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ABSTRACT

The rectification of oscillatory tidal currents on the sloping sides of a /ow submarine bank is discussed
using the moment method. This method has been previously used in shear dispersion studies where it is
used to analyze the advection-diffusion equation. In the present problem it is applied to the barotropic
potential vorticity equation linearized about an oscillatory, spatially uniform tidal velocity. To apply the
method it is necessary to assume that the topography produces only a small change in depth. The method
economically provides the most important qualitative properties (e.g., transport, location and width) of the
time averaged current.

These results are obtained without making an harmonic truncation. They can then be used to assess the
accuracy of the harmonic truncation approximation used by other authors, It is shown that harmonic
truncation correctly predicts the transport and location of the rectified current when the bank is low. However
if the width of the bank is much less than a tidal excursion distance, harmonic truncation may give a very
mistaken impression of the width of the rectified current.

Finally, lateral vorticity diffusion is included in the moment calculation. It is shown that this dissipative
process does not change the transport or location of the rectified current. It does however increase its width.
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1. Introduction

In a recent article, Loder (1980) extended Huth-
nance’s (1973) study of tidal rectification by consid-
ering the important effects of interaction between the
mean current and tidal current. Robinson (1981) dis-
cussed the physical process responsible for rectifica-
tion. The configuration studied by these authors is
shown schematically in Fig. 1. The submarine bank
creates relative vorticity through vortex stretching. If
there is some dissipation, then this vorticity can result
in a rectified current along the bank (into the page
in Fig. 1).

Huthnance (1973) and Loder (1980) solved the
vertically integrated momentum equation using an
harmonic truncation. The present note complements
these earlier studies by assessing the accuracy of the
harmonic truncation in the case where the bank pro-
duces only a small total change in depth. To accom-
plish this, integral moments of the vorticity distri-
bution are calculated without discarding any har-
monics. These results can be compared with integral
moments calculated from the approximate, harmon-
ically truncated solution. This comparison shows that
;heb lharmonic truncation, carefully interpreted, is re-
iable.

The moment method used here is also of interest
in its own right. In problems where the topography
is low it has three advantages over harmonic trun-
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cation. First, it provides the integral moments of the
vorticity distribution exactly. These integral moments
are easily related to important qualitative properties
of the along-bank current distribution. For example,
in the present note, the transport, location and width
of the rectified current are calculated exactly. Higher
moments, such as the skewness, can be calculated in
principle although the algebra becomes very involved.
Second, the moment method also shows that the first
few moments of the vorticity distribution depend

.only on the first few moments of the bottom slope

distribution. Thus, to apply the moment method it
is not necessary to assume a particular form for the
topography. Third, it is straightforward to include a
number of additional effects (such as lateral vorticity
diffusion) which are difficult to discuss using other
methods.

The greatest weakness of the moment method is
that it can only treat slight variations in depth. Thus,
referring to Fig. 1, it is necessary to assume that

Ho>> n. (l.l)

The assumption (1.1) allows two simplifications.
First, the tidal velocity over the bank is approximately
independent of x:

U= Uycoswt, v=Vycos(wt+ a). (1.2)

Second, the barotropic potential vorticity (Pedlosky,
1979):

g=(+ ONHy—n),
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e £ Ho + 70

FG. 1. Definition of axes.

can be simplified to
q = (f/Ho) + ({ + b)/Hoy, (1.3a)
b= (f/Ho). (1.3b)

One does not have to make the very restrictive as-
sumption (1.1) to apply the harmonic truncation
method.

With (1.3a) the linearized barotropic potential vor-
ticity equation is '

d 9
( % + U, coswt &)(g' + b)

= —8§ + (8/f)V, cos(wt + a)b, + vV2(.  (1.4)

Eq. (1.4) is conservation of potential vorticity linear-
ized about an oscillatory tidal flow. Dissipation is
provided by a combination of bottom drag (6¢) and
lateral diffusion of relative vorticity (#V?{). Differ-
ential bottom friction (due to changes in depth) also
results in a direct production of relative vorticity; this
is the origin of the second term on the rhs of (1.4).
The derivation of this equation in the context of tidal
rectification has been discussed in detail by Zim-
merman (1978, 1980). Zimmerman solves (1.4) using

a Fourier transform and so relates the spectral prop- -

erties of the residual currents to the spectral properties
of the topography. One can also discuss a determin-
istic topography such as that in Fig. 1 using the Fou-
rier transform method (Zimmerman, 1981; Loder,
1981). It seems, however, that the moment method
is simpler.

It is convenient to nondimensionalize (1.4) using
the following scalings (asterisks temporarily denotes
a nondimensional variable):

6, ) = (Uo/w)(Xx  Ya)s (1.5a)
t=(l/wt,, (1.5b)
O, f) = w(3x, f4) (1.5¢)
v = (Ug*/w)vy, (1.5d)

% The notation is standard: f is twice the local vertical rotation
of the earth and { is the relative vorticity.
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b= Bb,, (1.5¢)
= Bfx. (1.5f)

In (1.5e)-(1.5f) B is the total jump in b across the
bank; thus from (1.3b):

B = (f/H,) [change in depth].

One can now rewrite (1.4) in terms of nondimen-
sional variables. It is convenient to group all the terms
containing ¢ on the lhs of the equation and place all
the other terms (which may be thought of as source
terms for ¢{) on the rhs. Thus, dropping the subscript
asterisks and denoting derivatives by subscripts:

$ + costé, + 68 — vy

= —scost + Ascos(t + a), (1.6)

where
s = b, = (f/Hy) [bottom slope], _ (1.7a)
N = (8/)(Vol Uy). (1.7b)

The two source terms on the rhs of (1.6) have different
physical origins (Huthnance, 1973). The first is re-
lated to the production of relative vorticity by to-
pographic vortex stretching. The second arises from
differential bottom friction (e.g., bottom drag is stron-
ger where the water is shallower). One can however
rewrite the equation as

$o +costéy + 88 — v = —p cos(t + ¥)s, (1.8a)
p = [1 — 2\ cosa + N2, (1.8b)
I Asin(a) ]
= n__-="\7
9 = tan l:)\ cos(@) — 14 (1.8¢)

so that the two source terms are combined into one.

Loder (1980), argued that over the sloping sides of
Georges Bank, the topographic stretching term dom-
inates relative-vorticity production. This corresponds
to the limit

A—0, p—1 and v —0, (1.9)

in (1.8a) Loder (1980) suggested that the frictional
production mechanism is more important in the shal-
low central region of Georges Bank. The frictional
mechanism becomes dominant when

A—oo, p—A V—a (1.10)

2. The moment method

The moment method has been widely employed
in studies of shear dispersion (e.g., Aris, 1956; Saff-
man, 1962; Young et al., 1982). In the present prob-
lem it economically provides the most important
properties of the solution of (1.8).

We begin by introducing the notation
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= f fax. @1
The moment method relies on the fact that the mo-
ments of the vorticity distribution, (x"¢), can be cal-
culated from a closed hierarchy. Thus, from (1.8a),

(et 8($) = —p cos(t + ¥, (2.2a)
(xE) + 8(x§)y = cost({), (2.2b)
(320 + 8(x¢) = 2 cost{x$) + 20(§)
— p cos(t + IKx%sy,  (2.2¢)
<x’s“>, +8(x%t) = 3 cost(x?) + 6w(xt)
- —poost + OKx3s), (2.2d)

and so on for the higher moments. Note that because

of (1.5¢), »
{s)=1, (2.3a)

and we are free to place the origin of the coordinate

-system so that
{xs)=0. (2.3b)

One can now solve (2.2). The moments of the vor-
ticity distribution are related to the moments of the
velocity distribution using

§ =0, (2.4a)
{(x=%xc0)=0 (2.4b)
Integrating by parts then:

(x$y = —(v), (2.5a)
(x*¢y = ~2{xv), (2.5b)
(x*¢)y = =3(x%). (2.50)

The solution of (2.2a) is
(H=—-1+)"pcost+0—¢ ), (2.6a)
©, = tan"'(67Y). (2.6b)

Since

(&) =v(x = tw) — v(x = —o0),
this result shows that there is a jump in v across the
bank. In dimensional variables this jump is propor-
tional to (BUy/w). If the linearization about the tidal
velocity in (1)-(2) is to be valid, then

(jump in v)/Vo < 1,
or
Blw < 1. 2.7

Substituting (2.6a) into (2.2b) gives an equation for
{xt>. The solution is

(x¢) = —Ypd7 (1 + 8372 cos(d — ¥))
— Yap[(1 + 6%)(4 + 6%))"'2
X cos(2t + 9 — ¥,

—¢,), (2.8a)
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where

¢, = tan"1(267"). (2.8b)

Time averaging (2.8a) and using (2.5a) gives
(®) = Y2ps~'(1 + 8% cos( — ¥)), (2.9a)
= (1.+ 8*)7'[1 — Mcosa + 87! sina)], (2.9b)

where the definition of 9, (1.8c), was used to go from
(2.9a) to (2.96). (Hereafter the overbar will denote a
time average). Eq. (2.9a) shows clearly that the com-
bination of bottom friction and slope produces a rec-
tified current.

If one takes the limit 6 — 0 with (Vy/Upf) fixed
then (2.9b) reduces to

(@) = Y[l — (Vo/Uof) sinal; (2.10a) -
or, in dimensional variables,
(B) = Yo(BUs* /1. — (Vow/Usf) sina]. (2.10b)

The above expression for [, vdx has also been ob-
tained, without harmonic truncation and without the
assumption n < H, by Huthnance (1973). Note that
without the assumption n < Hy, (v) cannot be in-
terpreted as a transport.

One can now calculate (x?{ by solving (2.2c) with
<x§‘> in (2.8a) and (¢) in (2.6a). The most important

point is that
(x*}y = =2{xb) = 0, 2.11)

so that the center of mass of the rectified jet coincides
with the center of mass of the slope distribution.

Now to get some idea of the width of the rectified
jet it is necessary to calculate (x*¢) = —3(x*) from
(2.2d). The result of the calculation is

(xDY/(Y = (x%s) + (1 + 8!

sin®, cos(¥ — 2¢, — ‘Pz)]
X1+
[ 4 sin®, cos(d — ¥,)

v cos(d — 3401)]

+ 3(5)[1 + 3cos(¥ — P’ (2.12)

2.5 —_— d:=0

. —— = 7r/4
— 9= 7/2

0 1.0 2.0

FIG. 2. Velocity (D) as a function of é for various valucs of 9.
In dimensional units (B) is measured in Bug?/w?.
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One can, in principle, compute more moments of
v. I suspect however, that the point of diminishing
returns has been reached. Egs. (2.9), (2.11) and (2.12)
are expressions for the transport, location and width
of the rectified jet in the limit where the topography
is low. In the next section these results are compared
with the corresponding expressions obtained using
harmonic truncation.

Finally, to conclude this section, suppose that an
explicit expression for D(x) is required. The simplest
suggestion is to fit a Gaussian:

D= Ve 2 (2.13)

and adjust ¥ and / so that (T) and (x?D) agree with
(2.9) and (2.12). One finds:

1> = (x*0)/{(D),
V = (B)/(2m) .

(2.14a)
(2.14b)

It is not necessary to introduce the Gaussian form
(2.13) to define /2 by (2.14a).

In Fig. 3, / in (2.14a) is plotted as a function of &
for various values of 9. In this figure it is assumed
that (x%s) = » = 0; from (2.12) it is straightforward
to include the effects of finite slope width and lateral
diffusivity.

3. Comparison of the exact results with those ob-
tained by harmonic truncation

The harmonic truncation method is summarized
in Appendix A.

Comparing (A9) with (2.9) we see that the har-
monic truncation method provides the integrated
Eulerian transport of the rectified jet correctly. The
moment method shows that this important property
is independent of lateral diffusivity [i.e., » does not
appear in the exact result (2.9a)].

Similarly, comparing (2.12) and (A 10), both meth- -

¢ 0.5

0 1.0 20 3.0 4.0

8

FI1G. 3. Jet width / defined in (2.14a) as a function of & for various
values of 9. In this figure {(x’s) = » = 0 and in dimensional units
1 is measured in Upw.
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ods predict that the center of the jet coincides with
the center of the slope distribution. Note that once
again this property of the time-averaged flow is in-
dependent of ».

Straightforward scale analysis shows that harmonic
truncation is justified when the length scale of the
slope is much greater than a tidal excursion distance.
Loder (1980), Huthnance (1981), Robinson (1981)
and Zimmerman (1981) have all considered the op-
posite extreme where the change in depth is abrupt.
The first two authors solved the problem without
harmonic truncation but in both cases it is difficult
to extract the qualitative properties of the current
distribution from the mathematics. Robinson (1981)
solved the problem numerically using a Lagrangian
approach. While this approach provides physical in-
sight into the rectification mechanism, it is again dif-
ficult without further numerical work to obtain the
Eulerian current. Loder (1980) solved the problem
using harmonic truncation. The solution he found
has non-zero residual vorticity more than a particle
excursion distance from the source. If » = 0 (as it was
in Loder’s calculation) then this i1s impossible, and
so the harmonic truncation is clearly unreliable if the
change in depth is abrupt.

Because the change in depth is not necessarily grad-
ual the harmonic truncation is approximate, and this
becomes apparent when one compares the exact
width of the jet, / as given by (2.14) and (2.16a), with
the approximation /;; in (A12). To make this com-
parison take » = 0 and (xs) = 0. In dimensional
terms the latter condition means that the tidal ex-
cursion distance is much greater than the slope width.
Note that in the opposite limit, (xs) > 1, the two

methods agree:
I = I* = {x%).

Now we have:

sin®, cos(d — 29, — ¥,)
4 sin®, cos(® — ¥,)

First suppose ¢ = 0 so that the Coriolis mechanism

is dominant. In this case, using (2.6b) and (2.8b), (3.1)
reduces to

lz/le =1+

3.1

(& - 5)
2(6° + 4)°
This result shows that harmonic truncation overes-
timates the width of the jet by ~60% when & is small.
On the other hand when § is large the width of the
jet is underestimated by 20%. Note that finite slope
width reduces the relative error so that the above fig-
ures are a worst-case estimate.

Now suppose ¥ = w/2 so that the frictional mech-
anism is dominant. In this case (3.1) reduces to

267 — 1
#*+4

Once again the width of the jet is overestimated when

Pl =1+ (3.2)

12/11-12 =1+

(3.3)
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Fi1G. 4. The relative error (/;;/I) — 1 as a function of § for various
values of 9. When § is small, harmonic truncation overestimates
I, while when § is large, / is underestimated.

6 is small, although only by 15%. On the other hand
when § is large the width of the jet is seriously un-
derestimated.

These conclusions are summarized in Fig. 4 where
the relative error:

e=(yh—1 (3.4

is plotted as a function of & for various values of &.

Once again I emphasize that this is a worst-case
estimate of the errors associated with harmonic trun-
cation. Moderate values of slope width

12 = {x%)/{s),

can significantly reduce e. For example in Fig. 5, I

3.5)
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FiG. 5. The relative error as a function of 4 for various values
of [, with ¥ fixed at 0. Note how the error in slope width is reduced
as /, on increases.
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FIG. 6. The relative error as a function of é for various
values of /; with ¢ fixed at x/2.

plot e as a function of & for increasing values of /;
with ¢ fixed at 0. In Fig. 6, ¢ is fixed at =/2 and the
reduction in e with increasing /; is even more marked.

4. Conclusion

Subject to the approximation (1.1), the moment
method can be used to calculate the most important
qualitative properties of the rectified current. The
approximation (1.1) is very restrictive however, and
so harmonic truncation is still the only analytic
method available in general. Comparison of the two
methods in Section 3 indicates that harmonic trun-
cation is reliable provided the slope width is greater
than about one tidal excursion distance (this conclu-
sion depends on & and 9, see Figs. 5 and 6).

Once (1.1) has been accepted however, the mo-
ment method has a number of advantages over har-
monic truncation. First, it provides exact results. Sec-
ond, one does not assume a particular form for the
slope distribution; all that is required are the first few
moments of s. Third, one can include a number of
effects that complicate harmonic truncation. For in-
stance, in this article lateral diffusivity of the relative
vorticity has been included. It is straightforward to
include other effects such as two-dimensional topog-
raphy, lateral shear in the tidal current and additional
temporal harmonics (including a steady flow over the
bank).
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0472.

APPENDIX
The Harmonic Truncation Method

For completeness, in this Appendix I shall sum-
marize the approximate solution of (1.8a) using har-
monic truncation. I assume that v = 0.
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Substituting
¢ = A(x) + B(x) cost + ((x) sint (Al)

into (1.8a) and discarding all the higher harmonics
gives

hB' + 64 = 0, (A2)
C+ A' + 6B = —p cos()s, (A3)
—B + 6C = p sin(¥)s, (A4)

where the prime denotes differentiation with respect
to x.
From (A2)-(A4) one obtains:

B” —2(1 + 8B = 2p(1 + )2 cos(® — @,)s, (AS)

by eliminating 4 and C. Eq. (A5) is a second-order
differential equation for B. The slope distribution s(x)
enters as a forcing term. Rather than choose partic-
ular forms for s and solve (A5), I shall calculate the
moments of B. From (A1) and (A2) it follows that

@ = = 3 (B, (A6)
Gy = = 55 (xB), (A7)
() = 5= (x*B), (A8)

so that we can compare the exact moments of 9, cal-
culated in Section 2, with the approximate moments
of ¥ calculated from (A5) and (A6)-(A8).

Integrating (AS5) from +oo t0 —co and using (A6)
gives

(D) = Yaps~'(1 + 83 2 cos(® — #,).  (A9)

Now multiply (A5) by x and integrate to obtain
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() = 0. (A10)
Finally multiply (A5) by x? and integrate to obtain
(x%®) = (1 + 87'[(D) + Yaps'(1 + 6212
X cos(® — P1){x%s)). (Al1)
From (A9) and (A11) it follows that the width of

the jet is
2 = (D)o,

= {x%sy + (1 + )L (A12)
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