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ABSTRACT

This paper discusses the nature of quasi-geostrophic 8-plane flow over an idealized set of ridges
with height & = F(y/L,) cosx/L,. When the mountains are highly anisotropic, with scale factor ratio
L,/L, < 1, the asymptotically exact forced solution is governed by a simple set of three nonlinear
ordinary differential equations similar to those obtained by Charney and DeVore (1978). For fixed
forcing, the region of parameter space where muitiple, stable steady solutions exist is mapped out. A
cusp catastrophe occurs in which a rapid zonal flow over the ridges drops to a very low value as a param-
eter like the driving Rossby number decreases slightly below a certain critical point; and the zonal
flow then remains at this low value for a large range of Rossby number on either side of the bifurcation
value. The existence of limit cycle solutions is discussed. Such periodic solutions are shown to exist
for the f-plane case, and probably exist for the g-plane as well. However, numerical solutions indicate
that the limit cycles are unstable, with the steady solutions being favored. The stationary solutions
are also shown to be stable with respect to barotropic isotropic perturbations.

i. Introduction

The influence of large-scale topographic varia-
tions on the slow flow of a homogeneous fluid on a
rotating planet has long been a problem of great
interest to meteorologists and oceanographers.
One aspect of this problem which deserves special
attention is the question of uniqueness and bifurca-
tion of finite-amplitude steady solutions of the
aonlinear hydrodynamic equations for forced mo-
ticn over topography. Suppose it is possible that
moere than one stable steady solution exists for a
particular set of external parameters. Then it is
reasonable to suppose that the actual response will
reside in one of these, say, §,, if the initial condi-
tions were close to it. if now the external parameters
change slightly (and quasi-statically) to a point be-
yond which §, exists, the system will either go into
a periodic or non-periodic oscillation, or may rapidly
make 2 transition to one of the other stable
steady solutions, say S,. If it does the latter, it may
remain in S, for a wide range of parameters,
particularly if the bifurcation point(s) for S, are
well removed from that for §,. Now if §, is very dif-
ferent in structure from S, we have a mechanism by
which the flow may lock onto very different states
and persist in these until rather large changes in
sxternal parameters are made, or until some large-
amplitude perturbation kicks the system out of one
of these locked states.

Such ideas as outlined above have their origins in
the theory of nonlinear ordinary differential equa-
tions often associated with problems in electrical
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circuit design. Application of such principals in
geophysical flui¢ dynamics has been rare because it
has not been possible in very many instances to
find even one rigorous steady nonlinear solution
for a practical problem involving forcing and dissipa-
tion. Pedlosky (1976) found multiple steady-ampli-
tude solutions for nonlinear barociinic waves in a
two-layer fluid. Although the stability of each of
these steady sclutions was not determined, numeri-
cal integrations of his time-dependent equaticns sug-
gested that only the lowest or first nonlinear
steady mode was attained, even if initial condi-
tions were close to the second mode. The suggesticn
was that the higher modes were unstable and that
in a real system only the first mede would be ob-
served. Charney and DeVore (1978, hereafter re-
ferred to as CD) discussed barotropic quasi-
geostrophic B-plane flow over topography which
had a simple form
* *

h =eH, sinyf cos‘f— ,

where x* is the zonal variable, y* the meridicnal
variable and L the horizontal length scale. They
represented the streamfunction for the flow in 2
channel betweeny = 0andy = nL as

* * *
¢ = A(2) cos yf + B(t) sin }% sin%

* #*
+ C() sin yz cos pll .
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This is thus a severely truncated Fourier series 0V . oy
representation of the flow structure. For their I Vi By + B) = VA = ), (D
problem it is easily seen that nonlinear wave interac-
tions will generate a whole series of higher har- Where
monics in y and x. Nonetheless, once the spatial  _ :'_3 / =T JaRo. r=E"?Ro
structure is specified the hydrodynamic equations v=0ylox, u Wy, B=Ls ’
are reduced to a set of three nonlinear differential and
equations for the amplitude coefficients 4, B and C. _ RO _
As opposed to Pedlosky’s problem the authors h = H. Ro cos(x) = S(y) cos(x).
. 0
demonstrated that two stable steady solutions
could exist for the same set of external parameters. 1n the above, the Rossby number
These two states were very different in that one Ro = U,20L,,
had large zonal velocity and one had quite small
zonal velocity. The suggestion was that forced and the Ekman number
flow over topography could either be unblocked or E = v/QH 2

blocked and the actual state attained would be re-
lated to the finite-amplitude stability of these states.
Realizing that the severe truncation may influence
these conclusions, CD conducted numerical integra-
tions of the full shallow-water equations to verify
their results from studying the reduced model. There
was agreement for several but not all of the cases
studied.

We consider in this paper a model similar to that of
CD for flow over mountains, but with anisotropic
topography in the form of long north-south ridges.
This problem is not entirely without geophysical
relevance because one might note, for example,
that although the east-west scale of the Rocky Moun-
tains is of order 1600 km, the north-south ridge line
extends a distance of order 7000 km in the Northern
Hemisphere. One can also envision this situation
as a prototype, subject to laboratory or numerical
experimentation. In any case the beauty of this
model! is that it is described by a theoretical set of
equations almost identical to the spectrally trun-
cated ones proposed by CD but which is derived
here without any ad hoc truncation. Stable multi-
equilibria are shown to exist. By constructing plots
of these in parameter space it is suggested that
bifurcation may be just as important as the transi-
tions between metastable equilibria proposed by CD
in generating blocking or intermittency.

2. The model

We consider barotropic quasi-geostrophic flow
over shallow topography on a B-plane. That is we
let the fluid mean depth be H, and assume a topog-
raphy with height above z = 0 such that

h = h¥(y*) cosx*/L,,

where h%/H, is of the same order as the Rossby
number based on the driving velocity U,,. If we use
scales U, for velocity, L, for horizontal distance
and L /U, for time, the governing nondimensional
vorticity equation is

with  being the basic rotation rate, a the radius of
the earth and v the effective boundary-layer vis-
cosity. We imagine that the flow may be forced by
Ekman suction resulting from the curl of an imposed
velocity distribution on the upper horizontal surface
such that V%, = 1 (e.g., the laboratory case where
vk = 0.5U,r*/LO) or that if V2y, = 0, the flow
is uniform when A = 0 with velocity u = 1.

Since we first want to investigate forced solutions
generated by the interaction of a zonal flow with
topography, we suppose that such solutions will
have the same y scale as the topography itself. When
h’% varies with y scale L, the forced solutions should
have this scale too. Let € = L /L,. When ¢ < 1,
we are then concerned with long north-south ridges,
and the y variable should be rescaled such that

y = e. 3

We also write
l!" = 5_1‘1”0()77” + ¢0(x’)-79t) + llll + E(bl + o

That is, the zonal flow U is of order 1 (as suggested
by the forcing or initial value), the meridional veloc-
ity induced by the mountains is order 1 (the moun-
tain wave is finite amplitude), but the mountain-
induced zonal velocity u < U as a consequence of
the anisotropy of #. Formally,

(U B o),

(“mvo) = ( ay ’ ax

dy
Introducing these expansions into (1) yields a se-
quence of problems ordered in powers of e. As e
becomes small asymptotically the leading order
problem should describe the flow very accurately.
Within errors of order ¢ then, this problem can be
split up into two equations for s, and ¢,. Dropping
the subscripts we have, with the overbar denoting
an average over one period of the topography in x,

Ygge + rPgy — Puss)
= bihe — by = —(@H)z » ()
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d’.r.z‘t - libﬂd)-l‘.l:.l‘ + Bd’x +r d)z'.z‘
= ¥, Re(ie™*) (). (4

Note that we can integraté (3) once with respect to
¥. With either of the two forcing situations described
above we arrive at!

ou

-+ rU = 1) = ~g R, )
where
| -9
_ . B
Now Eq. (4) can be solved by writing
! ¢ = Re[(f (1) + if(t))e'"]. (6)

Because of the anisotropy, the y dependence only
enters parametrically so that the functions f, and
Jfi will depend on S, which replaces 7 as a variable.
These solutions are exact to order €. The final set of
equations are then

U U= ™
fi=~rfi + US = (U - B)f., (8)
fr=—1fy + (U - Bfs. ©

- Apart from numerical values of the coefficients,
these equations are identical in structure to those
proposed by CD. Similar multi-equilibria are then
expected to exist. The next section explores this
question. Note first that v goes to zero aty = (0,L,)
because we have specified § = 0 there. If this were
not so, or if U(S) is discontinuous over the range of
S, boundary layers in which y scales with L, would
be needed to turn the flow near such latitudes. It is
assumed that this is dynamically possible. Clearly,
the simplest physical situation to imagine is one in

! The constant 1 in the parenthesis of Eq. (5) reflects our
particular forcing; the upper surface is in either uniform
rectilinear motion or in uniform solid body rotation in cylindrical
coordinates (e.g., the laboratory case). The additional constant
of integration obtained in integrating (3) is zero for the follow-
ing reason. If we integrate the full vorticity equation (1) over
area inside a vertical boundary placed at some low latitude, say,
using Stokes’ theorem and the fact that the boundary must be
a streamline g,

f](zlz, V&) + By + h)dA =0,

area
inside ¢ -

§; [?X —-rv + rvw]'dl = 0.
v, Ot

Finally, since ¢, = 0 at iz in our geometry, the integration
constant in (5) must be set equal to zero.

so that .
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which S is constant over a large range of y, and we’

" assume that whatever happens at the ends where S

goes to zero (or if /2 intersects a wall) does not affect
the solutions appreciably near the centér of the
channel.

3. Critical Points

A discussion of the solution topology for this
problem rests on a determination of the critical

" points of Egs. (7)-(9). Since the critical points are

the allowable (e.g., real) steady solutions of the
equations, their determination is of considerable
physical significance as well. Setting the time
derivatives equal to zero, it is found that stationary
solutions are given by the real roots of

(1= 0U)r* + (U - B ~ 1520 =0, (10)

where in this section the overbar simply denotes a
steady solution. Since this equation is cubic, there
are either rhree distinct real roots or one real root. It
is especially interesting that even asr — Othe flow is
still governed by a cubic. The steady zonal flow fric-
tion term is proportional to r but so is the wave flux
in general (Hart, 1977) so the net effect of the wave
on the zonal flow is dependent on the existence of
friction but independent of its magnitude in the
inviscid limit. Since all the external parameters in
(10) are squared it is easily seen that the real solu-
tions for U must fall between zero and one. From
(9) it can be shown that the phase o of the mountain
wave high-pressure ridge with respect to theé peaks
is given by

-

for steady flow. Thus roots with.U > 8 involve
mountain waves with ridges upstream of the peaks,
while if U < B, the ridge is in the lee.

It is necessary to examine the stability of the criti-
cal point solutions. We set

/U (U U’
(fr) = (fm) + elom (f;)

and linearize (7)—(9}. In the above, £ ranges over all
the real solutions U, of (10). The eigenvalue o is
determined from the roots of

tana = —fi/f, =

o3 +ac?+b =0, (13)

where
a =148+ (Ux— B+ (U, - )(U, - B), (14)
b =r(U, — WU, - P). (15)

Clearly, a steady solution will be stable if (0 —1r)
all have negative real parts. As r becomes small,\
stability depends primarily on the sign of a. If a is-



SEPTEMBER 1979

negative the stationary flow may be unstable on an
order 1 time scale. Since U is always less than one,
we see that small values will tend to make a nega-
tive (for some §) unless U < B. This suggests that
stable steady states may include those for which U
is either close to one or quite small. If (o — r) crosses
through zero along a steady curve U(S), another
steady solution is expected to branch from the
original. Otherwise a bifurcation to a periodic
solution (which may itself be unstable) may be ex-
pected. Extensive numerical solutions of the non-
linear equations (7)-(9) discussed in Section 5 sug-
gest that there are no stable limit cycles for this
oroblem and that loss of stability at a branch point
will be accompanied by a transition from one steady
solution to another. Indeed it appears that the solu-
tion topology is a cusp catastrophe. At the bifurca-
tion point the cubic equation for I factors into
the product of a linear and quadratic form. Two
solutions coalesce and become complex so that
sudden transitions from one steady mode to another
may be expecied as the bifurcation point is crossed.

For example, consider the f-plane case with
B =0 and small friction parameter r. The steady
solutions of Eq. (10) are, approximately,

U,p ~ 1 + V(1 — 28212, (11
U, =~ 2r%S2. (12)

Thus for the mountain height parameter S < 0.707
[recall S = h¥(y)HR,], three steady solutions
exist, two with moderate to large values of U and one
with a very small value of ¥/ (the blocked state).
if § > 0.707, only the blocked solution is admis-
sible. Note that if we had concentrated only on the
inviscid problem for small » we would have missed
once exact solution entirely. Davey (1978) has
shown that it is possible to calculate such steady
inviscid flows since as r — 0,

Vi + h o= F(y),

in general, and he shows that
Fy) = § hds!| 9| /§ dsi|8) + 1.
] ]

This method focuses on the inviscid solutions and
misses entirely the viscous one. Eg. (11) suggests
there may even be two solutions to the inviscid
problem (suggesting even more may exist with more
complicated topography), but as we shall see the
lower root is unstable.

_ The wave structure is very different for U, and
Us. In U, the wave amplitude is order 1 and the wave
is shified only slightly upstream. f; =S and f;
=~ pS/U,. For the U, solution fi; =~ 2r/S and f.,
= 4r%/§?, so although the flow is blocked, the wave
amplitude is much larger than the zonal flow and
the wave is 90° out of phase with h. These two
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FiG. 1. Approximate zonal flow equilibria for 8 = 0, small r
(values attached). Curves a and c are the inviscid solutions and b
is the viscous one. Curve ¢ is an unstable root.

situations correspond closely to the two equilibria
presented by CD where in the blocked state the
wave is out of phase with the topography.

Fig. 1 shows these approximate solutions plotted
against S for various values of r. The approxima-
tion breaks down where the viscous roots and the
lower inviscid one cross. However, it is clear that a
catastrophic transition can occur if U is initially
large and S increases slowly across the bifurcation
point § = 0.707 where the two inviscid roots
coalesce. The zonal flow shouid then drop down to
the blocked state U;. Note that once the flow is
in this stable state it will remain there over a fairly
wide range of §. There will be a marked persistence.
Of course, once the bifurcation value is exceeded
there is no assurance the system will indeed drop
down to curve (b) even though it is a linearly stable
state. It could go into a limit cycle. We show be-
low that some limit cycle solutions are possible,

although numerical simulations of the equations.

show that these are unstable and that direct transi-
tions as postulated here always occur.

Fig. 2 shows the exact roots of Eq. (10) for various
values of r with 8 = 0. Multiple stable solutions are
generally possible provided r is less than about 0.17.
The double cusp structure indicates that the per-
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F16. 2. Solution curves determined from Eq./(10) with 8 = 0
and values of r attached. Solid lines give stable equilibrium
values of U. The dotted portions are unstable.

1.0 —

FiG. 3. Boundaries in parameter space where multiple
stable steady solutions occur. Inside each'loop there are two
stable equilibria for the value of § attached, outside oneé.
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FIG. 4. The two stable roots U, and U, for r = 0.01 as functions
of the § values attached.

sistence will be more pronounced for smaller

values of r. It should be noted that in practice these
values of r are substantially less than any rea-
sonable value of B. Thus except for laboratory
study where the g-effect can be totally eliminated,
these solutions may be of academic interest only.

However, after solving (10) with g8 # 0, it is
quickly found that there are large regions of param-
eter space where stable multi-equilibria exist. Fig. 3
indicates where they may be found. Generally two
stable states exist for moderate to small values of
r, § and B. QOutside the loops the stable root is
always the small one (e.g., Us).

Fig. 4 gives the steady zonal flows possible
when B8 # 0 and small r for various values of §.
The situation is very similar to that in Fig. 4. If
B is fixed equal to that value for which the § = 0.4
upper solution terminates, and then S increases
from below to just past 0.4, the solution may drop
down the dashed line to the lower curve and sit in
this lower regime for a wide range of S or 8. In a
typical laboratory situation 8, S and r are all in-
versely proportional to the driving velocity U,,. If
this is varied one moves along slanted trajectories
in parameter space. The same catastrophes can be
shown to occur. In the atmosphere one can hy-
pothesize (with a little imagination) that slow

~ changes in U,, or v might cause the required varia-

tions in B, § or r. This hypothetical scenario is
different from that proposed in CD. There, transi-
tions between steady equilibria were suggested
whenever finite perturbations, perhaps caused by
baroclinic eddies, kicked the solution vector out of
the capture range of one of the steady solutions.
Although this mechanism may be important, it is
suggested here that a system with many equilibria,
such as that described in Appendix B, may undergo
several catastrophes for relatively small changes in
§. This may provide the foundation for an explana-
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tion of intermittency and persxstence in more
complicated pnysical situations.

4, Limit cycles

The existence and stability of cyclic solutions to
Egs. (7)-(9) is an important but gdifficult subject
of considerable mathematical complexity. Only a
few somewhat restricted statements will be made
here. The discussion is confined tc almost adiabatic
(small r) ltmit cycles for the f-plane. The search for
others is done by numerical experimentation.

First note that an ‘‘energy’’ integral in the usual
form does not exist because the system is dissipa-
tive and driven. However, by multiplying (7)—(9)
by QU,f..fi), respectively, and adding, we see that

+ V5f% +

d
Z([F Yaf)

=rQU - 202 - f2 - 3. (i6)

Now for a limit cycle with period T, 77! [¥ (dg/dt)
X dt = 0, where g is any (cyclic) variable. Thus for
fimit cycles

QU+ f2+f2 = 7

where the overbar now denotes an average over the
period of the limit cycle. This equation implies
that U > 0. A scenario for determining the cycles
follows Pedlosky (1972). An inviscid limit cycle in-
volves two free constants of integration A and B
because for the inviscid system there are two
“‘energy’’ integrals.? After a fairly long time over
which the fiow has forgotten its initial values (be-
cause r # 0), inviscid limit cycles can be found by
using Eq. (17) and another condition derived from
the full equations,

fr=-2U% - Uy, (18)

to evaluate A and B. Inviscid solutions to (7)-(9)
with 8 = 0 are governed by

U2 = BS(A — S)U? — WU* + B. (19)

The approach is to solve (19) giving U(t,A,B) and
then use (8), (9), (17) and (18) to eliminate A and B
and determine the values of § that allow cyclic
solutions to exist. First note that if B is positive,
the solution U(7) is proportional to the elliptic func-
tion cn(?). For this possibility U = 0 and (17) cannot
be satisfied. For B < 0 the solution is

U = 2a{1 — «? sn(at,x)1V? = 2a dn(at,x), (20)
where sn(¢,k) and dn(z,k) are again elliptic functions,
a = {4 - 8§)S

—15[V4(A — S)2S% + 4B}, (21)

2 The inviscid versions of (7)-(9) conserve Kinetic energy
and enstrophy.
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and the modulus k? is just 1 + B. It is apparent from
(20) that this solution is made up of a time-averaged
part and a periodic oscillation about U = ma/K,
where K is the. complete elliptic integral of the
first kind. The solvability conditions (17) and (i8)
yield

2ar 2a%E

SK K

A? + 4 — 1)/S? = 2malK, 23)

where E(k) is the complete elliptic integral of the
second kind. Finally, since a? = (A — §)5/2«? these
can be considered as two equations for A, S and «.
Eliminating A would give an equation of form
F(S,x) = 0, and because « ranges from zero to 1,
the roots of this equation are readily determined.
Thus it is possible to find the values of § for which
limit cycles of the above {ype exist, and knowing
K, their properties are given as well.

For small § an asymptotlc solution of the trans-
cendental equation is possible. If we suppose that
A =8+ g,whereq < 1, Egs. (22) and (23) lead to

; (22)

S3K2K2
17 2t
and an eigenvalue relation
. ‘4
In ———— = 227 S~%(1 — k*)'?
(1 — «2)12

that is easily solved. Since g < 1, a is small and
(22) directly gives the amplitude of the limit cycle
oscillation. Hence

U=a'n'

and this is just the small S limit for the lower inviscid
steady root from (11). Thus one possible cyclic
solution just oscillates around the (unstable) steady
solution.

For larger S, numerical determination of the roots
shows that for 0.17 < § < 0.87 two limit cycle solu-
tions are allowed, one being just the extension of
the asymptotic solution above, and the second be-
ing a solution with substantially larger mean U, but
smaller excursions about the mean. As § increases
toward 0.87 the two limit cycles merge, much in
the manner that the two inviscid roots merge in
Fig. 2, and for § > 0.87 no cyclic solutions exist.
In Table 1 some typical properties of the limit
cycles are given.

Ideally one would like to compute the stability of
these solutions. Analytically, this is an extremely
formidable task. One can attempt to answer this
question by initiating a numerical solution of (7)-
(9) at small r using the values of U, f, and f; corre-
sponding to a limit cycle as found above. Such
calculations always evolve to one of the steady
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TABLE 1. Limit cycle characteristics.

S a (amplitude/2) «* (range) - r (period)
0.20 0.02 0.9999 314.
8.85 0.015 0.35
0.40 0.14 0.998 63.4
4.33 0.065 0.75
0.60 0.30 0.978 23.13
2.62 0.169 1.27
0.80 0.55 0.876 9.02
1.55 0.389 2.27

_roots, mdlcatmg that although cyclic solutions are
possrble they are not stable.

5. N um'erical solutions

_ The ideas of the previous sections can be explored
further by solving Egs. (7)-(9) numerically subject
to specified initial conditions for the thiree variables
U, f- and f;. The numerical algorithm employs a
fourth-order Runge-Kutta scheme that reduces the
time step as réquired by an error norm.

It was first verified that if the initial vector
(U;fr.f) is reasonably close to a stable steady
solution, the system will converge to this solution.
With . reference to Fig. 3; it was found that for
B =0, r = 0.025, say, solutions starting near the
upper equilibrium spiral into it. That is, the U(?)
value, for example, approaches U, in the form of a
damped oscillation about U,. It is interesting that
solutions starting near U, convérge to the lower root
monotonically. This ‘is probably because this is a
“frictional’’ root [see Eq. (12)]. Monotonic equxh-
bration was found for all cases run at large (>0.25)r.
Such behavior is reminiscent of that found for
equilibration of nonlinear baroclinic waves at
various values of r (Hart, 1973; Pedlosky, 1971).

To test the bifurcation theory for 8 = 0 an integra-
tion was started using as initial values the steady

1.0 -
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upper solution (U,,f,,,f;) for the termination point
at S., say, of the upper 8 = 0, r = 0.08 curve in
Fig. 3, except with § = 1:05 §.. Fig. 5 (curve a) °
shows that the solution does imake a transition to
the lower root in a time on the order of r—2, although
most of the switch occurs in a time of order r~*. Once
in the lower state a system subject to only modest
perturbations cannot recover to U, unless S =< 0.58.
Fig. 5 (curve b) illustrates a solution starting with
the lower steady solution obtained for g8 = 0,

= 0.08, § = 0.58 as the initial condition but with
S = 0.54. A monotonic transition back to U, is
evident.

A similar situation ensues when B # 0. With
reference to Fig. 4, an integration was initiated with
starting values obtained from the S = 0.4 end point
atr = 0.01, 8 = 0.27. With B increased by 7% the
solution evolves to the lower root as shown in Fig. 6.
At this small value of r there are many more oscilla-
tions and overshoots, but the basic transition to
lower values of the zonal flow U occurs fairly rapidly.

These numerical calculations seem to indicate that
although we have not proven the absence of limit
cycles when 8 # 0, they are not attained by passing
a bifurcation point. If they do exist their capture
range may be very small, although admittedly this
is only a conjecture based on a finite number of
numerical experiments. Even attempts to establish
the capture ranges of two coexistent steady solutions
are difficult because they depend on all thrée initial
values. If initial values f, and f; are maoderately close
to U,, say, the system is found to evolve to U,
even if U,(t = 0) =

An extensive n’umerical study was made by con-
ducting many integrations starting at different
randomly chosen initial conditions with fixed ex-
ternal parameters. Fig. 7 shows typical phase space
trajectories. The .arrows show the direction of in-
creasing time. In one case the initial conditions
are close to an unstable steady root. In both ex-

100

Fi1G. 5.‘ Numerical integrations for transition between upper and lower states with
B=0,r=0.081In(a)S =0.74,in (b) S = 0.53.
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F1G. 6. Numerical integration for r = 0.01, 8 = 0.29, § = 0.4 starting from
the steady solution at 8 = 0.27.

amples the solution vector spirals in to the lower
steady solution. Although one cannot use a finite
number of experiments of this type to prove that
such spirals always occur, in no initial value problem
did a limit cycle or an aperiodic motion typical of a
system with a strange attractor appear.

6. Stability to other modes

I have discussed the stability of the forced solu-
tion with respect to other highly anisotropic
perturbations. That is, the linear stability results
of Section 3 are effectively concerned with stability
of the mountain induced flow to long-wave perturba-
tions. However, stability of the stationary states
with respect to disturbances whose y scales are of
the same order as L, requires additional discussion.

PR T U S

TS WS |

If the vorticity equation (1) is linearized about a
basic state U, 9, noting that U is just the zonal
velocity (since # wave < U), and introducing per-

_turbations of form

¢/ — Q(x)eil(y—ct)’
it is found that

[il(iz -+ U —;; + r}(@_ — le)

ox?

00
B

. . ., 0%
+ ilSQ sinx — il — Q =0, (21)
) ox?
where U(S) is constant and
e

7= =
ox

~f, sinx — f; cosx.

Ad s A b s s

20 A Ao b ot a sy ol gaoadasy

~.00 8 .10 18 20 = -]

U

Fic. 7. Typical U~f, space trajectories for different initial conditions: 8 = 0.308, § = 0.385, r = 0.027.



)

1744

The above stability problem is in general very
difficult because the coefficients are periodic in x.
It is somewhat related to the Rossby wave stability
problems discussed by Lorenz (1972), Gill (1974)
and Coaker (1976). Here, however, friction and
advection by the zonal flow are important. The
latter is not removable by Galilean transformation.
Also, the east-west topography variation plays a
crucial role in establishing the basic state potential
VOI’th]ty gradients.

Since multi-equilibria occur when r is fairly small
we only look at this situation. First let 8 = 0, and
consider the stability of the upper root U,. From
(11) we have U, ~O(1), f,, =8 + O(r?) and
fi1 = O(r). Thus the stability equatlon to leading
order in r reduces to

(U, -5(1— — ilc)( ?;Q

- 12Q) L (@)
since the wave basic potential vorticity gradient is
only of order r. It is a simple matter to show that
if ¢; # 0 the solution of (22)'will not be bounded in
x so that the actual value of ¢; must be of order r
or Iess. Solving (22) we find that

0 « eilxciUs

Thus . if ¢; is nonzero the perturbation is not
bounded in x. This means at worst c; is of order r,
and that then friction will represent an O(1) damping
effect on the perturbations. By expanding ¢ and Q
in powers of r, and following the procedure used
in Appendix A for determining the stability of the
frictional root (see below), it is found that ¢; = —r/l
+ O(r?). The bottom friction dominates these
perturbations and renders the f-plane flow stable to
linear perturbations at all y wavelengths consistent
with the original quasi-geostrophic vorticity equa-
tion. Again, this result arises only because the non-
linear mountain wave has essentially zero potential
vorticity gradient associated with it.

If B# 0, the ¥ field has f, ~ SUA(U — B) and
in this case the basic state has an O(1) spatially
periodic potential vorticity gradient. Only detailed
calculations will divulge the stability characteristics.
However, if B.is only of O(r) and both are small,
the line of reasonmg followed above applies and
the upper U; flow is stable.

For the lower root (f,4,U) are much smaller than
fis which itself is of order r when r and 8 are
small. It then is suggested that here too friction
will be dominant in determining the stability of the
mountain wave. In Appendix A I give the detailed
analysis which verifies that the perturbation growth
rate Ic; = —r to leading order in r, and hence the
flow is stable. Of course, in a real atmosphere
other forms of perturbation (e.g., baroclinic ones)
may evolve and cause the system to jump out of
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one of the stationary states in a manner outlined
by CD. In an extremely crude way we might lump
such effects into r or into random initial condition
variation. However a detailed discussion of this as-
pect of the problem is beyond the scope of this paper.

7. Conclusions

It has been shown that forced, steady, barotropic
zonal flow over a set of long ridges can be multi-
valued. The stable multi-equilibria are located in the
space of the three external parameters B, r and
S(y) which measuré the effects of curvature of the
earth, friction and local ridge height relative to the
Rossby number characterizing the driving. Since the
multi-equilibria regions are finite in this parameter
space, and sinice at least one stable steady solution
exists for all values of the parameters, bifurcation
points must occur. When the external parameters
pass these bifurcation points the flow may make a
fairly abrupt transition to an alternate steady state,
which if the bifurcation points are fairly far apart,
can demonstrate marked persistence. It is suggested
that such bifurcation phenomena may be important
in atmospheric blocking and in generatmg short-
term climate fluctuations.

It is interesting that for 8 = 0 this model predicts
that the Uj solution effectively dominates at values
of § of order 1 when r is small. The forcing, in the
form of an Ekman suction velocity in the laboratory
case, is balanced by the wave form drag on the
topography. This is not Taylor-Proudman blocking
since not only is S not large, but the flow is not
directed around the topography since f; is only of
order r. In a sense this solution represents a
Sverdrup-type balance between Ekman suction,
and vorticity generation in the zonal mean by wave-
induced flow over the topography (which plays the
role of B). Under the physical situation described
at the beginning of the paper this balance is an
alternative exact solution to the one with order 1
zonal flow. When 8 # 0 and r is small the low veloc-
ity solution Uj; represents a kind of mixed Sverdrup
balance with both topographic and g-effects con-
tributing. .

A shortcoming of this model is that the topography
has form F(y) cosx. This assumption was neces-
sary to allow simple exact (as L,/L, — 0) solutions
of the barotropic vorticity equation. In Appendix B
it is argued that more general topography h ~ 3.S;
cosjx does not alter the character of the expansion nor
the qualitative nature of the solutions. Although
such representations may be adequate for controlled
laboratory experimentation, clearly the appropriate
meteorological problem involves topography con- -
sisting of a few large-scale ridges with small L,/L,
separated by large distances. The low £ wave-
numbers will thus be excited and contribute to
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wave interactions scaled out of the present theory.
How these affect the qualitative nature of the solu-
tion topology needs to be determined.
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APPENDIX A
" Stability of U,
Let B8 = rfB,. We have, to leading order in r,
U, = 2r%S?,

frls == % Bor

fi =2rS.

We then expand @ and ¢ in powers of r:
Q=0 +rQ,+...,
c=co+rc,+....

Eg. (21) yields the O(r%) and O(r) problems:

co( @0 — Q) = S sinxQ,,
co @1 — Q1) — § sinxQ,
= —(cy +irl™! = f,g sinx/r — fi5 cosx/r)(Ql — 2Qp)
iBoQo
{

First note that ¢, must be real. We multiply (Al)
by Q% and (Al)* by Q, and subtract, and inte-
grate over a period in x. Thus

(A1)

+ ~ (3 sinx + fi3 cosx)Qfr. (A2)

Im%ﬁwde+meMx=m

[}

$0 ¢o; = 0. Without loss of generality, then, we can
let O, be real. We now multiply (A1) by Q,, (A2)
by Q,, integrate over a period and subtract. Since

27
J Q()Q(’}dx = 0,
0

the imaginary part of the resulting equation yields
¢y = —rl71. Thus the growthrate o; = Ic; = —r, and
the basic state Uj; is stable for 8 < O(r).

3 One could in principal solve this Mathieu equation for
allowed phase speeds c,.
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The above integrations assume periodicity over
one wavelength of the topography. Floquet’s the-
orem suggests that actual solutions may be periodic
over some multiple of the basic wavelength, but
one can extend the range of integration to encom-
pass a longer interval over which solutions are
periodic without changing the result. Physically, one
would not expect the growth rates to depend on the
sign of #. Thus, positive contributions to c¢; should
not enter the expansion until order r2. Of course, the
sign of the friction itself is crucial and thus the
friction term does contribute to c; at order r. There is
always the admitted risk that there may be some
perturbations that are not describable by a regular
perturbation expansion of the proposed form. Short
of solving the whole problem numerically this ques-
tion will remain unanswered, although one has the
intuitive feeling that such singular behavior should
not occur in a system with fairly strong frictional
damping.

APPENDIX B
General Topography

We consider a more general representation of 4
such that

N
h =Y S{y) cosjx.
j=1

The sum must be finite so that scales of topography
that are too small to be considered geostrophic are
not included. The governing equations correspond-
ing to (7)-(9) are

U+rU-1) —gﬁﬁa
fi + rfis = USilj — GU = B fris
fm‘ + rfrj = (U — B(l)fu

For stationary solutions, equilibria are determined
from the roots of

U1 - U) = 1 ﬁ SHIFE + 25U — BIER).  (A3)

When 8 = 0 and r is small the two inviscid roots are
given by solutions of
' N
U1 -U)y=% Y S
i=1

Thus N
Uiz = ¥ = (1 ~ 2 3 S
J=1
and it is seen, by comparing this result to (11), that

S is simply replaced by Y ¥ §;%j%. The viscous root
corresponding to that in Eq. (12) is just

U=2%3Y S

In this case the more complicated topography has
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only a minor influence. Some sample calculations
of linear stability with N = 2, §, = 14S,, indicate
that over ranges similar to those in Fig. 2, the upper
inviscid root and the viscous one are stable at the
same external parameter values.

When 8 is nonzero the situation is more compli-
cated. The series in (A3) converges very fast for
reasonable S; and one suspects the situation to be
well-described by the analysis presented in the body
of the paper. However, the order of the char-
acteristic equation (A3) is equal to 2N + 1, so the

possibility of even more equilibria exists. In fact, if '

r is sufficiently small it is seen that there generally
will be a pair of roots near every critical value of
U = BJj?, i.e., near each zonal wind giving a linear
inviscid Rossby wave resonance at nondimensional
zonal wavenumber j. It is not known (though easily
calculated numerically for specific cases) whether or
not any of these additional roots will be stable.
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