VOLUME 20

JOURNAL OF PHYSICAL OCEANOGRAPHY

MARCH 1990

Topographic Influences on Wind-Driven, Stratified Flow in a 8-Plane Channel:

An Idealized Model for the Antarctic Circumpolar Current

A. M. TREGUIER
IFREMER, Brest, France

J. C. MCWILLIAMS
National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 15 May 1989, in final form 21 August 1989)

ABSTRACT

Topographic influences are examined in an eddy-resolving model of oceanic channel flow forced by steady
zonal winds. With small explicit lateral friction, transient eddies generated by the baroclinic instability of the
mean flow transfer momentum downward to the bottom layer. In the flat-bottom case, bottom friction is the
only efficient sink of eastward momentum. When bottom topography is present, the topographic form stress
can replace the bottom friction sink in the momentum budget, and a large decrease of the zonal transport
results. Large scale topography (of the scale of the forcing) provides the largest form stress. Topographic effects
decay with height as suggested by the Prandlt scaling, and therefore only topographic scales larger than the
Rossby radius can affect the whole water column. In that case, the interfaces are deformed by standing eddies
on topographic length scales, and standing eddies replace transient eddies in transferring momentum downward,
The bottom-layer mean streamfunction tends to be correlated with the topography as in inviscid solutions.
Because of this, only a small part of the flow (the larger scales) contributes to the domain-averaged momentum
sink. On smaller scales, the topographic form stress is anticorrelated with the Reynolds stress and has no net
effect on the transport. The energy level of the transients is less affected by the topography than is the mean
energy. With topography, the space scale of the transients decreases and their time scale increases, and the ratio

of potential and kinetic energies is higher.

1. Introduction

The problem of the momentum balance of the Ant-
arctic Circumpolar Current (ACC) has motivated
many numerical studies of oceanic channel flows. In
the early coarse-resolution models (e.g., Gill and Bryan
1971) the momentum input by the wind was balanced
by lateral mixing. When the first quasi-geostrophic
eddy-resolving models were run 10 years ago, it ap-
peared that in the absence of large lateral friction the
flow was unstable and meandering, and therefore more
realistic. On the other hand, flat-bottom models gave
zonal transports one order of magnitude too large (1000
Sv instead of an order of 100 Sv; Sv = 10° m? s™})
with reasonable values of the wind stress and bottom
friction coeflicient. Following the early suggestion of
Munk and Palmen (1951), McWilliams et al. (1978)
showed that including a representation of the Drake
Passage (a strait partially obstructed by bottom topog-
raphy) could reduce the transport to reasonable values.
In that case, the main eastward momentum sink in
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the bottom layer was no longer the bottom friction
drag but rather the topographic form stress (also called
topographic drag) resulting from different pressure
forces on each side of the topography. This early study
however left many questions unanswered. For example,
how high must the topography be to be an efficient
momentum sink? Is the transport very dependent on
the shape of the topography? Does the horizontal scale
of the topography matter?

Some of these questions have been addressed in a
recent paper by Wolff and Olbers (1989). They have
considered different topographic shapes, ssamounts or
meridional ridges partially or totally obstructing the
channel. Their results show that, indeed, the transport
is highly dependent on the position and shape of the
topography.

The present paper compares quasi-geostrophic so-
lutions with isolated topographies similar to those of
Wolff and Olbers (1989) and solutions with randomly
distributed topographies. Using a broader class of to-
pographic fields allows us to point out new features of
the momentum balance, for example, an anticorrela-
tion between the Reynolds stress and the topographic
form stress in the bottom layer. An examination of the
statistics of the standing eddies, especially their vertical
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penetration and correlation with the topographic field,
is necessary in order to understand the momentum
balance in those cases. By using random topographies
with different wavenumber spectra, we demonstrate
that topography with large spatial scales has the largest
effect on the momentum balance of the current in the
context of our model. Finally, a calculation of the en-
ergy 'balance shows the influence of topography on
“baroclinic and barotropic instability processes.

The next two sections of the paper introduce the
model and review basic features of the dynamics al-
ready pointed out by previous authors. Section 4 de-

- scribes topographic influences on the statistics of the
-transients and the mean flow, as well as the correlation
of the mean streamfunction and vorticity field with
topography. The implications of such correlations for
the momentum and energy balances are discussed in
section 5. Section 6 deals with the variations of zonal
transport and topographic form stress as a function of
the topographic height and spatial scale. Finally, the
spatial structure of the topographic form stress is ex-
amined in detail in section 7, with implications as to
its measureability. :

2. Model equations and parameters

McWilliams and Chow (1981, hereafter MC81)
performed a thorough analysis of flow driven by a
steady eastward wind stress in a flat-bottom channel.
Their model is used here, the only difference being the
introduction of bottom topography. The quasi-geo-
strophic vorticity equation on a S-plane is for layer &
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where ¥ is the streamfunction and gy is the potential
vorticity in layer k

@ = Vi + By + bk

f2

et 1o’
Gie—172Hy

(Yi—
: rs12Hy

\bk) - (Wi — Yier).

This expression is valid in all layers with the convention
that the reduced gravity g’ is infinite above the top
layer and below the bottom layer k = n. The topog-
raphy is & = foh/ H,,.h being the topographic elevation
and H, the bottom-layer depth. The energy source for
the flow is the zonal wind stress 7 which accelerates
the top layer, and the main energy sink is the bottom
friction with characteristic decay time ¢! in the bottom
layer. Biharmonic friction with coefficient v is added
as a subgrid-scale parameterization and provides a sec-
ondary energy sink.

The boundary conditions on the north and south
channel walls are

i _

0, V2
Py Yi =

0, V% =0

for y=yy and y=ys.

The momentum equation integrated along the south
boundary and the mass conservation are used as aux-
iliary conditions to calculate the streamfunction on the
walls (McWilliams 1977). The equations are solved
using classical finite-difference methods (Holland 1978
MC81).

Two sets of parameters have been used (Table 1),
with many different topographic fields for each ( Table
2). Using different parameters prevents quantitative
comparisons between the two sets of experiments, but

TABLE 1. Parameters for the two sets of experiments.

4L experiments . 3L experiments

Horizontal resolution Channel length

Channel width
Gridpoints
Vertical resolution Number of layers
Layer depths
Rossby radii
Coriolis parameter
Forcing shape
maximum 7,/p
Friction Bottom friction

Biharmonic friction

L, 1875 km 2250 km

L, 1250 km 1500 km
144 X 96 144 X 96

N 4 3

H, 500 m 500 m

H, 1000 m 1000 m

H; 1000 m 3500 m

H, 2500 m

R, 36 km 37 km

R, 17.5 km 17.6 km

R3 14 km

% 8.35 X 1075 s~ —1.1 X 10757

B 1.9 X 107" m™! 57! 14X 10" m!s™!
sin(y) sin?(y) 4

70 1 X 107* m?s™2 1 X 107" m?s72

€ 1077 57! 1077s7!

v 18><109 45! 3.8 X 10° m*s™!
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TABLE 2. Topography used in the experiments. Except for case
4L5, the spectrum for randomly generated topography is truncated
at a minimum wavelength of 52 km. 4 is the rms height and L, the
inverse of the average wavenumber.

h L,

Case (m) (km) Comments

410 no topography.

4L1 100 109 K2 spectrum, maximum wavelength
208 km.

41.2 400 109 K2 spectrum, maximum wavelength
208 km.

4L3 100 164 K72 spectrum, maximum wavelength
417 km.

4L4 400 164 K72 spectrum, maximum wavelength
417 km.

4L5 297 164 K2 spectrum, maximum wavelength
417 km.

4L6 297 280  K~? spectrum, maximum wavelength
417 km, minimum wavelength 208
km.

4L7 200 231 (Ko® + K%' spectrum, 27/K, = 417 km.

418 400 231 (Ko® + K¥)7! spectrum, 27/Ky = 417 km.

4.9 200 455  K~? spectrum, maximum wavelength
1250 km.

3L0 no topography.

3Lt 16.4 172 Centered seamount.

Radius = 120 km, height = 200 m.
312 24.6 172 Centered seamount.

Radius = 120 km, height = 300 m.
Centered seamount.

Radius = 120 km, height = 500 m.
Centered seamount.

Radius = 120 km, height = 1000 m.

3L3 41 172
3L4 82 172

3L5 64.6 145 Seamount as 3L3 with added noise:
h = 50 m, K2 spectrum, maximum
wavelength 250 km.
3L6 62.3 180  Seamount as 3L3 with added noise:
h =50 m, K2 spectrum, maximum
wavelength 500 km.
3L7 259 954  Meridional ridge.
Zonal scale = 120 km, height = 100 m.
3L8 51.7 954  Meridional ridge.
Zonal scale = 120 km, height = 200 m.
3L9 129.3 954  Meridional ridge.

Zonal scale = 120 km, height = 500 m.

it gives more confidence in the generality of the qual-
itative behavior observed in both cases. In the first set
of experiments, the emphasis is on good spatial reso-
lution, with four layers vertically and a horizontal grid
scale of 13 km. The domain is relatively small (1875
X 1250 km ), and the Coriolis parameter f, and 3 effect
are typical of midlatitudes. These parameters are cho-
sen to study the effect of random small and mesoscale
topography, where a good vertical and horizontal res-
olution is essential since topography induces a cascade
of energy to small horizontal scales and important bot-
tom-trapped motions. The second set of experiments
explores the effect of large-scale, deterministic topog-
raphy. The channel is larger, the resolution is lower
(Table 1), and f, and B are typical of the Southern
Ocean to allow comparison with the simulations of
Wolff and Olbers (1989) and MC81. Note that, like
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previous authors, we have kept a stratification typical
of midlatitudes (first Rossby radius R; = 36 km) in-
stead of the Southern Ocean (R, = 20 to 25 km at
50°S) because a realistic small Rossby radius would
require a very high resolution. For the first set of pa-
rameters (solutions whose label begins with 4L) the
wind stress is proportional to 7o siny. For the second
set (labeled 3L), a sin?y shape has been used in order
to obtain a more concentrated jet despite the broader
channel and minimize the influence of the channel
boundaries. The two forcing shapes produce qualita-
tively similar flows.

Random topography is generated from a horizon-
tally isotropic spectrum. The topographic height is set
to a constant along the channel walls (similar to the
boundary condition for the streamfunction) to avoid
the formation of a boundary layer in the relative vor-
ticity field (Treguier 1989). In most cases the spectrum
is a band-limited K ~2 spectrum between wavenumbers
Kuin and Kiax. When K., corresponds to the gridscale,
the topographically induced cascade of energy towards
small scales is such that biharmonic friction can be-
come the main energy sink. Since biharmonic friction
is a subgridscale parameterization, it is reasonable to
simulate only flows in which its effect remains small
compared to bottom friction, and therefore the mini-
mum topographic wavelength (27 /Knax = 52 km) is
chosen larger than the model gridscale. The other limit
of the spectrum (the maximum wavelength) is varied
to study the effect of different topographic spatial scales
(Table 2). Besides the K~ spectrum, a spectrum pro-
portional to (K2 + K?)~! has been used in two cases,
4L7 and 4L38.

The study of isolated topographies concentrates on
two simple shapes: an isolated seamount

h(x, y) = hpe™ F+707, (2)

with radius r = 120 km centered in the middle of the
channel, or a ridge of same shape and width in x but
independent of y. Different maximum heights #,,
ranging from 100 to 1000 m have been used. The com-
bined effects of random and isolated topographies have
been studied in cases 3L5 and 3L6.

3. Channel flows with and without topography: Review
a. Dynamics of flat-bottom solutions

In a steady-state solution with small lateral friction,
energy must be transferred from the surface layer
downward to the bottom layer where all the dissipation
takes place. Only transients can generate such a time-
averaged downward flux in the quasi-geostrophic sys-
tem with zero vertical viscosity. Therefore, the flow in
the upper layer accelerates until it becomes baroclin-
ically unstable, and equilibrium is reached when the
downward transfer of energy by transient eddies is equal
to the input by the wind. Barotropic instability plays
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a small part away from lateral boundaries when the
meridional scale of the forcing is large.

Figure la shows a classical energy diagram for our
flat-bottom case 410, similar to the one displayed in
Fig. 8 of MC81 for their case I. The main energy path-
way is from mean kinetic energy to potential energy,
and then to transient potential and kinetic energies,
reflecting the baroclinic instability mechanism. Note
that eddy kinetic energy is converted into mean kinetic
energy by the Reynolds stress divergence which con-
centrates and intensifies the jet (an opposite transfer
would indicate barotropic instability ). MC81 (Fig. 24)
found that the shape of the Reynolds stress divergence
is also a property of the linearly unstable modes of the
mean jet. Although the basic dynamics of case 4L0,
3L0 and case I of MC81 are similar, the energy level
1s larger in 4L0 because 3 is larger and therefore the
flow is less baroclinically unstable. )

Transport is very large in flat-bottom solutions (1859
Sv for 4L0 and 1250 Sv for 3L0) since the mean flow
is zonal and almost barotropic. In solution 4L.0, 97%
of the mean kinetic energy and 80% of the transient

K 1.0 K
e
405 99
l 1.6 T 1.6
P 1.6 P
—
1420 78 4.0
F D D
1.2 0.9 0.3
K 0.3 K
-
76 75
lo.e T 0.6
P 06 :
e
831 90 4L4

FIG. 1. Global energy budgets integrated over the four layers for
flat-bottom solution 4L0 and topographic solution 4L4. X is the ki-
netic energy, P the potential energy, F the forcing, D the total dis-
sipation, and the other arrows are nonlinear transfers. Units are m>
572 for energies and 107> m?> s~ for energy transfers.
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kinetic energy is barotropic. The barotropic mode is
efficiently forced by the wind in the channel geometry,
because the barotropic mean streamfunction and the
wind-stress curl have similar shapes. This contrasts with
closed basin geometries in which the baroclinic modes
receive most of the forcing energy. In a classical double-
gyre solution in a rectangular basin (e.g., Holland 1978)
the barotropic recirculation is narrow and concentrated
near the central latitude of the free jet, whereas the
baroclinic streamfunction has a structure similar to the
cosine shape of the wind-stress curl, allowing a large
baroclinic forcing.

b. Dynamics of a solution with topography

Case 4L4 is identical to 4L0, but with a mesoscale
random topography with rms height 400 m. The effect
of topography is much greater on the mean flow than
on the transients, as shown by the energy diagrams
(Fig. 1b). The transient kinetic energy K’ is decreased
by 25% between cases 4L0 and 414, but the mean ki-
netic energy K is 5 times smaller. In the presence of
topography the time-mean flow is no longer zonal, but
exhibits meanders and standing eddies even in the up-
per layers. This greatly reduces the forcing efficiency
since the zonal forcing is uncorrelated with the standing
eddies by definition. The zonal transport is reduced
from 1859 Sv to only 275 Sv. The flow is also less
barotropic: the barotropic mode in 414 accounts for
82% of the mean kinetic energy and 68% of the tran-
sient kinetic energy. '

The zonal momentum balance has often been used
to understand the effect of topography on the transport
(McWilliams et al. 1978; Wolff and Olbers 1989).
Representing the zonal average by brackets { >, the
time-average by an overbar and the time fluctuations
by a prime, the zonal momentum balance in layer k
is

o Uy )
—<§:—> =0 = 6;4F + Re + H "(Dy-1/2 — Div172)

+ 6, 5(B+T). (3)
The biharmonic friction is found to be negligible in all
our momentum budgets and has been omitted here for
simplicity. The Reynolds stress divergence Ry and the
interfacial form stress Dy, are

H uyv;
Ry = — _<_ak__k_>_ (4)
Y
1o d
Dyvijp=—— (¥~ Ykn ) - (5)
gh+1/2 0x

The wind stress forcing F = (7)/pH, appears in
the upper layer and the bottom friction drag B
= — (U, y in the lower layer n. Topography influences
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the momentum balance through the topographic form
stress T’

. — 0h
r=(ohy=-(% 5) (®)
Note that we prefer the term “form stress” instead of
“form drag” since T does not necessarily resist the
mean flow (e.g., does not always act as a drag).

By summing (3) over the layers and latitudes one
obtains a simple balance between the wind stress, bot-
tom friction and topographic form stress:

eM, =F+ T, (7)

where M, is the transport in the lower layer, F is the
wind stress forcing and 7 the topographic form stress
integrated over the channel width L and the depth. For
the flat-bottom case 4L0 with a sinusoidal forcing,
M, = E_2Lro_ 796 X 108 m>s~".
€ we

(8)

The total transport, however, cannot be derived from
a simple equation (it would be 2 X 796 Sv in a purely
barotropic solution instead of the actual 1859 Sv in
4L.0). Topographic solutions like 41.4 are different from
flat-bottom solutions because the topographic form
stress 7 can balance the wind stress (7/F = —0.95 in
414), and the bottom friction drag can be small, re-
sulting in a reduced lower layer transport (47 Sv). In
case 4L.4 83% of the total transport (228 Sv) occur in
the upper 2500 m, compared with only 57% in the flat-
bottom case.

An important conclusion, stressed by McWilliams
et al. (1978), is that topography makes the eddy-re-
solving model a much more acceptable representation
of the statistics of the Antarctic Circumpolar Current.
With reasonable values for the wind stress and friction
coeflicients, one can obtain acceptable values for the
transport and kinetic energies. The upper-level eddy
kinetic energy is larger than the mean (instead of being
smaller as in the flat-bottom case), and the amplitude
of the barotropic mode is reduced. Therefore, a more
extensive study of topographic influence in such a
model seems warranted.

4. Statistics of the solutions with topograiphy

In the following, the transients and steady flow are
discussed separately because topography affects them
differently. The steady component is determined by
averaging over 5 to 12 years of simulation. A few tests
have shown that averaging over longer periods does
not change the results.

a. Transient flow

Topography generates a cascade of energy towards
small horizontal scales in quasi-geotrophic turbulence
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(Rhines 1977; Treguier and Hua 1988, hereafter
THS88). In our solutions with topography the horizon-
tal scale of the transients is smaller by two measures.
First, the typical diameter of the energetic transient
eddies tends to decrease slightly, especially with the
large scale random topographies. In those cases the
mean flow has a complicated spatial structure at all
depths (an example is shown in Fig. 3) and the transient
eddies produced by baroclinic instability have complex
shapes, whereas in the flat-bottom case the eddies are
larger and almost symmetric about the jet axis. Second,
when small scale topography is present the amount of
eddy enstrophy in the lower layer increases. The ratio
of the transient kinetic energy K} and enstrophy Z}
gives a length scale of 50 km for the flat-bottom case
4L.0 and 25 km for case 4L.4. This decrease is due to
small scale structure superimposed on the dominant
transient eddies in the lower layer. It does not happen
when the topography exists only at large scales (3L
experiments with isolated topographies).
Topography also modifies the time scale of the tran-
sients. In the flat-bottom solutions, kinetic energy fre-
quency spectra are red near the walls, but in the center
of the channel they are dominated by resonant peaks
associated with the largest scale linear Rossby waves
for periods longer than 10 days (MCS81, Fig. 17). The
influence of topography is greatest in that central re-
gion: the resonant peaks at periods of 10 to 50 days
become smaller or disappear entirely, and the kinetic
energy spectra become almost as steep as w 2. Besides
the decrease of energy at periods of 10 to 100 days, in
some cases there is an increase of kinetic energy at
periods larger than 100 days. Those modifications of
the spectra are reflected by an increase of the average
time scale near the center of the channel. The inverse
of the mean frequency f = 2 K(f)fdf/Z K(f)df,
where K is the kinetic energy, gives an estimate of the
time scale. In the lower layer this time scale increases
from 25 days in the flat-bottom case 4L0 to 74 days
in 4L4. The effect is larger for the highest topographies,
but our results do not show any net dependency on
the topographic shape (isolated or random) or hori-
zontal scale. The reduced amplitude of the spectral
peaks is due to the modification of the dispersion re-
lation of barotropic Rossby waves in, the presence of
topography. A similar effect appears in TH88, but the
average time scales were less altered probably because
they were constrained by the transient wind forcing.
In TH88 topography was found to induce a surface
intensification of the transients. The effect was not very
large (a factor of two) but the surface intensification
exhibited a clear dependency on the topographic rms
slope. In the present study there is also about a factor
of two between the less and the more surface-intensified
cases. The larger surface intensification corresponds to
a larger baroclinicity of the flow and an enhanced tran-
sient potential energy (for example, the ratio P’/ K’ in-
creases between cases 4L.0 and 414, Fig. 1b). However,
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there are important differences between the vertical
structure of the present solutions and TH88. First, the
domain-averaged surface intensification of the kinetic
energy (between 2.5 and 5) is smaller than the values
between 6 and 12 found by THS88, probably because
the nonlinear transfer of energy from the baroclinic to
the barotropic mode due to baroclinic instability is
larger in the channel model. Second, in our solutions
there is no simple dependency of the surface intensi-
fication on the rms height or slope of the topography,
reflecting the different dynamics of transient motions
directly forced by wind fluctuations (in TH88) and
transient motions generated from the baroclinic insta-
bility of a mean zonal flow (in the present model).

b. Time-mean flow

In the presence of topography the mean flow is no
longer purely zonal and standing eddies are present.
Quantities associated with the zonal mean flow are
noted by brackets and quantities associated with the
standing eddies are noted by an asterisk. Two char-
acteristics of the standing eddies are described: their
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FIG. 2. Time~mean streamfunction in the upper and lower layer
for solunon 41.2 with small scale topography Contours intervals are
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vertical structure and their correlation with the topo-
graphic field.

1) VERTICAL STRUCTURE OF THE TIME-MEAN
FLOW

For the cases with small scale topography (4L1 and
41.2), the effect of topography is concentrated in the
bottom layer as shown in Fig,. 2. Standing eddies appear
clearly in the lower layer whereas the mean flow in the
upper layer is essentially zonal, as in the flat-bottom
case. The kinetic energy K, of the standing eddies de-
creases by a factor 5 between the bottom layer and the
top layer.

The effect of topography penetrates into the upper
layers when there is a permanent deformation of the
interfaces at least partly reproducing the topographic
shape. In that case, the interfacial form stress in the
upper layers plays the same part as the topographic
form stress in the bottom layer. This happens in case
418 with a larger scale topography (Fig. 3). The kinetic
energy K, of the standing eddies is the same in the top
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and bottom layers for that case. In all of the 3-layer
solutions, the interfacial form stress is more efficient
than the topographic form stress and the standing ed-
dies are surface-intensified (K, can be as much as 6
times larger in the upper layer than in the lower layer).

This vertical structure merely reflects the familiar
behavior of stratified fluids: motions associated with
topographic scales larger than the Rossby radius affect
the whole water column whereas motions with smaller
horizontal scales remain trapped at the bottom. One
may expect topographic effects to decay with height
with the Prandlt e-folding scale

he = foLi/ N, %)

where L, is the topographic horizontal scale and N is
the Brunt~Viisild frequency. For example, A, is the e-
folding scale for the vertical structure of linear waves
on a sloping bottom (Rhines 1970).

Our simulations qualitatively agree with (9). Table
3 shows the percentage of mean kinetic energy in the
standing eddies S = K, /(K + (K)) for 4-layer ex-
periments with different topographic horizontal scales
(qualified by small, medium, large and largest) and
different rms heights. Clearly .S depends on both pa-
rameters. Also shown is Sp, equal to S(z), normalized
by its bottom value to provide an estimate of the ver-
tical penetration of topographic effects. Here Sy does
not depend much on the topographic height and decays
more quickly with height for smaller scale topography
as expected from a Prandlt scaling. In order to perform
a quantitative test of (9), one may estimate N in the
layer model by assyming that the density jump
Zk+172 1s spread over the height (Hy + Hiy1)/2, and
take for the topographic scale L, the inverse of the av-
erage topographic wavenumber given in Table 2. For
the small scale topography one obtains 4, = 1000 m
and a decay from 1.0 to 0.17 between layers 4 and 3,
which is in good agreement with the vertical structure
of Sy. For the “mesoscale” and “large scale” topog-
raphies L, is similar, and /4, =~ 2500 m. The corre-
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sponding decay from 1.0 to 0.3 between layers 4 and
3 is much quicker than the actual decay of S, in those
cases. For a better agreement one could choose a mea-
sure of L, giving more weight to the larger topographic
scales. For instance, the largest topographic scale L,
= Knla gives h, =~ 11 000 m for the “large” and “larg-
est scale” topographies, corresponding to a decay from
1.0 to 0.86 beteween layers 4 and 3, close to the values
of Table 3. For the isolated topographies, Sy is almost
uniform with depth, and one could take for L, the di-
ameter of the seamount.

Table 3 demonstrates that the penetration of topo-
graphic effects qualitatively obeys a Prandlt scaling in
our solutions. However, no quantitative estimate of a
penetration scale can be made a priori because there
is some arbitrariness in the definition of L, when the
topography has a broad band spectrum. Moreover,
there is a small nonlinear dependency on the topo-
graphic rms height (Table 3), and other parameters
probably play a part (8 for example should inhibit ver-
tical penetration).

2) FLOW -TOPOGRAPHY CORRELATIONS

Mean currents correlated with the topography tend
to develop in turbulent flows, as shown for example
by the numerical simulations of Bretherton and Haid-
vogel (1976). In their barotropic model of decaying
turbulence, the standing eddies adjusted in many cases
to an approximately linear relationship between the
mean streamfunction and the potential vorticity, and
a zonal westward flow developed in the presence of 3:

Y = (Vs + h)
¥y =—Uy=(u78)y. (10)

All steady solutions in an inviscid quasi-geostrophic
model satisfy

¥=F 9 +h+8y), (11)

TABLE 3. Vertical penetration of topographic influence.

Case
4L1 412 4L3 4L4 4L7 418 4L9

Topographic scale small medium large largest
Rms height (m) 100 400 100 400 200 400 200
Layer Percentage of mean nonzonal kinetic energy S

K=1 0 4 1 32 59 57 70

K=2 0 4 1 39 68 63 74

K=13 0 10 2 67 82 88 76

K=4 2 43 5 92 90 98 84
Layer Percentage normalized by bottom value .S,

K=1 .05 .09 .29 .35 .66 .58 83

K=2 .04 .09 .23 43 75 .65 .88

K=3 .15 24 .39 73 91 .90 91

K=4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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FIG. 4. Correlation of the flow with topography in the bottom
layer for case 4L9. (a) Topographic field h, contour intervals is 2
X 107* s~ (b) Nonzonal streamfunction ¥,, contour interval is

3000 m? 51, (c) Relative vorticity, contour interval is 104 s,

where ¥ is an arbitrary function. Two reasons have
been proposed why the flow should favor the linear
relationship ( 10). In an inviscid statistical equilibrium
model with a finite number of degrees of freedom, ( 10)
is the maximum entropy solution and the most prob-
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able one if the flow is ergodic (Salmon et al. 1976). In
free-decaying turbulence, Bretherton and Haidvogel
(1976) argued that the flow tends toward ( 10) because
it is the solution which has the minimum potential
enstrophy for a given energy. This theory relies on the
fact that potential entrophy is dissipated much more
quickly than energy. Although neight of the two ar-
guments remain valid in strongly forced and dissipative
flows, solutions have been found to resemble ( 10) to
a certain extent in barotropic models (Herring 1977;
Holloway 1978; Treguier 1989).

In the present case, the mean flow is strongly forced
and stratified. However, correlations of nonzonal mean
flow and the topography in the bottom layer still agree
qualitatively with the steady inviscid solution. Equation
(10) implies a correlation of streamfunction and to-
pography at large scales (wavenumbers K < ), and
an anticorrelation of relative vorticity { and topography
at small scales. Those two features appear clearly in
the maps of Fig. 4 for case 419 (the correlation coef-
ficient with the topography is 0.65 for both ¥, and
—§). Of course, there is _a departure from (10) that
causes scatter in a plot of ,, versus V2, + & (Fig. 5a).
The scatter is dependent on the topography. The cases
with lower and smaller scale topographies are farther
from a linear relationship (Fig. 5b is an example).
Generally, (10) is less well satisfied by the large scales
of motion, which means that the streamfunction—to-
pography correlation is smaller than the vorticity—to-
pography anticorrelation. For example, the two cor-
relation coefficients are 0.4 and 0.84 for 414, and 0.25
and 0.56 for 3L4. It is only with the highest and largest
scale topography (cases 4L8 and 4L9) that the two
correlation coefficients are approximately equal.

Note that in the present model only the nonzonal
component ¢, of the mean flow bears some resem-
blance with the inviscid solution. The steady zonal flow
<fb> cannot satisfy (10) because of the strong forcing
and downward momentum flux, which tends to drive
the flow to the east (instead of the west) and gives the
zonal flow a sinusoidal structure like that of the wind
stress (instead of a uniform one).

To evaluate more quantitatively which part of the
flow follows relationship (10), we have tried to separate
¥« in two components. The “correlated” component

Y. similar to (10) is defined by its Fourier transform

hk, 1)

Yelk, 1) = Am,

(12)

as a function of the wavenumber (k, /) with K? = k2

"+ 2. The characteristic wavenumber u is determined

by the condition that the kinetic energy of the residual
¥r = ¥4 — ¥, be minimal. An extra constant X is al-
lowed in the definition to make ¥, and v, orthogonal
in a kinetic energy norm. The percentage of energy
accounted for by the “correlated” component v, is
given in Table 4. It is non-negligible in all the random
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__FIG. 5. Scatter plots of V%, +  vs the nonzonal streamfunction
¥« at all points of the domain for a case with large scale topography
(4L9) and a case with mesoscale topography (4L4).

topography solutions and in some it has quite high
values (more than 90%). This separation of stream-
function between . and ¢, is less meaningful for iso-
lated topographies. Considering for example the case
of a seamount, ¥, can account for motions trapped
around the seamount but not necessarily for standing
eddies generated in the lee of the seamount. Despite
that fact, for high enough topographies . can account
for half the total kinetic energy of ¥, and about a third
for the case of a meridional ridge.

This decomposition of the streamfunction shows
quantitatively that an important part of the flow adjusts
so that the streamfunction is proportional to (V)
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+ k). This has two important implications, which will
be developed in the following sections. First, the large
part of the flow which satisfies (10) has a zero contri-
bution to the domain-averaged topographic form stress.
Second, the topographic form stress, Reynolds stress
and interfacial form stress are related, as will be shown
below in a detailed discussion of the momentum bal-
ance.

5. Topographic influences on the momentum and en-
ergy balances
a. Momentum balance

Figure 6 shows the momentum balance in layer 1
for the flat-bottom case 4L.0 and a case with mesoscale

rtandom topography (4L.4). The momentum input

by the wind is balanced by the interfacial form stress
D12, which can be decomposed in two terms:

2
Disij2 = Eji)'— <¢k ¢k+1>

k+1/2

B (Zua).
gk+1/2 ‘pkaxlpkﬂ ' (13)

D'k+1/z =

In the absence of topography, Dy, is zero because
there are no standing eddies, and the downward transfer
of momentum is entirely performed by the transient
eddies (Fig. 6a). It is no longer true when topography
is present. In case 41.4 the standing eddies perform

TABLE 4. Two decompositions of ¥, . . is the part of the solution
similar to the statistical equilibrium solution, calculated by (12). ¥
is the minimum stress-generating component part of the flow, cal-
culated by (19) The nonzonal kinetic energy integrated over the
bottom layer is given in m?3 s~ , as well as the percentage accounted
for by the two components. ¥, and ¥, are calculated usmg two dif-
ferent decompositions. Associated with each component is a residual
which contains the rest of the kinetic energy.

Bottom Energy of ¥ Energy of ¢,

Case K, : K,

4L1 33 97% 1.7%
412 36.7 82% 8.6%
4L3 6.1 91% 4.9%
414 35.6 75% 13.4%
4L5 45.6 72% 17.2%
4L6 33.5 76% 10%

4L7 15.2 94% 3.3%
418 17.3 87% 7.0%
4L9 124 92% 4.4%
3L1 17.8 10% 8.2%
3L2 16.3 2% 4.9%
3L3 6.4 34% 35.6%
314 5.7 44% 30%

3L5 8.7 45% 27%

3L6 8.6 48% 23.5%
317 19.7 1% 1%

3L8 16.4 1% 2.6%
3L9 5.7 36% 3.9%
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pography. The definition of the transfer terms is given in the text.
The contribution from the transient eddies D’ and standing eddies
D to the interfacial form stress are shown separately. D is zero in the
flat-bottom case.

82% of the downward momentum transfer even though
their kinetic energy is about five times smaller than
the kinetic energy of the transient eddies in the upper
layers. The role of the standing eddies has been noted
by McWilliams et al. (1978) and Wolff and Olbers
(1989), and our solutions show that it varies with the
topographic height and shape. With small-scale topog-
raphy standing eddies are trapped in the bottom layer
and have negligible contribution to the downward mo-
mentum transport (0% and 3% respectively for cases
41.1 and 4L.2). On the other hand, for the large-scale
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topographies the contribution of the standing eddies is
larger than the total downward momentum flux and
the transient eddies produce an upward momentum
flux. This is true for most 3-layer simulations with iso-
lated topographies.

Lower-layer balances for three cases are shown in
Fig. 7 together with the profile of mean zonal velocity.
The isolated topography solution (3L6) is particularly
simple, The forcing by interfacial form stress is bal-
anced by the topographic form stress near the center
of the channel, where the seamount is located. On the
sides of the seamount there is only small amplitude
random topography and the topographic form stress is
negligible, with small-scale variations which reflect the
small-scale structure of the topography there. This spa-
tial structure is accentuated in the random topography
cases (Figs. 7b and 7c¢). Instead of being a uniform
sink of eastward momentum, the topographic form

_.stress is alternatively a source and a sink, but with east-

ward forcing the value of the stress integrated in latitude
is always negative. The small-scale features are per-
manent (they do not disappear when diagnostics are
calculated over longer time series). In order to obtain
a smooth negative curve, one would need to average
over many topography realizations or a much longer
channel (long compared to the typical topographic
scale).

A striking feature of Figs. 7b and 7¢ is the anticor-
relation between the Reynolds stress R and the topo-
graphic form stress 7 on small meridional scales. A
first step in the explanation is to note that zonally av-
eraged Reynolds stresses in the bottom layer are dom-
inated by the contribution from the standing eddies,
even in the cases with the lowest topography. It has
been shown in the previous section that a large portion
of the steady nonzonal streamfunction satisfies

piy = Vi + h. (14)
For that part of the flow, one can write at each latitude
line

. - _ o
T(y) = (h) = <(u2 — ) ‘”)

ax

Y RV LAY
(w9 50) - (5 + 5%) o)

6217/ 6{0 3 _a‘ . B
_<<by_2)b;> _ <ay(uv)> - -RO). (15)

i

il

In the totally inviscid case where (14) is satisfied exactly
there is a perfect anticorrelation between the topo-
graphic form stress and the Reynolds stress, and both
vanish when integrated in latitude:

fﬁ(y)dy = f T(y)dy = 0.
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With forcing and bottom friction, the sum of the
Reynolds stresses remains zero whereas the sum of the
topographic stress is not. The anticorrelation in (15)
is expected mostly at small scales because it arises from
the vorticity term in (14). To emphasize that charac-
teristic, R(y) and 7(y) have been decomposed into a
large-scale and a small-scale component shown in Fig.
8 for the same case as Fig. 7b. The large-scale com-
ponent of the topographic form stress can be identified
with the low-pass filtered curve T;(y) of Fig. 8a. It is
responsible for the eastward momentum sink: the in-
tegrated value of 7 (y)is —6.24 X 107> m?s 2, almost
balancing the momentum input by the wind (6.36
X 107° m? s~2). The small-scale component of the
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topographic form stress can be identified with the high-
pass filtered curve 7,(y) (Fig. 8b). It is anticorrelated
with. the Reynolds stresses, and tends to redistribute
momentum horizontally with a zero net effect. The
integrated value of T is small (and, in fact, positive):
0.18 X 107 m?s72,

A similar anticorrelation exists between the topo-
graphic form stress 7 and the interfacial form stress D,
but for the large scales. Such a tendency is a conse-
quence of the correlation between the lower interface
displacement 7, ,, and the topography. Assuming that

Jfo

Mn-1/2 = (\Zn - \Zn—l) ~ M,

&n-1/2 _
A being a positive constant, and assuming that the in-
terfacial form stress in the lower layer is dominated by
the standing eddies, one has

N
Hn Dn—l/Z g/n-l/2Hn <(\[’n ‘//n—l) 6.X>
~ —AT(y). (16)

This anticorrelation happens only for topographic
scales larger than the Rossby radius.

An interesting feature of the solutions with large-
scale topographies is the presence of westward currents
in the bottom layer ( Figs. 7a and 7¢), north and south
of the central latitude where the wind stress is maxi-
mum. Such currents flowing in the opposite direction
of the forcing may happen near the channel walls in
flat-bottom solutions. They are usually small (1 cm s ™’
for 3L0) and they are driven by Reynolds stresses. It
is well known that where eddy energy decays spatially
away from a strongly forced latitude band, Reynolds
stresses R tend to generate westward flow on a 8-plane
(Rhines 1977). Topography enhances this tendency,
and the westward currents on the sides of the seamount
in solution 3L6 are larger than in the flat-bottom case
(Fig. 7a). Since above the seamount 7 is negative, R
is positive because of the anticorrelation discussed
above. The integral of R(y) over the channel width
must be zero, therefore R must be negative on average
on the sides of the seamount and force westward flow
there.

In the random, large-scale topography case on the
other hand (Fig. 7c), the westward currents flow over
large amplitude topography and they are mainly driven
by the topographic form stress (although Reynolds
stresses locally play a part). Holloway’s (1987) baro-
tropic experiments provided the first examples of west-
ward currents driven against an eastward forcing by
the topography. The author pointed out that indeed
the topographic form stress does not act as a drag (e.g.,
a force opposite to the direction of the mean flow).
Case 419 demonstrates that such behavior is also found
in stratified flows and that the countercurrents driven
by the topography can be strong enough to reverse the
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total transport. Such a reversal is possible in the strat-
ified case with a steady eastward forcing because the
mean currents can remain eastward in the upper layers.
In the barotropic simulations of Holloway (1987), the
flow has to reverse at all depths and this is possible
only when a random forcing is added, since the mean
zonal wind is opposite to the surface flow in that case
and can no longer be an energy source.

b. Energy balance

Important dynamic processes such as instability |

phenomena are not reflected in the mean momentum
balance, and a discussion of energy budgets is necessary
to expose them.

The classical energy budgets for quasi-geostrophic
models (Holland 1978) show energy exchanges be-
tween layers and between the transient and steady flow.
There is no topographic transfer term in such a budget,
because the topographic effect is confined within the
bottom layer, and does not generate a basin-integrated
transfer between transient and steady energy:

” T(Wn, h)¥dxdy = “ J(Fn» M) ¥ndxdy = 0.

To show the influence of topography, we have calcu-
lated energy budgets separating the zonally averaged
flow and the standing eddies, as usually done in at-
mospheric models. The kinetic energy is the decom-
posed in four terms:

K={(K)+ K, +(K)+ K},

where the time-mean is noted by an overbar, the tran-
sients by a prime, the zonal average by brackets and
the deviation from the zonal average by an asterisk.
The expression of the energy transfer terms is given in
the Appendix. In Holland’s (1978) energy diagrams,
the horizontal dimension is used to separate the tran-
sients and time-mean, and the vertical dimension to
indicate the layers. Our diagrams (Fig. 9) have a cubic
shape, with the third dimension used to separate the
zonally averaged from the nonzonal flow. To keep the
diagrams readable, only the sum of the three upper
layers and the bottom layer are represented in the ver-
tical, Also the potential energy boxes have been sup-
pressed since there is no external source nor sink of
potential energy in our model, but the energy transfers
involving potential energy conversion are represented
as curved arrows to distinguish them from the direct
kinetic energy transfers shown as straight arrows.
First we present the energy diagram for a flat-bottom
case 4L0 (Fig. 9a) as a reference. It is simple since the
time-mean flow is entirely zonal (K, ~ 0) and the
transients are almost entirely nonzonal ({(K') =~ 0).
The forcing F transfers energy only to the upper layer
zonal mean flow. Baroclinic instability tends to gen-
erate transients in the upper layer (curved arrow be-
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tween { K; ) and K,) but is partly counteracted by the
Reynolds stress intensifying the jet (straight arrow).
Transient eddies perform the necessary transfer of en-
ergy downward, mainly by their time-mean effect on
the zonal mean flow (curved arrow between (K, ) and
(K3 )). The bottom friction BF, noted as dashed ar-
rows, is the only significant energy sink. The diagrams
are different in the presence of topography mainly be-
cause topography transfers energy into the standing
eddies (7K arrow from (K, ) to K,;). For a small-
scale topography (Fig. 9b) standing eddies are confined
in the bottom layer and only the K,; box is involved.
With a larger scale topography (Fig. 9c) the interfacial
form stress also generates standing eddies in the upper
layers (curved arrow between the (K,) and Ky
boxes).

The variability of the zonally averaged flow increases
with topography, as shown by the increase of the kinetic
energy in the ( K") boxes relative to the ( K') boxes in
Figs. 9a to 9c. In Fig. 9c¢, the energy transfers between
the transient zonal flow and the others components are
not negligible (of order 0.1 X 1075 m? s™) but have
not been represented to improve readability. Those
transfers tend to be even larger for larger scale topog-
raphies, although the energy content of the { K"y boxes
remains relatively small (in those cases the transient
zonal flow acts like a catalyst for nonlinear interac-
tions). In the bottom layer, transient zonal currents
could be generated directly from the transient eddies
by a topographic transfer

7K' = —f {up(y))T'(y)dy,

resulting from the correlation of the transient zonal
flow u} in the bottom layer and the instantaneous value
of the topographic form stress 7. In contrast with the
barotropic model forced by transient winds of Treguier
(89), TK' is much smaller than its steady counterpart
TK in all our solutions even though the fluctuations
of the topographic form stress are of the same order as
its mean value. In the present stratified model, the
transients are generated by baroclinic instability and
constrained by the requirement of a downward transfer
of energy. This may explain why a correlation between
uy and T' cannot be maintained at all latitudes and
TK' cannot be large. The greater variability of the zonal
transport in the presence of topography therefore results
from a modification of the instability processes rather
than a direct topographic transfer.

The downward transfer of energy is modified in the
presence of topography. Since the zonal mean flow de-
creases, the downward transfer of transient eddy energy
becomes larger compared with the downward transfer
of mean zonal energy ( consider the two vertical curved
arrows in Figs. 9a, 9b and 9¢). Transients are an es-
sential component of our solutions, which shows their
fundamental nonlinear character as opposed to a class
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of weakly nonlinear models of zonal flow-topography
interactions in the atmosphere (e.g., Charney and

Strauss 1980). The latter models can achieve a com-.

pletely steady solution because there is forcing and
damping in all the layers. It is not the case in our model,
where energy must be transferred downwards. Al-
though there is a downward transfer of momentum due
to the standing eddies, it is easily demonstrated that
standing eddies cannot perform a vertical transfer of
energy (see the Appendix ). In many of our simulations
with large-scale topography (314, 316, 3L9 for ex-
ample), standing eddies contribute significantly to the
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FIG. 9. Energy balances for three solutions. F is the forcing, 7K
the topographic transfer, dashed lines represent dissipative processes
( BF for bottom friction and LF for lateral friction ), and other arrows
are nonlinear transfers. Only the most significant transfers are rep-
resented (see text for more details). Units are m3 s~2 for energies
and 1073 m3 s~ for energy transfers.

downward transfer between (K, ) and (K, ). There-
fore, in those cases (not shown ) there is a compensating
upward transfer of energy between K, and K,;.
Stability properties of the standing eddies can be in-
ferred from the energy transfers between K, and K.
In the energy balance for case 4L4 (Fig. 9c), the energy
transfer in the upper layers is from the standing eddies
to the transients whereas it is opposite in the lower
layer. This happens in most of our solutions. Energy
transfers in the upper layers reveal a barotropic insta-
bility of the standing eddies. This is not surprising, since
topographically generated stationary waves in barotro-
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pic models have been shown to be linearly unstable in
a wide range of circumstances (e.g., Charney and de
Vore 1979). In case 4L4 (Fig. 9¢), this barotropic in-
stability is a mechanism as important as the baroclinic
instability of the mean zonal flow in forcing the tran-
sients. This explains why the spatial structure and time
scale of the transients are modified in the presence of
topography. The reverse direction of the energy transfer
between K,; and K, on Figs. 9b and 9¢ shows that
although barotropic instability may still be present, it
is not the dominant mechanism in the bottom layer.
The main energy transfer is a rectification mechanism,
similar to the one pointed out in free decaying tur-
bulence by Bretherton and Haidvogel (1976). The ef-
ficiency of the rectification process has been demon-
strated in the case of barotropic turbulence forced by

transient winds by Herring (1977), Haidvogel and-

Brink (1986), and Treguier (1989). The present so-
lutions extend those results to the lower layer of a
steadily forced baroclinic model. Rectification is an
important forcing mechanism for K, , and sometimes
the most important one, for the solutions with random
topography filling the domain. It is generally smaller
in the cases with isolated topography. This suggests
that the rectification mechanism operates locally above
topographic features.

Finally, the energy balances for the highest and larg-
est scale topographies (4L9 for example) show a re-
versal of the topographic form stress energy transfer
TK, from the standing eddies to the zonal mean:

& = - [ () Ty <0

The sign of the transfer 7K depends on the correlation
between the steady zonal flow (u,(y) ) and the topo-
graphic momentum stress 7°(y). Usually, (u,(y) ) is
positive (eastward flow), T is negative, and TK transfers
energy from the zonal averaged flow to the standing
eddies. For case 4L9, {u,(y) ) is westward and 7 is
negative in the most part of the channel (Fig. 7c). Here
TK is reversed, expressing the fact that the topographic
stress is accelerating the zonal westward flow as dis-
cussed in the preceding section.

6. Mass transport and volume-integrated momentum
balance

a. Mass transport variability

Energy balances show that the time variability of the
transport is negligible in the flat-bottom case ({(K’)
=~ 0) but is enhanced in the presence of topography.
The fluctuations have long time scales, as shown in
Fig. 10 for the case of a seamount with maximum
height 1000 m (3L4). This case presents especially large
variations but it is nonetheless representative of the
other 3-layer cases. The amplitude of the fluctuations
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and their time scale are generally smaller for the ran-
dom topographies.

The sequence of transport variations near the end
of the time series displayed in Fig. 10 is especially strik-
ing. The transport remains close to 300 Sv during about
500 days, changes abruptly to a value close to —200
Sv, and oscillates about this value for about 500 days
again. By analogy with atmospheric models, one could
say that the flow is in an “‘unblocked” state during the
first period, with zonally oriented streamlines and a
low topographic form stress, and in a “blocked” state
during the second period, since a reversal of the trans-
port requires a large amplitude of the standing eddies
and a large topographic form stress. Indeed, the flow
patterns agree with that terminology.

In the present model, the large variations of the
transport are probably dependent on the channel length
compared to the maximum topographic wavelength.
Averaging over more topographic length scales would
reduce the amplitude of the oscillations. The relatively
small time variability of the transport in Drake Passage
(Nowlin and Klinck 1986) may reflect the fact that
the Antarctic Circumpolar current flows over many
large-scale topographic features. This contrasts with
atmospheric models, where the topographic influences
are dominated by low wavenumbers (contrast between
oceans and continents). Zonal winds vary considerably
in relation with blocking events, and topography has
been suggested as a possible cause of that variability
(Charney and De Vore 1979).

Because of the long time scale of the fluctuations, it
is necessary to obtain very long series in order to get a
reliable estimate of the time—mean transport. Table 5
gives the time-mean transport for all our cases with
an estimate of its uncertainty. The latter is based on
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Fi1G. 10. Time series of the total transport for case 3L4 with an
isolated seamount of maximum height 1000 m.
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TABLE 5. Transport and momentum balarice. ¢ is the uncertainty
associated with the mean total transport (see text). The momentum
balance in the lower layer involves the downward transfer of energy
(equal to the surface wind stress provided biharmonic friction is neg-
ligible), the bottom friction and the topographic stress. The last two
terms are given as percentages of the wind stress momentum forcing,
which is 6.37 X 107° m? s for 4-layers solutions and 5 X 10™5 m?
s~ for 3-layers solutions.

Transport (Sv) Momentum balance
Lower Bottom
Case Total € layer Topography friction
410 1859 +3 796 0 -100
4L1 1756 +4 761 -5 -95
412 1060 +21 396 -50 -50
4L3 1460 *11 614 -22 -77
414 275 *12 47 ~95 -5
4L5 650 +13 231 ~71 -29
4L6 739 +14 266 —66 —-34
4L7 -47 +14 —98 -113 +12
4L8 52 +21 -32 -104 +4
419 -91 +13 -119 —114 +15
3L0 1246 *1 750 0 -100
3L1 830 +18 466 -37 —62
3L2 698 +23 373 —51 —49
3L3 60 +25 —64 ~108 +8
3L4 73 +44 —54 —106 +7
3L5 38 +24 —78 -110 +10
3L6 1 +22 —93 -113 +12
3L7 813 +14 455 —40 —60
3L8 246 +28 69 -91 -9
3L9 —11 +7 -73 —-110 +10

the standard deviation, divided by the square root of
the number of degrees of freedom computed using the
average time scale (inverse of the center of gravity of
the frequency spectrum). The typical time scale for
the transport variations is always greater than 100 days
and reaches 400 days in solution 3L4. Although the
time-mean has been computed on time series of 2000
days or longer, the uncertainty remains large, or order
+30 Sv for the isolated topographies and 15 Sv for
the random topographies.

b. Transport as a function of topography

The values in Table 5, plotted in Fig. 11 for the 3-
layer cases, show the great sensitivity of the transport
to the topographic height and shape. The transport is
also dependent of other parameters, which are not
studied in detail here (forcing, bottom friction, strati-
fication and S-effect). For all the different kinds of to-
pography the behavior of the transport is similar when
the topographic height increases from zero. There is a
rapid decrease of the transport, until the topographic
form stress has almost completely replaced bottom
friction in the momentum budget and the transport
has become close to zero. Then, any further increase
of the topographic height has smaller effects. The
transport may decrease to become negative, but does
not seem to be able to reach very large negative values.
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Between cases 4L.7 and 4L.8 and 3L3 and 3L4, respec-
tively, the rms topographic height is doubled but the
transport does not vary significantly. The “critical” to-
pographic height at which the topographic form stress
is almost equal to the wind stress forcing varies ac-
cording to the shape and horizontal scale of the to-
pography. For the random topographies, the largest
scale topographies are the most efficient in generating
a large topographic form stress, and do not need a large
rms height to reduce the transport. For the isolated
topographies, the meridional ridges are more efficient
than the seamounts, which matches our intuition that
flow will easily go around seamounts but be blocked
by a ridge. Generally, for the same rms height, an iso-
lated seamount or ridge situated in the middle of the
channel provides a larger form stress than a random
topography.

Our solutions, where the form stress is largest for
the largest scale topographies, are different from the
barotropic solutions forced by transient winds of Tre-
guier (1989). In the latter case the largest topographic
form stress T occurs for intermediate topographic scales
(topographies with an rms slope o comparable with
BH/ fo). The decrease of () for large-scale topog-
raphies is a secondary effect due to a decrease of b (e.g.,
a decrease of the energy of the standing eddies), itself
due to a smaller rectification process. In Treguier
(1989), the nonlinear energy transfer between K, and
K, is the only energy source for the standing eddies
and it is smaller for large-scale flows. In the present
solutions on the other hand, the standing eddies draw
energy from the steadily forced zonal flow and K, grows
when the topographic spatial scale increases. Therefore,

1000 —
s
»
=
1= Seamount
500
Ridge
0 L 1 !
0 500 1000
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FIG. 11. Total transport as a function of the topographic maximum
height 4, for the isolated seamounts and ridges cases. The bars rep-
resent the uncertainty (see Table 5).
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no decrease of the topographic form stress for large-
scale topographies is observed.

¢. Spectral decomposition of the domain-averaged to-
pographic form stress

To understand why larger scale topographies gen-
erate a larger topographic form stress, it is useful to
examine the contribution from various spatial scales
to the domain-averaged topographic form stress T by
looking at its expression in wavenumber space

_ - h
T= —ff ¥(x, y) 3—){()6, y)dxdy
= Re ” Vk, Dikhe(k, 1)dkdl

= fAK(K)CK(K)dK. (17)
The same notation is used for a function and its Fourier
transform for simplicity, i = V—1, c denotes a complex

conjugate and | the norm of complex number; Ax and
Ck are defined by

Ax = 2 |k\,_071|
Vi2+2=K
Cx=Ax'Re( 3 ikyh®) (18)
Vk2+P2=K

where Ag represents the “amplitude” contribution to
the topographic form stress, e.g., the product of the
amplitudes of Y and 84/dx in the wavenumber band
K and Cxis a “phase” contribution to the topographic
form stress (the correlation coefficient of ¢ and
dh/ox averaged over wavenumber band K).

In all our cases, the total integrand AxCy is larger
for large scales. In the example of Fig. 12a, the integral
in (17) converges to the total value of 7 when wave-
lengths greater than 400 km are included. In fact, in
all our solutions we find that the components AxCx
associated with wavelengths larger than 417 km (or
500 km in the 3-layer cases with a wider channel) ac-
count for at least 90% of the total topographic form
stress, excepted of course for the cases where there is
no topography with wavelengths larger than 417 km.

The importance of the large scales can be understood
by considering separately Ax and Ck. The amplitude
contribution depends on the shape of the streamfunc-
tion spectrum and the topographic slope spectrum.
With a K2 topography, the slope spectrum is white,
but the streamfunction spectrum is always red mainly
because of the large scale forcing, making Ak a decreas-
ing function K. The topographic spectrum flattens out
at large scales for our cases 4L7 and 4L8 as well as
with isolated topographies, but the redness of the ¢
spectrum is sufficient to ensure that 4 is weighted to-
wards large scales, even if it is no longer monotonically
decreasing.
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FI1G. 12. Wavenumber decomposition of the domain-averaged to-
pographic form stress T for solution 4L9 with large scale topography.
(a) Sum Tk of the contributions to 7 between wavenumbers « = 0
and « = K (see text) as a function of the wavenumber K (expressed
as an inverse wavelength in m™!). Units for T are nondimensional.
(b) Phase contribution Cg to the domain-averaged topographic form
stress (defined in the text) as a function of wavenumber K,

The phase contribution Ck reinforces that tendency.
For all K, Ckis very small. The sum of the amplitudes
Ay alone is at least one order of magnitude larger than
the actual topographic form stress (sum of the products
AxCk). This is not surprising since we have demon-
strated in section 4 that a large part of the flow resem-
bles the inviscid steady solution (10), for which Ckis
exactly zero. Furthermore, the amplitude of Cx tends
to decrease with K. This merely reflects the fact that
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the correlation of the streamfunction with the topog-
raphy at large scales is smaller than the anticorrelation
of vorticity with topography at small scales, a feature
which has been discussed in section 4. An example of
Ck for case 4L9 is shown in Fig. 12b. Notice that Cx
is not necessarily negative for all wavenumbers (a neg-
ative value of Cy corresponds to a westward phase shift
of the streamfunction relative to the topography, hence
a westward stress). However, Cx is negative on average,
ensuring that the domain-integrated topographic form
stress is negative. Although the curve in Fig. 12b is
noisy, it clearly shows that Ck is small for the high
wavenumbers.

The predominance of the large scales (of the order
of the forcing scale) in the domain-averaged topo-
graphic form stress is a robust feature of all our solu-
tions. The main reason is that with large-scale forcing
the spectrum of the mean streamfunction is red (dom-
inated by large scales), and a secondary reason is that
small scales adjust to a quasi perfect vorticity~-topog-
raphy anticorrelation which prevents any contribution
to the form stress. However, this predominance may
not persist in different parameter regimes. For example,
we have not explored quasi-linear regimes in which
BL?*/u = 1. Also, if the forcing had a smaller spatial
scale, the contribution of the large scales could be di-
minished because then the spectrum of  would have
a peak at intermediate scales. A solution has been cal-
culated similar to 3L1 but with the width of the forcing
function reduced to one third of the channel width.
The mean streamfunction spectrum has a peak at
wavelength 750 km, but it is not enough to break the
above “rule” that wavelengths larger than 500 km ac-
count for 90% of the total form stress.

d. Influence of small-scale topography

From the preceding section one would be tempted
to conclude that small-scale topography has a negligible
effect on the flow. It is not true, because even though
small scales do not contribute to the domain-averaged
topographic form stress, they may affect it indirectly
by modifying the dynamics of the large scale flow. Such
an indirect effect of the small topographic scales is
demonstrated by two series of experiments.

In the case of random topography, solution 4L.6 has
the same parameters as 4L4 but topographic wave-
lengths smaller than 208 km have been filtered out.
The small scales contribute significantly to the rms
height in a K2 spectrum, since the value of 4 rms is
decreased from 400 to 297 m when the spectrum is
truncated. From that consideration alone one. might
expect the two cases to be different. Indeed, the trans-
port is twice as large for 416 as for 414, and the to-
pographic form stress is reduced to 71% of the wind
stress instead of 95% (Table 5). In both solutions the
domain-integrated form stress is entirely due to wave-
lengths between 208 and 417 km. However, in 4L4
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the presence of smaller wavelengths affects the larger
scales so that the value of the form stress is increased.
The two cases are qualitatively different, and it is dif-
ficult to infer from the energy or momentum balances
how the small-scale topography influences the flow.
The zonal mean flow has four times less kinetic energy
in 4L4 compared with 4L6, so one may assume that
the presence of small-scale topography favors the in-
stability mechanisms. In some respects case 4L.6 with
truncated topography is closer to another solution in
which small-scale topography is retained (same spec-
trum as 41L.4) but the rms height is only 297 m (case
4L5). The total transports are similar: 650 Sv for 4L5
and 739 for 416 (Table 5). This would suggest that
one could increase the height of the retained topo-
graphic scales in order to account for the unresolved
variability in the topographic field, as sometimes done
in atmospheric models by the use of the so-called “en-
veloppe” orography. However, this has not been sys-
tematically investigated, since trying to parameterize
nonresolved topographic effects is certainly premature
in the present state of oceanic models.

The comparison of case 3L3, with an isolated sea-
mount, and cases 3L5 and 3L6, in which small-scale
random topography has also been added, gives similar
results. In 3L35 the random topography has a maximum
wavelength of 250 km, and there is a spectral gap be-
tween the isolated seamount and the random noise.
This case is not very different from the isolated sea-

-mount case 31.3, excepted for the increase of relative

vorticity in the bottom layer in 3L5 and the larger vor-
ticity—topography correlation coefficient (0.83 instead
of 0.54). In case 3L6 there is no spectral gap between
the seamount and the random topography, and al-
though the latter has a rms height of only 50 m, it
reduces significantly the transport (from 60 Sv in 31.3
to almost zero in 3L6). Note that the topographic form
stress increases only by 5% between those two solutions.
The large effect on the transport is explained by looking
at the simple equation (7), which shows that the bot-
tom layer transport M, is given by the sum of the in-
tegrated forcing F and topographic form stress 7" di-
vided by the bottom friction coefficient. In the regime
where —T almost equals the forcing, a variation of T’
of a few percent can decrease the transport by a factor
of 10 as happens between 3L3 and 3L6.

7. Spatial structure of the topographic form stress
a. Comparison of ©h and ¥ dh/dx '

The momentum balances as a function of latitude
show that T(y) has a small-scale structure, but only
the large scales appear to influence the transport. In
the present section, we extend this analysis to two di-
mensions (zonal and meridional).

The topographic form stress is uniquely defined as
a zonal mean, but there is some arbitrariness in defining
its pointwise value, e.g. the integrand for the zonal in-
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tegral. In a quasi- geostrophlc model, the same value
of T(y) is obtained using either T,(x, y) = vh or
T,(x,y)= ~¢8h/dx as an integrand. In a more general
ﬂ_u1d dynamics model, the most familiar expression for
T(y)is
Fon

pH dx
where P is the pressure. This form of the integrand is
equal to 7,(x, y) in the quasi-geostrophic approxi-
mation. . o

We compare plots of 7,(x, y) and T,(x, y). First,
let us consider the case of an isolated mountain (3L3)
in Fig. 13. Here T (x, y) and T, (x, ¥) have the same
simple structure, w1th two zones of different sign on
each side (east or west ) of the topography, correspond-
ing to different signs of either 84 /dx or v. The negative
part is the largest in both cases, because the high pres-
sure (minimum of Y since f is negative) lying over the
topography is shifted westward of the obstacle due to
the eastward mean flow. Adding a small-scale topog-
raphy completely changes the picture (case 3L6, Fig.
14). The spatial structure of T,,(x, y) is very different
and small scale, whereas the structure of 7, (x, y) is
still close to the simple double-lobe shape of case 3L3.
Part of the noise in the structure of 7,(x, y) is due to
the product of the zonal average of <\0> with the
small scales in 6h/6x as suggested by the bandlike
structure of the noise near the channel walls. However,
removing the zonal average of y before calculating
T,(x, y) (which does not modify the zonally integrated
topographic stress) does not change its typical spatial
scale, which remains smaller than for T,(x, y)
(Fig. 14c¢). .

The difference between the spatial scales of T,(x, y)
and T, (x, y) appears in all our cases where some ran-
dom topography is present. It is simply due to the fact
that the spectrum of  is steeper than the spectrum of
h. Products in physical space are convolutions in spec-
tral space. The convolution of ¥ and /4 involves two
moderately steep spectra and is also moderately steep,
with horizontal scales close to those of both v and
h. On the other hand, the convolution of ¢ and
8h/dx involves a very red spectrum and a rather flat
one. In that case, the spectrum of the convolution has
a shape similar to the flat spectrum, and therefore the
spatial scales of T, (x, y) are close to the spatial scales
of dh/dx. - .

This contrast between 7,(x, y) and T,(x, y) may
be expected to hold in many situations, since generally
the spectrum of Y tends to be steeper than the spectrum
of h. Exceptions could be regions of very smooth to-
pography, or western boundary currents where ¢ has
small spatial scales. It suggests that if measurements of
the topographic form stress were made, it would be
easier to obtain a reasonable average with only a limited
number of point measurements by measuring oh in-
stead of —P3h/dx.

T(y) = —
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FI1G. 13. (a) Topography h for solution 3L3 (contour interval is
0.910°¢s™"). (b) oh(c.d. is 0.4 X 10~ m s™2). (c) ~§ah/dx (ci. is
0.5 X 1075 ms72).

b. Isolation of the stress-generating component

The small-scale structure of the topographic form
stress is associated with the part of y which is correlated
with the topography (see section 5). An attempt has
been made in section 4 to quantify which part of the
flow is close to a statistical equilibrium solution. The
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residual ¥, in that decomposition is an estimate of the
part of the flow which contributes to the domain-in-
tegrated topographic form stress. However, it is not the
best possible estimate. The stress-generating compo-
nent of Y, can be evaluated directly in wavenumber
space. For each wavenumber (k, /) it satisfies

Us(k, ) = iC(k, Dh(k, D).
C(k, 1) is defined as
C(k, 1) = Re(ikyh®)/k|h?|,

where Re is the real part, ¢ is the complex conjugate
and | | is the norm of a complex number. The per-
centage of the total bottom layer kinetic energy K,

accounted for by the Y, component is indicated in Ta-
ble 4 to allow a comparison with the fitting to the steady
inviscid solution (10). This alternative decomposition
confirms that a very small part of the flow contributes
to the domain averaged topographic form stress. It can
be as small as 5 or 10% for the random topography
cases, and is typically about 30% for the isolated to-
pography cases. An example of the decomposition for

(19)

419 is given in Fig. 15. (¥ — ¥s ) is in phase with the
topography (which is plotted in Fig. 4a) and contain
most of the kinetic energy. ¥, is out of phase with the
topography, has larger spatial scales and contains only
4.4% of the kinetic energy. In fact, the components
V. and ¢, resulting from the other decomposition (12)
introduced in section 4 have very similar spatial struc-
tures.

This result implies that measurements of the topo-
graphic form stress have the further complication of a
small signal/noise ratio (y, being the signal). In the
near future, T will probably have to be evaluated by
indirect techniques (as a residual in the momentum
balance) rather than measured directly.

8. Conclusion

In the present paper, topographic influences on a
channel flow have been studied from a statistical point
of view. We have not tried to imitate the real geometry
of the Antarctic Circumpolar Current. Instead, we have
used a small rectangular domain allowing us to perform
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FIG. 15. Decomposition of y,, according to ( 19) for solution 4L9.
(a) Stress-generating component Y., (b) Residual ¥, — ¥, . Contours
intervals are 1000 and 4000 m? s™!, respectively.

a large number of simulations with good horizontal
and vertical resolution.

The effect of topography on a steady-forced channel
flow has traditionally been described in terms of the
momentum balance. Our results confirm that even low
topographies (rms heights of about 200 m) can generate
a large form stress and replace bottom friction in the
momentum budget. For the same rms height, an iso-
lated feature in the path of the jet is more efficient than
a randomly distributed topography, and a meridional
ridge affects more the transport than a seamount of
limited latitudinal extent. Once the transport has been
reduced so that bottom friction is small compared to
the forcing, further increase of the topographic height
has little effect on the transport. In the present case of
forcing by eastward winds, the topographic form stress
can not only remove eastward momentum but even
force a westward flow, and we show examples of west-
ward countercurrents driven by the topographic form
stress below a surface wind-forced eastward flow. Hol-
loway (1987) has suggested that coastal countercurrents
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like the California undercurrent may be driven by a
similar mechanism.

Analysis of space, time scales, and correlations of
the flow with the topography provide a new picture of
the topographic influence. The standing eddies corre-
lated with the topography are either trapped in the bot-
tom layer for small-scale topography, or penetrate
higher in the water column according to the ratio of
the topography length scale to the Rossby radius of
deformation. A large part of the bottom layer steady
flow adjusts so that relative vorticity and topography
are anticorrelated at small scales, and the streamfunc-
tion and topogrpahy are correlated at large scales al-
though to a smaller extent. This behavior is similar to
the statistical equilibrium solution valid for inviscid
flows with a finite number of degrees of freedom. An
important consequence is that the flow correlated with
the topography does not generate any topographic form
stress in the bottom layer. A minimum stress-gener-
ating component is calculated, and is found to contain
only 5% to 10% of the kinetic energy in the random
topography cases, and about 30% in the isolated to-
pography cases. Also, the topographic form stress 7'is
anticorrelated with the Reynolds stress at small scales
because of the vorticity-topography anticorrelation.

When the topographic horizontal scale is large and
produces a permanent deformation of the upper layer
interfaces, the interfacial form stress is correlated with
the topographic form stress. In that case the standing
eddies rather than the trahsients transfer momentum
downward. In a recent paper Johnson and Bryden
(1989) suggest a simple momentum balance for the
ACC, assuming that all the momentum input by the
wind stress is transferred downwards by the transients
and removed by the topographic form stress. This is
probably an incomplete picture. Standing eddies can-
not be neglected in the momentum balance of the ACC,
because it flows over large-scale topography.

The domain-averaged topographic form stress is
dominated by the contribution from large scale topog-
raphy, e.g., topography of scales comparable with the
forcing scale. This is due to the red character of the
streamfunction spectrum, and also to the anticorrela-
tion of vorticity and topography at small scales which
prevent the latter from contributing to the stress. Al-
though the topographic small scales (in the present case,
wavelengths smaller than 500 km) do not contribute
to the total stress, they do have an indirect effect on
the transport by affecting the dynamics of the large
scales.

Although the present model is highly idealized, we
hope that some of the results will prove relevant to the
Antarctic Circumpolar Current. The anticorrelation of
the Reynolds stress and topographic form stress, for
example, is expected to persist in more complicated
models, and it has been observed in a quasi-geostrophic
model of the ACC with a realistic representation of the
Macquarie ridge and Campbell Plateau ( Wolff and Ol-
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bers, personal communication). Olbers and Wenzel
{1989) have recenlty analyzed the ACC circulation by
inverse methods. They find the transport to be reversed
(westward ) at depth, as happened in some of our sim-
ulations. Their results confirm the strong influence of
topography on the flow and the existence of a large
vertical transfer of energy and momentum probably
due to mesoscale eddies, which are the basic hypotheses
underlying the present study.
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APPENDIX
Energy Budget for the Zonally Averaged Flow

In the equations for the energy budget, the stream-
function is decomposed into a mean () and an eddy
(') part, as well as a zonal average (( )) and the de-
viation from the zonal averaged (noted by an asterisk).
Therefore,

Yx, y, 1) = P + Pulx, »)
+ YD, 1) + (X, y, 1).

With this decomposition of the streamfunction, the
vertical energy exchanges remain similar to their usual
form in Holland (1978) energy budgets. Those terms
are the exchange between kinetic and potential energy,
and between kinetic energy of adjacent layers. They
cannot transfer energy between steady and eddy flow,
or likewise between zonal mean and deviation. For
example, the usual K} — Pj.,,; term is decomposed
in:

<K'k> - <P'k+|/2> = ff <5¢§c+1/2><w}c+1/2>dx‘iy

. Kk = Pakrry2 = ff O ek 1/2Wker 1 /2dXdy

where 6.2 is the difference (Yx — ¥u+1), and
Wi+1,2 18 the vertical velocity at interface k + Ya:

Jo
Wit172 =
8h+1/2

a
(J(‘S\l/kﬂ/z, ¢k+1/2) - (?l‘ 5¢k+1/2) s

with ¢k+1/2 defined as

Hiiy H,
= +
Vir172 H, + Hy, Vi Hy + Heey

lA0k+l .

Lateral and bottom friction terms, as well as forcing
terms, are also straightforward.
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Another example is the transfer of steady energy be-
tween layer k and layer k + 1, which is decomposed
as

<1€k> - <ka1> = ff (P12 Wierr 2 dxdy

Ky = Kyper = ff Yk 172 Wi 1/2dxdy .

The expression for w being nonlinear, w contains a
term due to the standing eddies w* and a term due to
the time average of the transients. Let us consider the
former contribution:

fJ. ((Pr172) + akr1/2) Wha1/2dxdy

= ff ,fo Yier 1720 (Vi3 Yer)dxdy = 0.
8k+1/2

The total downward transfer of mean energy due to
the standing eddies is zero when integrated over a closed
or periodic domain. Therefore, if standing eddies
transfer zonal mean energy downward, this must be
compensated by an upward transfer of nonzonal mean
energy. There is not such a constraint on the transients,
which can perform the necessary domain-averaged
downward transfer of time-mean energy.

There are new terms in the energy balance describing
energy transfers between the zonal mean and the
standing eddies. The six kinetic energy transfer terms
for layer k are: '

(Kiy > (Ki) =0

Ky = Ky = ff Vard (Wi, V2 (Wiar + (Wic))) dxdy

(Kiy > Ky

= [ [ VTS T ey iy

(Key = K= [ [ VT (5, Pur) ddy

(K~ Ko = [ [ GurT Ry, Ty iy

(Ko~ Fox = [ [ Gorr @y, Vs ay.

The first term is zero since the jacobian of a purely
zonal flow vanishes.

Potential energy transfer terms are similar, with
replaced by &yx+1,2 and the relative vorticity VY, re-
placed by Yi+1/2-

The topographic transfer term exists only in the bot-
tom layer k = n. ‘
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, Y’y oh
TK' (K'Y — K}) = _f <af,>5;‘//*dxa'y

- — K>S dh —
TR(K) K =~ [ %25( Fadxdy.

The steady topographic energy transfer TK is the prod-
uct of the zonally averaged steady vlocity (i )(y) with
the usual topographic drag 7(y) which appears in the
momentum equation. The transient transfer 7K’ has
no analogy in the time-averaged momentum equation.
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