close to the critical mean state as defined
by the stochastic process, and the observed fact that
fluctuations of horizontal salinity gradients within the
mixed layer on the 10-km scale are much larger than
the critical value, the results of this statistical study has
its own attractions. We have shown that the stochastic
process can overpower a moderate steady component
of forcing and drive the system back to critical. The
stochastic model does not require sharp tuning to reach
a critical state that approximates that of the present
day observed state.

The formalism of the Fokker-Planck equation pro-
vides a useful condensed way of understanding and
obtaining the statistical results. It leads to evaluation
of integrals, as opposed to the alternative of a prolonged
series of numerical time-stepping runs. Simple asymp-
totic approximations of these integrals are obtained for
large-amplitude stochastic forcing. They afford maxi-
mum condensation of the statistical information that
one desires from this model.
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