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New analytic estimates of the rate at which parametric subharmonic instability (PSI)
transfers energy to high-vertical-wavenumber near-inertial oscillations are presented.
These results are obtained by a heuristic argument which provides insight into the
physical mechanism of PSI, and also by a systematic application of the method of
multiple time scales to the Boussinesq equations linearized about a ‘pump wave’ whose
frequency is close to twice the inertial frequency. The multiple-scale approach yields
an amplitude equation describing how the 2f0-pump energizes a vertical continuum
of near-inertial oscillations. The amplitude equation is solved using two models for
the 2f0-pump: (i) an infinite plane internal wave in a medium with uniform buoyancy
frequency; (ii) a vertical mode one internal tidal wavetrain in a realistically stratified
and bounded ocean. In case (i) analytic expressions for the growth rate of PSI are
obtained and validated by a successful comparison with numerical solutions of the
full Boussinesq equations. In case (ii), numerical solutions of the amplitude equation
indicate that the near-inertial disturbances generated by PSI are concentrated below
the base of the mixed layer where the velocity of the pump wave train is largest. Based
on these examples we conclude that the e-folding time of PSI in oceanic conditions
is of the order of ten days or less.

1. Introduction
Mixing a stably stratified ocean by breaking internal gravity waves requires the

transfer of energy from the low vertical modes excited by wind and tides to near-
inertial waves with small vertical scale. Hibiya, Nagasawa & Niwa (2002) and
MacKinnon & Winters (2005, 2008) have discovered an important route for this
transfer: at the specific latitude 28.8◦, where the M2 tidal frequency is equal to twice
the local inertial frequency, a northward propagating M2 internal tide, with mode
one vertical structure, rapidly transfers energy to the near-inertial subharmonic via
parametric subharmonic instability (PSI). The near-inertial wave at the critical latitude
28.8◦N has small vertical scale and large shear so that overturning and mixing is
indicated. Earlier work by Nagasawa, Niwa & Hibiya (2000) argues that near-inertial
waves generated by mid-latitude storms in the North Pacific propagate towards the
equator until their frequency is equal to twice the local inertial frequency. At this
point, PSI rapidly transfers energy to half-frequency near-inertial waves with much
smaller vertical scale. Figure 1 shows PSI and the excitation of small vertical scales
using a numerical solution of the two-dimensional Boussinesq equations.

Using a global tidal model, Simmons (2008) shows a web of filamentary M2 internal
wave beams radiating from topographic wavemakers. The M2/2 subharmonic is
generated when beams cross the critical latitude, resulting in an accumulation of near-
inertial energy and shear at 28.8◦. In another numerical study, Gerkema, Staquet &
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Figure 1. A solution of the two-dimensional Boussinesq equations obtained using the
streamfunction-vorticity formulation and a pseudospectral code. The initial condition is
an infinite plane wave, as in (4.1), plus very small random noise. The wavenumbers
are k = 2π/(129 × 103m) and m = 2π/(8 × 103m), corresponding to the gravest length scales
of the computational domain. The wave amplitude is a = 0.1551 m2 s−2 so that the
wave has a root-mean-square horizontal velocity of 5.65 cm s−1. The Coriolis frequency
f0 = 7.04 × 10−5 s−1, corresponds to 28.8◦ North, ω = M2 = 2f0 and N = 28f0. (a) A snapshot
of the meridional velocity v(x, z, t) at t = 270 days. (b) Vertical profiles of v; in the profile at
t = 252 days, the small noise is not yet evident. In the later two profiles, PSI has amplified the
noise into a near-inertial oscillation with relatively small vertical scale.

Bouruet-Aubertot (2006) show that M2 tidal beams generated at the shelf-break are
subject to PSI which generates near-inertial disturbances along the beam: PSI is so
rapid that there is considerable energy transfer to M2/2 even before the first bottom
bounce.

These recent works force a revision of results concerning nonlinear interactions
between oceanic internal gravity waves and the role of PSI in moving energy to
near-inertial waves of small vertical scale. In particular, Olbers & Pomphrey’s (1981)
conclusion that the ‘spreading of tidal energy across the internal wave continuum by
resonant coupling . . . is irrelevant for the energy balance’ must be reassessed. This
is symptomatic of a larger issue: there is uncertainty about nonlinear internal wave
interaction rates, and this uncertainty is most acute for interactions involving the
near-inertial spectral peak (Garrett & St Laurent 2002). Most of the early work on
interactions among ocean internal gravity waves summarized by Müller et al. (1986)
is based on the random phase assumption; this leads to slow interaction rates and
inefficient energy transfer.

The numerical studies discussed above indicate that the coherent waves generated
by tides and large-scale atmospheric forcing have much faster transfer rates. However,
there are significant differences regarding the growth rate of PSI even amongst these
investigators: MacKinnon & Winters (2005, 2007) find that the e-folding time is 5
or 10 days in their simulations; Gerkema et al. (2006) find a 2 day e-folding time;
Simmons (2007) estimates an e-folding time of roughly 15 days. The growth rate of
PSI depends on the amplitude and structure of the primary M2 tidal wave so these
disparities might be expected in differently configured simulations. One of our goals
here is to provide reliable analytic estimates for the rate at which energy is transferred
to the near-inertial spectral peak by the parametric subharmonic instability of a
coherent wave with frequency close to 2f0.
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We emphasize the importance of rotation: much of the previous theoretical and
experimental work on PSI has focused on excitation and breaking in the non-
rotating case (e.g. Mied 1976; Drazin 1977; Klostermeyer 1991; Bouruet-Aubertot,
Sommeria & Staquet 1995; Benielli & Sommeria 1998). Here we are concerned with a
particular type of PSI – near-inertial PSI – in which the primary wave has a frequency
ω ≈ 2f0, where f0 is the local inertial frequency, so that the recipient subharmonic
is a near-inertial oscillation. In this rotationally dominated situation, the energy
transfer is particularly strong because near-inertial oscillations are almost stationary
and therefore might dissipate locally forming MacKinnon & Winters’s ‘subtropical
catastrophe’.

In § 2, we show that for near-inertial PSI there is a simple fluid-mechanical solution
which is more informative than the pendulum analogy. In § 3, we extend and develop
the formalism of Young & Ben Jelloul (1997) to obtain a general description of the
excitation of near-inertial waves by PSI. In § 4, we use the amplitude equation from
§ 3 to analyse the stability of an infinite-plane internal gravity wave. This analysis
provides analytic expressions for the growth rate of PSI. The reduced description of
§ 3 is validated by a successful comparison of the analytic growth rate with numerical
solutions of the Boussinesq equations. In § 5, we consider the parametric instability
of a vertical mode one, tidal wavetrain in a realistically stratified ocean. In § 6, we
discuss the main results of this paper, emphasizing that PSI does not select a preferred
vertical scale.

2. The physical basis of near-inertial PSI
PSI is one of the three classes of resonant interactions identified by McComas &

Bretherton (1977) as dominating energy transfer rates between internal gravity
waves under rapidly rotating conditions in the ocean. In the original conception of
McComas & Bretherton, PSI transfers energy from low wavenumbers with frequency
ω to high wavenumbers with frequency ω/2. Transfer to the subharmonic ω/2 is
reminiscent of the response of a pendulum with a vertically oscillated support, and
this mechanical analogy is often the basis of a physical explanation of PSI (e.g. as
in Benielli & Sommeria 1998). However, in the special case of PSI with ω ≈ 2f0

there is an alternative and more informative fluid mechanical explanation. Thus as
a motivating preamble to the more general discussion in § 3, we first consider an
idealized limit in which (U, V ) denotes the horizontal velocity of the background flow
where, following Weller (1982),

(
U

V

)
=

(
Ux Uy

Vx Vy

) (
x

y

)
. (2.1)

The entries of the 2 × 2 matrix above are functions of depth z and time t and incom-
pressibility demands that the vertical velocity W (z, t) is given by Ux + Vy + Wz = 0.

Now we consider how the background flow (U, V, W ) interacts with a pure inertial
oscillation. By a pure inertial oscillation we mean a disturbance with infinite spatial
scale in the horizontal so that the velocity is [u(z, t), v(z, t), 0]. A pure inertial
oscillation has no pressure or buoyancy signal and thus the dynamics are entirely
governed by the horizontal momentum equations:

ut + Wuz + uUx + vUy − f0v = 0,

vt + Wvz + uVx + vVy + f0u = 0.

}
(2.2)
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The energy equation obtained from (2.2) is

et + Wez − Wze + 1
2
(u2 − v2)(Ux − Vy) + uv(Uy + Vx) = 0, (2.3)

where e ≡ (u2 + v2)/2 is the energy density of the inertial oscillation.
For a pure inertial oscillation, the quantities u2 −v2 and uv prominently contain the

second harmonics exp(±2if0t), while e = (u2 + v2)/2 contains only the zero frequency.
Thus, from (2.3), we can anticipate the existence of parametric subharmonic instability
provided that the background strain rates Ux − Vy and Uy + Vx also contain the 2f0-
harmonic. Then the combinations (u2 − v2)(Ux − Vy)/2 and uv(Uy + Vx) can reinforce
the zero-frequency in e. We refer to this as ‘2f0-pumping’.

Because e contains only the zero frequency, the spectral content of W at 2f0 does
not lead to instability via Wez and Wze in (2.3). Instead, a zero-frequency component
in W might result in instability via Wez and Wze. However, we assume that the low-
frequency part of the background flow is in geostrophic balance and consequently
there is no zero-frequency spectral content in W .

The growth rate of the instability can be calculated with a simple averaging
argument as detailed shortly. The main deduction from (2.3) is that energy transfer to
the near-inertial peak is associated with the spectral content of the strain rates Ux − Vy

and Uy + Vx at 2f0. Neither the vertical vorticity nor the horizontal divergence of the
background flow are decisive. Vertical straining via Wz is not the essential physical
mechanism of near-inertial PSI: the instability is driven by 2f0-pumping.

To quantify this further, it is convenient to first rewrite (2.2) exactly in terms of the
‘back-rotated’ velocity Q(t, z) ≡ exp(if0t)(u + iv) as

Qt + WQz + 1
2
[(Ux + Vy) + i(Vx − Uy)]Q + 1

2
[(Ux − Vy) + i(Vx + Uy)]e2if0tQ∗ = 0.

(2.4)

We assume that the background flow and the near-inertial oscillation interact weakly
so that the envelope Q(z, t) is evolving slowly relative to the inertial time scale. The
secular evolution of Q(z, t) is then obtained by time-averaging (denoted by an overbar)
(2.4) over an interval which is long relative to f −1

0 :

Q̄t + 1
2
iζ Q̄ + 1

2
Υ Q̄∗ = 0, (2.5)

where

ζ ≡ V̄x − Ūy, (2.6)

is the vertical vorticity of the low-frequency part of the background flow. (In passing
from (2.4) to (2.5) we assume that the low-frequency part of the background flow
is geostrophically balanced so that W̄ = Ūx + V̄y = 0.) The term involving iζ/2 in
(2.5) is Kunze’s (1985) result that the effective inertial frequency is shifted away
from the local inertial frequency by half of the relative vorticity of the low-frequency
geostrophic background flow – see also Klein & Llewellyn Smith (2001) and Klein,
Llewellyn Smith & Lapeyre (2004). The other coefficient in (2.5) is the amplitude of
the 2f0-pump:

Υ ≡ [(Ux − Vy) + i(Vx + Uy)]e2if0t , (2.7)

which is non-zero if the background strain rates have spectral content at 2f0.
To illustrate this transfer of energy, suppose that ζ is constant and that the

background flow in (2.7) contains the frequencies ±(2f0 + σ ), where σ � 2f0 is a
small de-tuning of the resonance. In this case Υ = Υ0 exp(−iσ t). The solution of (2.5)
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has the form

Q̄ = e−iσ t/2
(
A1e

st + A∗
2e

s∗t
)
, (2.8)

where

s2 = 1
4
|Υ0|2 − 1

4
(ζ − σ )2 . (2.9)

The strength of the 2f0-pump exceeds de-tuning if |Υ0| > |ζ − σ | and then s is real so
that the energy of the inertial oscillation grows exponentially via PSI. The expression
for the growth rate s in (2.9) points to an interesting competition between Kunze’s
frequency shift ζ/2, the de-tuning σ and the pump strength |Υ0|.

3. A general framework for near-inertial PSI
In § 2, we considered an idealized limit in which the background flow has a very

large scale as in (2.1), and the near-inertial oscillation has an even larger horizontal
scale. We now lift these assumptions regarding the idealized spatial structure of the
solution and develop a general framework describing the evolution of near-inertial
oscillations. Young & Ben Jelloul (1997) considered the propagation of near-inertial
oscillations through a geostrophic flow which changes slowly relative to the inertial
period. Our strategy is to extend the multiple time-scale approach of Young & Ben
Jelloul by considering a background flow consisting of both a geostrophic component
and a 2f0-pump flow. Young & Ben Jelloul show that there is no transfer of energy
between the geostrophic part of the background flow and the near-inertial waves.
This result has been confirmed via higher-order asymptotics by Reznik, Zeitlin & Ben
Jelloul (2001). Thus the 2f0-pump component of the background plays the essential
role of energizing the near-inertial oscillations via the mechanism of § 2.

We use the β-plane approximation pivoted around f0:

f = f0 + βy. (3.1)

As in § 2, we use (U, V, W, B, P ) to denote the velocity, buoyancy and pressure of
the background flow. With (u, v, w, b, p) we denote the fields associated with the
near-inertial oscillation. Thus, for example, the total density field has the form

ρ = ρ0

[
1 − g−1

∫ z

0

N2(z′) dz′ − g−1B − g−1b

]
, (3.2)

where N2(z) is the buoyancy frequency and the background buoyancy is

B(x, t) = Bg(x, t) + Bp(x, t). (3.3)

In (3.3), Bg is the buoyancy of the geostrophic flow and the pump buoyancy Bp is

Bp(x, t) = B̃∗
p(x, t)e2if0t + B̃p(x, t)e−2if0t . (3.4)

The envelope B̃p evolves on the slow time scale, i.e. the carrier exp(±2if0t) in
(3.4) contains the dominant frequency 2f0. There is an analogous decomposition
(geostrophic, g, plus pump, p) for the other background fields. The geostrophic
component can be derived from a streamfunction, ψ = Pg/f0, via

(Ug, Vg, Wg, Bg) = (−ψy, ψx, 0, f0ψz). (3.5)

Thus, for example, the background zonal velocity is

U = −ψy + Ũp
∗e2if0t + Ũpe−2if0t . (3.6)
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Because the geostrophic vertical velocity is zero, W (x, t) consists solely of the pump
component:

W = W̃∗
pe2if0t + W̃pe−2if0t . (3.7)

Linearizing the Boussinesq equations around the background we obtain:

ut + Uux + V uy + Wuz + uUx + vUy + wUz − f v + px = 0, (3.8)

vt + Uvx + V vy + Wvz + uVx + vVy + wVz + f u + py = 0, (3.9)

−b + pz = 0, (3.10)

ux + vy + wz = 0, (3.11)

bt + Ubx + V by + Wbz + uBx + vBy + wBz + wN2 = 0. (3.12)

We emphasize that the PSI is driven solely and essentially by the pump component
of the background flow, e.g. Up in (3.6). The geostrophic component, which is derived
from ψ , is included to make contact with the earlier results in Young & Ben Jelloul
(1997), and because the interaction of the near-inertial disturbances with geostrophic
flow is a crucial oceanic process (Kunze 1985; Klein et al. 2004).

3.1. Scaling assumptions

Now we reduce the linear problem in (3.8)–(3.12) using the assumption that
(u, v, w, p, b) is a slowly modulated near-inertial disturbance. This requires three
assumptions. First, the time dependence of both the geostrophic component, Bg, and

the pump modulation, B̃p, is slow relative to the inertial time scale f −1
0 . The second

assumption is that the amplitude of the background flow is ‘small’. Small means
that the horizontal velocities of the background flows are much less than the phase
speed of the first baroclinic mode, c1, or equivalently that buoyancy perturbations
Bp and Bg are much less than the resting stratification N2(z). The third assumption
is that the vertical scale of Bg and Bp is comparable to the depth of the ocean
H , e.g. the background-state fields have a vertical mode-one structure. There is no
assumption concerning separation in horizontal scale between the background flow
and the near-inertial disturbance.

To formalize the assumptions above, we non-dimensionalize the Boussinesq
equations using H to denote the depth of the ocean and N0 as a scale of the
buoyancy frequency N(z), e.g. N0 might be the vertical average of N(z). We introduce
a small non-dimensional parameter ε defined by

Bp,g = ε2 × N2
0 H × non-dimensional(Bp,g), (definition of ε). (3.13)

As an example, consider a progressive internal tidal wavetrain propagating northward
in the Pacific Ocean with an energy flux of order 1 kW m−1. Rough estimates show
that the horizontal velocities of the internal tidal wave, Up, are between 10 and
20 cm s−1, while the phase speed of vertical mode one, c1, is between 2 and 4 m s−1.
In this case ε ≡

√
Up/c1 is between 0.16 and 0.32.

As a consequence of the assumptions above, the near-inertial fields evolve on a ‘slow
time scale’ (ε2f0)

−1 	 f −1
0 . The geostrophic flow, and the envelope of the 2f0-pump,

might also evolve on the slow time scale: a main assumption is the existence of a
spectral gap between the inertial peak and the low-frequency evolution of background.

To non-dimensionalize x and y we introduce L ≡ N0H/f0, which is proportional
to the first deformation length. We assume that the base-state fields vary vertically
on the scale H while the near-inertial fields vary vertically on a scale h � H , where

h ≡ εH. (3.14)
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Thus, ε defined in (3.13) characterizes the separation in vertical scale between the
background fields (U, V, W, B, P ) and the near-inertial fields (u, v, w, b, p). This
separation in vertical scale is evident in figure 1. The non-dimensional independent
variables, with hats, are then defined by

(x, y) = L (x̂, ŷ), z = hẑ, t̂ = f0t. (3.15)

Because the vertical coordinate has been scaled with h, the ocean depth is O(ε−1) in
terms of ẑ. Other non-dimensional variables are

N(z) = N0N̂(εẑ), f = f0(1 + ε2β̂ŷ), (3.16)

where β̂ = Lβ/ε2f0; this scaling ensures that the variation of f over the distance L

is comparable to the low frequency ε2f0 which characterizes the other sub-inertial
processes. The base-state fields have the form

(U, V ) = ε2f0L (Û , V̂ ), W = ε2f0H Ŵ, B = ε2N2
0 H B̂, (3.17)

where the background flow (Û , V̂ , Ŵ , B̂), like N̂ , depends on the vertical coordinate
only through

ẑ1 ≡ εẑ. (3.18)

Thus, for instance,

Uz = ε2f0L
2h−1Ûẑ = ε3f0L

2h−1Ûẑ1
. (3.19)

Consequently, in the final scaled equations, (3.21) below, the vertical derivatives of the
background flow appear at higher orders than those of the near-inertial oscillations.

The near-inertial fields are non-dimensionalized as in Young & Ben Jelloul (1997):

(u, v) = f0L (û, v̂), w = f0h ŵ, b = N2
0 h b̂, p = ε2f 2

0 L2 p̂. (3.20)

The most important point here is the ε2 in the definition of p̂: this ensures that the
near-inertial pressure gradient does not appear at leading order.

3.2. The scaled equations

Suppressing the hats, the scaled version of (3.8)–(3.12) is

ut − v + ε(Wu)z + ε2[ut2 + Uux + V uy + uUx + vUy − Wz1
u − βyv + px]

+ ε3wUz1
= 0,

vt + u + ε(Wv)z + ε2[vt2 + Uvx + V vy + uVx + vVy − Wz1
v + βyu + py]

+ ε3wVz1
= 0,

pz − b = 0,

ux + vy + wz = 0,

bt + wN2 + ε[uBx + vBy + (Wb)z] + ε2[bt2 + Ubx + V by + wBz1
− Wz1

b] = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.21)

In anticipation of secularity at second order, we have introduced the slow time
t2 ≡ ε2t corresponding to the time scale (ε2f0)

−1 mentioned previously. One other
point requiring comment in (3.21) is that terms involving vertical advection by W

have been split like this:

Wuz = (Wu)z − εWz1
u. (3.22)

Because of the small vertical scale of the near-inertial flow, the terms (Wu)z and (Wv)z
occur early in the expansion and the total vertical derivative eases some technical
difficulties adumbrated in the discussion surrounding (3.41).
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The algebra is simplified if we use the complex combinations

U ≡ u + iv, ξ ≡ x + iy. (3.23)

Horizontal derivatives can be expressed in terms of ξ and ξ ∗ using

∂ξ = 1
2
(∂x − i∂y), ∂ξ ∗ = 1

2
(∂x + i∂y) ; (3.24)

the horizontal Laplacian is ∂2
x + ∂2

y = 4∂ξ∂ξ ∗ . The divergence and vertical vorticity are
conveniently obtained from Uξ = (ux + vy)/2 + i(vx − uy)/2. We proceed by solving
(3.21) with a perturbation expansion

U = U0 + εU1 + ε2U2 + O(ε3). (3.25)

3.3. Leading order: ε0

The leading-order system

∂tU0 + iU0 = 0, (3.26)

p0z − b0 = 0, (3.27)

u0x + v0y + w0z = 0, (3.28)

∂tb0 + w0N
2 = 0, (3.29)

is solved with

U0 = LA e−if0t , (3.30)

w0 = −f 2
0 N−2Aξz e−if0t + c.c., (3.31)

b0 = if0Azξe−if0t + c.c., (3.32)

p0 = if0Aξe−if0t + c.c. (3.33)

Above, A(x, t2) is a complex amplitude and L ≡ ∂zf
2
0 N−2∂z is a differential operator.

For reference in (3.30)–(3.33) we have reverted to dimensional variables; the non-
dimensional leading order is obtained with f0 → 1. The boundary condition that w0

vanish at the top and bottom is satisfied by requiring that Az = 0 at these boundaries.

3.4. First order: ε1

At order ε the equations are:

∂tU1 + iU1 = −(WU0)z, (3.34)

p1z − b1 = 0, (3.35)

u1x + v1y + w1z = 0, (3.36)

∂tb1 + w1N
2 = −u0Bx − v0By − (Wb0)z. (3.37)

There are no resonant terms in (3.34). Explicitly, using W in (3.7), and the leading-
order expression for U0 in (3.30), we have from (3.34):

U1 = 1
2
i[(W̃∗

peit − W̃pe−3it )LA]z. (3.38)

The better part of valour is to calculate w1 by integrating the continuity equation

w1z = −U1ξ − U∗
1ξ ∗ (3.39)

with respect to z. In this vertical integration there is only one constant of integration
and two boundary conditions: w1 must be zero at both z = 0 and z = − H . Thus
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integrating (3.39) between z = − H and z = 0 gives:
∫ 0

−H

U1ξ + U∗
1ξ ∗ dz = 0 ; (3.40)

this solvability condition is guaranteed if
∫ 0

−H

U1 dz = 0. (3.41)

Because U1 in (3.38) is a total vertical derivative, and W̃p is zero at the boundaries, the
solvability condition (3.41) is satisfied by U1 in (3.38). Thus, we possess a consistent
expression for w1 in terms of A.

3.5. Second order: ε2

At second order, ε2, the momentum equations are:

∂tU2 + iU2 + (WU1)z + ∂t2 U0 + UU0x + V U0y

+ (Ux + iVx)u0 + (Uy + iVy)v0 − Wz1
U0 + iβyU0 + 2p0ξ ∗ = 0. (3.42)

Terms proportional to exp(−it) in (3.42) drive U2 resonantly. For instance,

(Ux + iVx)u0 + (Uy + iVy)v0 = 1
2
U0[Ux + Vy + iVx − iUy] + 1

2
U∗

0[Ux − Vy + iVx + iUy],

= LA∗(Ũp + iṼp)ξ ∗e−it + NRT, (3.43)

and

WU1 = (W̃∗
pe2it + W̃pe−2it )

i

2
[(W̃∗

p eit − W̃p e−3it )LA]z,

=
i

2

(
W̃pW̃pz

∗ − W̃p

∗
W̃pz

)
LA e−it + NRT, (3.44)

where NRT stands for non-resonant terms.

3.6. The evolution equation for the near-inertial fields

Elimination of the e−it -resonant terms in (3.42), and restoration of dimensions,
produces the evolution equation

LAt + (�LA)z + J (ψ, LA) + i
(
βy + 1

2
ζ
)
LA + 1

2
if0∇2A + 1

2
Υ LA∗ = 0, (3.45)

where ∇2 = ∂2
x +∂2

y is the horizontal Laplacian and J (a, b) = axby −aybx is a Jacobian.

The streamfunction ψ in (3.45) is defined in (3.5) and ζ ≡ ∇2ψ is the relative vorticity.
These terms involving the geostrophic part of the background flow are familiar from
Young & Ben Jelloul (1997) and Klein et al. (2004). The new terms in (3.45) arising
from the 2f0-pump are those involving

� ≡ i

2f0

(
W̃pW̃pz

∗ − W̃ ∗
p W̃pz

)
, (3.46)

and

Υ ≡ 2(Ũp + iṼp)ξ ∗ = Ũpx − Ṽpy + i
(
Ṽpx + Ũpy

)
. (3.47)

The vertical velocity � in (3.45) and (3.46) results from rectified vertical heaving;
numerical estimates in §§ 4 and 5 indicate that � is small, or zero, so that (�LA)z does
not have a palpable effect on the evolution of A. In fact, (�LA)z scales like ε3f0LA

while the other terms in (3.45) scale like ε2f0LA. The rectified vertical advection,
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(�LA)z, has been promoted to higher order by our decision to represent vertical
derivatives as in (3.22). This has the advantage of producing first-order fields which
satisfy the solvability condition in (3.41), but it does lead to some mixing of orders in
(3.45).

The essential new physics in (3.45) is introduced by Υ LA∗/2. The expression for
the pump strength Υ in (3.47) is identical to the earlier, heuristic result for Υ in (2.7).
Thus, the new term is a near-inertial energy source produced by PSI.

4. Near-inertial PSI of a plane internal wave
4.1. The pump wave

As an application of (3.45) we consider the most basic example of inertially resonant
PSI: the instability of a plane wave with uniform stratification on an f -plane (i.e.
β = 0). Thus, as a specific model of the pump, we consider an infinite-plane internal
gravity wave with pressure

Pp = a cos φ, (4.1)

where φ ≡ kx +mz−ωt and the parameter a, with dimensions (length/time)2, controls
the amplitude of the pump. The frequency and wavenumber are related by the
hydrostatic dispersion relation

ω2 = f 2
0 + N2 k2

m2
. (4.2)

Since ω is close to 2f0 we write

ω = 2f0 + σ, σ � f0, (4.3)

where the de-tuning frequency, σ , might be either positive or negative. In § 4.3, the
special case of a resonant triad is recovered by taking σ = 0.

Substituting the pressure into the Boussinesq equations, we obtain the other pump
fields:

Up =
akω

ω2 − f 2
0

cos φ, Vp =
akf0

ω2 − f 2
0

sin φ, (4.4)

and

Wp = − ak2ω

m
(
ω2 − f 2

0

) cos φ, Bp = −am sin φ. (4.5)

Thus

Upx + iVpx =
iak2eiφ

2(ω − f0)
− iak2e−iφ

2(ω + f0)
, (4.6)

and therefore

Υ = e2if0t (Upx + iVpx) = iυei(kx+mz−σ t), (4.7)

where

υ ≡ ak2

2(ω − f0)
≈ ak2

2f0

. (4.8)

The other parameter in the amplitude equation (3.45) is � defined in (3.46). With Wp

in (4.5) we obtain

� =
1

4mf0

(
ak2ω

ω2 − f 2
0

)2

≈ 1

9

a2k4

mf 3
0

. (4.9)
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Order of magnitude estimates using numerical values, such as those in (4.20)–(4.22),
indicate that � is less than 10−5 m s−1. This is too small to affect the solution
significantly; thus we now neglect the term (�LA)z.

4.2. Solution of the evolution equation

With uniform N , β = 0, and using Υ in (4.7), the evolution equation (3.45) is

Azzt +
iN2

2f0

Axx +
iυ

2
ei(kx+mz−σ t)A∗

zz = 0. (4.10)

Equation (4.10) has solutions of the form

A = e−iσ t/2
[
A1(t)e

i(k1x+m1z) + A∗
2(t)e

i(k2x+m2z)
]
, (4.11)

provided that

k1 + k2 = k, m1 + m2 = m. (4.12)

Substituting (4.11) into (4.10) gives

A1t + iω1A1 +
iυm2

2

2m2
1

A2 = 0, (4.13)

A2t − iω2A2 − iυm2
1

2m2
2

A1 = 0, (4.14)

where

ωn ≡ N2

2f0

k2
n

m2
n

− σ

2
with n = 1, 2. (4.15)

We obtain a single equation for A1(t):

A1t t + i(ω1 − ω2)A1t +

(
ω1ω2 − υ2

4

)
A1 = 0, (4.16)

and if A1 = Â1 exp(st) then

s = 1
2
(ω2 − ω1)i ± 1

2

√
υ2 − (ω1 + ω2)2. (4.17)

The growth rate is γ = Re(s), or

γ = 1
2

√

υ2 −
(

N2

2f0

)2 (
k2

1

m2
1

+
k2

2

m2
2

− 2
σf0

N2

)2

. (4.18)

We now discuss the consequences of (4.18).

4.3. Perfect resonance: ω = 2f0

If the resonance is perfectly tuned, i.e. if σ = 0 in (4.3), then the solution in (4.11) and
(4.12) is a resonant triad and γ in (4.18) achieves the maximum value,

γmax ≡ υ

2
=

ak2

4f0

, (4.19)

by letting m1 → ±∞ and m2 → ∓∞ with the sum m1 + m2 fixed at m. In this limit the
values of k1 and k2 in (4.18) are irrelevant because (kn/mn)2 → 0. Figure 2
shows the growth rate (4.18) contoured in the (k1, m1)-plane. Because there is
no high wavenumber cutoff, the prediction is that a broad band of near-inertial
high-vertical-wavenumber oscillations are excited by PSI: with perfect resonance the
instability does not select a particular vertical scale.



36 W. R. Young, Y. K. Tsang and N. J. Balmforth

k1/k

m1
m

γ = 0 γ = 0

γ = γmax

γ = γmax

–2 –1 0 1 2 3
–30

–20

–10

0

10

20

30

Figure 2. Growth rate γ obtained from (4.18) as a function of m1/m and k1/k, where
(k,m) is the wavenumber of the pump wave. In this illustration the resonance is perfectly
tuned, i.e. σ = 0. The other parameter values are N = 28f0, k = 2π/(129 km), m = π/(4 km) and
a = 0.1551 m2 s−2. Short waves with large values of m1/m grow at the rate γmax in (4.19).

Order of magnitude estimates show that the instability is fast. For example, to match
roughly the parameters used by MacKinnon & Winters (2007) in their simulation of
a North Pacific internal tide, we take

ω = M2 = 1.41 × 10−4 s−1, f0 = 1
2
M2, N = 28f0, m =

π

4000 m
. (4.20)

Using the internal wave dispersion relation, the horizontal wavelength of the pump
wave is 2π/k = 129 km. To set the amplitude of the pump wave we take

a = 0.1551 m2s−2, (4.21)

in (4.1). Then the root mean square pump velocities are
√

U 2
p = 5.05 cm s−1,

√
V 2

p = 2.53 cm s−1, (4.22)

and the root-mean-square vertical excursion of the isopycnals is 22.4 m.
From (4.19), it follows that

1

γmax

= 8.9 days. (4.23)

This 8.9 day e-folding agrees in order of magnitude with the numerical results of
Hibiya et al. (2002) and MacKinnon & Winters (2005). MacKinnon & Winters argue
heuristically that the growth rate of PSI is

γ ∼ k

√
U 2

p . (4.24)

Our expression for γmax in (4.19) is equivalent to

γmax =
3k

4
√

2

√
U 2

p =
3k

2
√

10

√
U 2

p + V 2
p ; (4.25)

thus the scaling argument of MacKinnon & Winters is vindicated and made precise
by the numerical factors on the right-hand side of (4.25).

Olbers & Pomphrey (1981) examined the wave–wave interaction between the M2

internal tide and the internal wave continuum and estimated the time scale for
energy transfer from low vertical modes via PSI to be O(100) days. Presumably the
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Figure 3. (a) Exponential growth of the normalized disturbance energy, E′ defined in (A 8).
The figure shows nine runs, all with σ = 0, and different values of a between 0.0388 m2 s−2 and
0.6203 m2 s−2. The numerical results are condensed by using γmax t as the abscissa; the dashed
line indicates the theoretical prediction exp(2γmax t), with γmax given by (4.19). (b) Exponential
growth of normalized perturbation energy E′ with slight de-tuning. If σ > 0, as in the case
ω = 2.1f0 above, then the perturbation grows at the rate γmax = υ/2. In the case with σ < 0

(for example ω = 1.97f0 above) then the growth rate is reduced to
√

υ2 − σ 2/2.

order-of-magnitude difference between this estimate and the numbers above results
from the random-phase assumption made by Olbers & Pomphrey.

A main prediction is that with perfect resonance there is no vertical scale selection:
the fastest-growing near-inertial disturbances have infinite vertical wavenumber
and grow at the rate γmax . This indicates that PSI is a potent mechanism for
transferring energy directly to small vertical scales, which is good for mixing. On
the other hand, lack of vertical scale selection is disquieting. Thus it is reassuring
to test these predictions by comparing them with the results of a numerical
solution of the full nonlinear Boussinesq equations. To do this efficiently we
solve the Boussinesq equations in the (x, z)-plane using the streamfunction–vorticity
formulation summarized in Appendix A. The initial condition is the plane wave in
(4.1), plus very small random noise which is subsequently amplified by PSI. Figure 3(a)
shows that in the resonant case the growth of the near-inertial disturbances is correctly
predicted by (4.19).

4.4. PSI with ω > 2f0

If the pump frequency slightly exceeds 2f0 then the resonance is de-tuned, and the
strength of the de-tuning, σ/f0, changes the growth rate of PSI. Figure 4 shows the
growth rate (4.18) contoured in the (k1, m1)-plane. Figure 5 shows the growth rate
as a function of m1/m along the line k1/k = 2. If the de-tuning is large enough (e.g.
σ/f0 = 0.05 in figures 4b and 5a) then there is a high-m1 cutoff.

Despite the structural changes in γ (k1, m1) induced by σ , a main point is that if σ

is positive, then there are always waves which achieve the growth rate γmax in (4.19).
For example, in the numerical solution shown in figure 3(b), the disturbance energy
in the de-tuned case with ω/f0 = 2.1, grows at the same rate as the disturbance in the
resonant case, ω/f0 = 2: both disturbances amplify as exp(γmax t).

The derivation of the amplitude equation assumes vertical scale separation
between the pump wave and the near-inertial response, i.e. that m1/m 	 1. However,
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Figure 4. Growth rate γ obtained from (4.18) as a function of m1/m and k1/k, where (k,m)
is the wavenumber of the pump wave. (a) (σ/f0 = 0.003) The growth rate asymptotes to√

υ2 − σ 2/2 as m1/m → ∞ with k1/k fixed; see the curve labelled σ/f0 = 0.03 in figure 5(a).
(b) (σ/f0 = 0.05) With larger de-tuning so that σ 2 > υ2, the instability is cut off as m1/m → ∞
with k1/k fixed; see the curve labelled σ/f0 = 0.05 in figure 5(a).
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Figure 5. Growth rate from (4.18) as a function of m1/m with k1/k = 2. Panel (a): the case
σ/f0 � 0; the three curves all have maximum growth rate given by γmax in (4.19). Panel (b) the
case σ/f0 � 0. Note that as σ becomes more negative, unstable disturbances move to higher
wavenumbers and the growth rate is reduced. The instability disappears if −σ >υ .

figure 5(a) shows that the instability moves to smaller values of m1/m as the de-tuning
is increased. Thus the quantitative validity of (4.18) for largish values of σ/f0 is
uncertain.
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Figure 6. Growth rate γ obtained from (4.18) as a function of m1/m and k1/k, where (k,m)
is the wavenumber of the pump wave. In this illustration σ/f0 = −0.02 and γ asymptotes to
1
2

√
υ2 − σ 2 <γmax at large wavenumbers.

4.5. PSI with ω < 2f0

Finally, suppose that the pump frequency, ω, is less than 2f0 so that σ/f0 is negative.
In this case, the subharmonic, ω/2, falls outside the usual band of internal wave
frequencies and according to resonant interaction theory there should be no PSI.
Nonetheless, (4.18) indicates that subinertial, unstable disturbances exist. Thus, (3.45)
predicts that PSI extends the internal wave band to slightly subinertial frequencies.
Figures 6 and 5(b) indicate that the growth rate is reduced relative to the case with
σ > 0, and the instability is shifted to higher wavenumbers. Again there is no vertical

scale selection: as m/m1 → ∞, the growth rate γ asymptotes to 1
2

√
υ2 − σ 2 <γmax .

Numerical simulation confirms the existence of slightly subinertial disturbances that
amplify with a reduced growth rate, e.g. see the curve ω = 1.97f0 in figure 3(b).

5. Near-inertial PSI of a mode-one wavetrain
In § 4, we considered the parametric instability of a plane wave with uniform

buoyancy frequency. The main advantage of this model is that the linear stability
problem can be solved exactly and simple expressions for the growth rate are obtained,
e.g. as in (4.18) and (4.25). In this section, we take a step in the direction of greater
realism by analysing the parametric instability of a train of internal gravity waves
with mode-one structure in the vertical. We use a non-uniform buoyancy frequency,
N(z), proposed by Gill (1984) and summarized in Appendix B. A key feature of Gill’s
model stratification is realistic surface intensification below a mixed layer. The modal
phase speeds, and sample eigenfunctions, are shown in figure 7.

5.1. The pump wavetrain

As § 4, the frequency of the primary pump wave is ω, the horizontal wavenumber is
k and the pressure is ρ0 times

Pp = a cos(kx − ωt) p1(z). (5.1)

Above, p1(z) is the vertical mode-one eigenfunction, and a is the amplitude (with
units of m2 s−2). For the details of p1(z) see Appendix B. Again we assume that ω is
close to twice the local inertial frequency and we define a de-tuning frequency σ by
(4.3), i.e. σ = ω − 2f0. The horizontal velocities associated with the pressure field in
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Figure 7. (a) Modal phase speeds, cn, obtained from (B 7) and (B 8) using the numerical
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T .

(b) The eigenmodes p1(z) and p12(z); note surface intensification.

(5.1) are

Up =
kaω

ω2 − f 2
0

cos(kx − ωt)p1(z), Vp =
kaf0

ω2 − f 2
0

sin(kx − ωt)p1(z). (5.2)

The pump amplitude is obtained by substituting (5.2) into (3.47):

Υ (x, z, t) = iυei(kx−σ t) p1(z), (5.3)

where υ = ak2/2f0. For a pump wave whose vertical structure is a single vertical mode
as in (5.1), � in (3.45) is identically zero.

5.2. Solution method

Taking ψ = ζ = β = 0, we solve the amplitude equation in (3.45) using a modal
decomposition,

A = e−iσ t/2
[
A1(z, t)e

ik1x + A∗
2(z, t)e

ik2x
]
, (5.4)

where k1 + k2 = k. This yields the coupled equations,

L
(
A1t − 1

2
iσA1

)
− 1

2
if0k

2
1A1 + 1

2
iυp1(z)LA2 = 0,

L
(
A2t + 1

2
iσA2

)
+ 1

2
if0k

2
2A2 − 1

2
iυp1(z)LA1 = 0, (5.5)

which must be solved subject to the boundary conditions, A1z(0, t) = A1z(H, t) =
A2z(0, t) = A2z(H, t) = 0. We represent the variables A1(z, t) and A2(z, t), as modal
sums:

Aj (z, t) = est

∞∑

n=1

c2
najnpn(z). (5.6)

The L-operation then simply multiplies each of the relevant terms in the sum by the
factor, −f 2

0 /c2
n, where cn is the modal phase speed defined in (B 2). We now multiply

each of (5.5) by pn(z) and integrate in z, using the orthogonality relation (B 9)

sa1n = − 1
2
i
(
f −1

0 k2
1c

2
n − σ

)
a1n − 1

2
iυ

∞∑

n′=1

Mnn′a2n′,

(5.7)

sa2n = 1
2
i
(
f −1

0 k2
2c

2
n − σ

)
a2n + 1

2
iυ

∞∑

n′=1

Mnn′a1n′,
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where

Mnn′ ≡
∫ H

0

p1pnpn′ dz
/∫ H

0

p2
n dz. (5.8)

Note that the barotropic mode, n = 0, decouples from the problem at this stage and
can be ignored. Hence, n and the sum over n′ begin with the first baroclinic mode.

To proceed, we truncate the sums in (5.6) at n = N so that the matrix Mnn′ is
N × N; we also define two (j = 1 and 2) diagonal, N × N matrices Ω

(j )
nn′ by

Ω
(j )
nn′ ≡ ω(j )

n δnn′, (5.9)

where

ω(j )
n ≡

k2
j c

2
n

2f0

− 1
2
σ. (5.10)

Thus, (5.7) turns into a 2N × 2N matrix eigenvalue problem,

s

(
a1

a2

)
= i

(
−Ω (1) − 1

2
υM

1
2
υM Ω (2)

) (
a1

a2

)
. (5.11)

The matrix on the right-hand side of (5.11) is imaginary, and so the eigenvalues, s,
are either purely imaginary or occur as complex pairs with frequency, ν, and growth
rate, ±γ , i.e. s = ± γ + iν.

5.3. Results

Eigenvalues, s = γ − iν, obtained from (5.11) are shown in figure 8 for σ = 0 and 2υ;
the parameters used to obtain these solutions are given in table 1. Truncations of
N = 50, 100, 200 and 400 in (5.11) are included in figure 8. The eigenfunctions of the
most unstable modes with N = 400 are shown in figure 9.

Figure 8(a) shows the case with perfect resonance, i.e. σ = 0. The solution develops
increasingly small length scales as the truncation N is increased and consequently not
all of the eigenvalues converge. In figure 8(b), with de-tuning σ = 2υ , convergence is
rapid. This result can be rationalized by the form of the most unstable eigenfunction
in figure 9: with σ = 0, the vertical scale of the eigenfunction is very fine and
becomes even finer if the resolution is increased. Thus, the eigenvalues are significantly
influenced by the highest vertical modes included in the truncation (5.11). On the
other hand, the eigenfunction for σ = 2υ is dominated by vertical modes with n ≈ 10
and convergence with increasing N is rapid. In both cases, the eigenfunction is
concentrated in the upper ocean where the pump wave (5.1) has the largest amplitude.

The ultraviolet catastrophe at σ = 0 is, once more, an indication of missing physics
such as scale-selective dissipation, non-zero β or nonlinearity. We will not discuss
these possibilities further. Instead, we emphasize that certain important aspects of the
σ = 0 case do approach definite limits as N increases. For example, figure 8 indicates
that if σ = 0, then the maximum growth rate converges to (4.19), i.e.

γmax = 1
2
υ =

ak2

4f0

. (5.12)

This feature of the stability problem is illustrated further in figure 10, which displays
the largest growth rate as a function of de-tuning, σ , again for various truncations.
For σ >υ , the eigenvalues are independent of N, indicating that the largest growth
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Figure 8. Eigenvalues, s = γ − iν, plotted in the (γ, ν)-plane for four truncations N of (5.11)
as indicated. In both panels k1 = 2k, k2 = − k and l1 = l2 = 0. The results have been normalized
by γmax ≡ υ/2. (a) Perfect resonance, σ = 0. The spectrum depends on the truncation. Despite
this problem the growth rate of the most unstable mode converges slowly to γmax . (b) Slight
de-tuning, σ = 2υ . Convergence is rapid as N increases.

Ocean depth, H 4200 m
Mixed layer depth, Hmix 50 m
Stratification parameter, z0 4329.6 m
Stratification parameter, s 2.5 m s−1

N at the base of mixed layer, s/(z0 − H + Hmix ) 8 cycles per hour
Speed of first baroclinic mode, c1 2.43 m s−1

First deformation length, c1/f0 34.5 km
Normalization of mode one,

∫ H

0
p2

1(z) dz 329 m
Coriolis frequency, f0 = 1

2
M2 7.05 × 10−5 s−1

Amplitude of the pump wave, a 0.1 m2 s−2

Wavenumber of the pump wave, k =
√

3f0/c1 5.01 × 10−5 m−1

Group velocity of the pump wave, cg =
√

3c1/2 2.11 m s−1

Energy flux, ρ0J = ρ0

√
3a2

∫ H

0
p2

1 dz/c1 0.78 kW m−1

Pump strength, υ = ak2/2f0 = 3f0a/2c2
1 1.788 × 10−6 s−1

Maximum growth rate, γmax = υ/2 1/(13 days)
PSI wavenumbers, (k1, l1) and (k2, l2) (2k, 0) and (−k, 0)

Table 1. Parameter values used in the computations. We take ω = 2f0 and compute the pump
wavenumber, k, from the dispersion relation ω2 = f 2

0 + c2
1k

2. The resulting wavelength, 2π/k,
is 125 km. Observations made by Rainville & Pinkel (2006) as part of the HOME experiment
indicate a northward flux of tidal energy of 1.7 kW m−1. To match these observations roughly
we should increase a by about

√
2, which would increase the maximum growth rate to

1/ (9 days).

rate is achieved for modes with vertical structure of moderate scale. On the other
hand, with smaller σ , the growth rate converges much more slowly, but it does seem
to converge.

A numerical demonstration of convergence is not totally convincing and so
some analytic support is reassuring. We begin by noting that the most-unstable
eigenfunction shown in figure 9 is strongly localized to the base of the mixed layer
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Figure 9. Real and imaginary parts of A1(z, t), for the most unstable modes with (a) perfect
resonance σ = 0 and (b) slight de-tuning σ = 2υ . In both cases k1 = 2k, k2 = − k and l1 = l2 = 0.
The large insets display the eigenfunctions against the stretched coordinate ξ (z) in (B 7). The
small lower insets shows the coefficients obtained by solving (5.11) i.e., |a1n| against n. In the
left panel the solution is dominated by the high modes with the smallest scales and the solution
is concentrated at the base of the mixed layer (note the expanded vertical scales).

where p1(z) ≈ 1; and because of the violent oscillations in the eigenfunction, terms
in (5.5) involving the second-order differential operator L are large. Thus, we expect
that (5.5) reduces to

(
s − 1

2
iσ

)
A1 + 1

2
iυA2 ≈ 0, (5.13a)

(
s + 1

2
iσ

)
A2 − 1

2
iυA1 ≈ 0, (5.13b)

giving

s ≈ 1
2

√
υ2 − σ 2 . (5.14)

Indeed, the first and largest bump in the growth rate shown rate in figure 10 falls
on top of this estimate (see the dotted curve), and with σ = 0 we recover (5.12) from
(5.14). The curve-like structures evident in figure 8 for higher truncations, N, can
be interpreted as the extension of this formula to different vertical levels, with z

parameterizing the curves through the dependence of p1(z). The rightmost extension
of the curves occurs at the base of the mixed layer where p1(z) → 1.

For larger σ , the unstable modes are no longer localized to the base of the mixed
layer, and the smaller bumps in figure 10 are not explained by a simple approximation
like (5.14). Instead, the smaller bumps can be rationalized as follows. The eigenvalue
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Figure 10. Maximum growth rates against σ for l1 = l2 = 0, k1 = 2k and k2 = − k and with
indicated truncations (N = 50, 100, 200 and 400) of (5.11). By N = 400, the growth rate has
converged. The dotted curve shows the analytic result (5.14). The instability disappears for
sufficiently large, negative de-tuning (i.e. σ < −υ), and a curious bumpy structure emerges in
the growth rate for larger positive de-tuning.

problem can be rewritten as

(
s + iω(1)

n

)
a1n = − 1

2
iυ

∑

q

Mnqa2q, (5.15a)

(
s − iω(2)

n

)
a2n = 1

2
iυ

∑

q

Mnqa1q, (5.15b)

where ω(j )
n is defined in (5.10). For σ 	 υ and K2

j c
2
n/f0 	 υ , the two relations in (5.15)

are dominated by the left-hand sides. Thus, we have crude approximations to the
eigenvalues

s ∼ −iω(1)
I or s ∼ iω(2)

J , (5.16)

for some integers I and J . When satisfied separately, either condition above generates
an imaginary eigenvalue. For example, the first condition leads to an eigenvector
which is dominated by the component, a1I , with the other components all small.
In this case, the eigenvalue is imaginary and there is no growth. However, if both
conditions in (5.16) are satisfied simultaneously, i.e. if

ω
(1)
I + ω

(2)
J ≈ 0, (5.17)

then the eigenvector is a mixture of a1I and a2J . In this resonant case, the eigenvalue
is determined by solving

(
s + iω(1)

I

)(
s − iω(2)

J

)
≈ 1

4
υ2MIJ MJI , (5.18)

giving

s = 1
2
i
(
ω

(2)
J − ω

(1)
I

)
± 1

2

√
υ2MIJ MJI −

(
ω

(2)
J + ω

(1)
I

)2
. (5.19)
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Figure 11. Growth rates for large σ , showing numerical computations (dots) and the
superposition obtained from (5.19) (solid lines). The superposition includes the triad resonances,
(I, I ), (I, I ± 1), (I, I ± 2) and (I, I ± 3), with I = 1, 2, . . . , 12. The dominant peaks for larger
σ are identified by their respective values of the pairs, (I, J ). The parameter settings are as in
figure 10.

The expression for s above is similar in structure to our earlier result for the PSI
growth rate in (4.17). The resonance condition in (5.17) predicts an unstable mode
coupling near

σIJ =
k2

1c
2
I + k2

2c
2
J

2f0

. (5.20)

The physical interpretation is that triad resonance occurs between discrete vertical
modes pI (z) and pJ (z) in a frequency band surrounding σIJ in (5.20). Since the cn

decrease with increasing n, the resonance with the largest possible σIJ is I = J = 1,
giving σ11 = (k2

1 + k2
2)c2

1/f0. De-tuning above the band centred on σ11 completely
eliminates PSI. In other words, the range of unstable de-tuning parameters is given
roughly by

−υ < σ <
(
k2

1 + k2
2

)
c2

1/f0. (5.21)

The growth rates for the most unstable triad resonances, as predicted by (5.19)
and superposed, are shown in figure 11. For comparison, this figure also displays the
continuation of the numerical results in figure 10 to higher values of the de-tuning
parameter σ . Because the matrix, MIJ , is dominated by its three leading diagonals,
the strongest triads are given by the pairs, (I, J ) = (I, I ) and (I, I ± 1), as shown
by the figure. When σ becomes smaller, the bands of unstable triads overlap to
form a continuous increasing growth-rate curve. However, the approximation (5.19)
also becomes less accurate and overestimates the growth rates. Instead, for small
σ , the alternative approximation (5.14) is very accurate. In this limit, with small de-
tuning, the mode-one wavetrain is pumping a vertical continuum (rather than discrete
resonant triads) of near-inertial oscillations.
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6. Conclusion and discussion
The method of multiple time scales has been used to obtain an amplitude equation

(3.45) describing the evolution of near-inertial disturbances. An important new
ingredient in this reduced description of the near-inertial peak is an energy source
produced by the parametric subharmonic instability of a ‘pump wave’ with frequency
close to 2f0. The term Υ LA∗/2 in (3.45) is a general expression for this source of
near-inertial energy. It is notable that neither the horizontal divergence, Ux + Vy , nor
the vertical vorticity, Vx − Uy , of the pump appear in the expression for Υ in (3.47).
Moreover, although vertical advection of the near-inertial fields by the pump wave
is the strongest nonlinearity, vertical advection does not produce energy transfer.
(Vertical advection appears at first order in the expansion, i.e. in (3.34). The resonant
terms resulting in PSI appear at second order, i.e. in (3.43).) Instead, for near-inertial
PSI, the physical argument of § 2 identifies the 2f0-spectral content of the horizontal
strain, Ux − Vy and Vx + Uy , as the key driver of PSI. In this sense, PSI is misnamed:
the instability is not due to the periodic variation of a parameter (e.g. N2) in the
dispersion relation of internal gravity waves.

As an application of (3.45), in § 4 we examine the subharmonic instability of an
infinite-plane internal gravity wave, with frequency close to 2f0; we obtain an analytic
expression for the growth rate of near-inertial PSI in (4.18). Order-of-magnitude
estimates using oceanic parameter values indicate that the e-folding time scale of
near-inertial PSI is ten days or less. In § 5, we use a more realistic model of the pump
wave based on a surface intensified buoyancy frequency. Thus, the mode-one vertical
structure of the pump wave has largest amplitude at the base of the mixed layer, and
consequently the unstable near-inertial disturbance is also localized just beneath the
base of the mixed layer. In this situation we again find that γmax in (4.19) applies to
the fastest growing near-inertial disturbances.

The linear stability calculations of § § 4 and 5 show that if the de-tuning is
close to resonant then the fastest growing waves have large (or infinite) vertical
wavenumbers. Additional physical factors, such as scale-selective dissipation, non-
zero β , or secondary instabilities, must become important. In our numerical solutions
of the two-dimensional Boussinesq equations, the hyperdissipation provides this
regularization. A main open issue is which of the mechanisms above is important
in the geophysical context? We speculate that β �= 0 might significantly affect the
high-wavenumber behaviour of near-inertial PSI: the continuous variation of the
Coriolis parameter with latitude ensures that near-resonant PSI occurs only in a strip
surrounding the resonant latitude (which is 28.8◦ for an M2 pump wave). Rough
estimates show that the width of this strip is comparable to a single wavelength
of the internal tidal wave, and the implications of this observation are now being
investigated.

We thank Chris Garrett, Kraig Winters, Eric Kunze, Jen MacKinnon and
Visweswaran Nageswaran for discussions related to this work. This work was
supported by the National Science Foundation by grant number OCE07-26320.

Appendix A. The numerical model
We solve the two-dimensional nonlinear non-hydrostatic Boussinesq equations

in the (x, z)-plane using the streamfunction formulation (u, w) = (−ψz, ψx). The
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equations of motion are

∇2ψt + J (ψ, ∇2ψ) + f0vz = bx − D(ζ ), (A 1)

vt + J (ψ, v) + f0u = −D(v), (A 2)

bt + J (ψ, b) + N2w = −D(b), (A 3)

where ∇2 = ∂2
x + ∂2

z and J (p, q) = pxqz − pzqx is the Jacobian. D is a hyperviscous
operator defined by considering a domain of size Lx × Lz, with grid spacing �x and
�z in the horizontal and vertical direction, respectively:

D(φ) ≡ ν

[(
�x

�z

)2

∂2
x + ∂2

z

]4

φ, (A 4)

where ν is the hyperviscosity. In our simulations �x 	 �z: the numerical resolution
is greater in the vertical direction because Lx 	 Lz. The anisotropic hyperdiffusion
in (A 4) prevents aliasing in both directions. A similar procedure is used by Bouruet-
Aubertot et al. (1995) in their numerical simulations of non-rotating PSI.

Typical values of ν are 10−15 km8 h−1 � ν � 5 × 10−15 km8 h−1. We usually used
Nx = 256 modes in the x-direction and Nz = 512 modes in the z-direction so that the
solution is represented as

ψ(x, z, t) =

Nx/2∑

p=−Nx/2

Nz/2∑

q=−Nz/2

ψ̂pq(t) exp

(
i
2πpx

Lx

+ i
2πqz

Lz

)
, (A 5)

with ψ̂pq = ψ̂∗
−p−q . In simulations, such as the example in figure 1, the initial condition

is the plane-wave in (4.1) with k = 2π/Lx and m = 2π/Lz, plus small noise. That is,
the initial condition projects mainly onto the modes (p, q) = ± (1, 1) in (A 5).

To define the growth of the perturbation we write

ψ = [ψ̂11(t) exp(ikx + imz) + c.c.] + ψ ′, (A 6)

with an analogous decomposition for b and v. The energy, e = 〈|∇ψ |2 +v2 +N−2b2〉/2,
is decomposed as the energy in the modes (p, q) = ± (1, 1), plus the disturbance
energy e′:

e = e11(t) + e′(t). (A 7)

During the linear phase, corresponding to the straight-line portion of the curves in
figure 3, e is constant and e′(t) grows exponentially from a very small initial level.
Thus, as an index of the disturbance amplitude, in figure 3 we use the normalized
disturbance energy

E′ ≡ e′/e. (A 8)

Figure 3 shows that PSI eventually saturates when E′ = O(1), indicating that the
modes with (p, q) = ± (1, 1) have lost a substantial fraction of their initial energy to
near-inertial oscillations.

Appendix B. Gill’s normal modes
Gill (1984) proposed a realistic model of the oceanic stratification which has

the advantage that convenient expressions for the eigenmodes are available. Gill’s
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buoyancy frequency is:

N(z) =

{
s/(z0 − z), 0 � z � H − Hmix ,

0, H − Hmix < z � H,
(B 1)

and the vertical modes satisfy

Lpn ≡ d

dz

(
f 2

0

N2

dpn

dz

)
= −f 2

0

c2
n

pn, p′
n(0) = p′

n(H ) = 0 , (B 2)

with normalization pn(H ) = 1. The barotropic mode (n = 0) corresponds to the
eigenvalue f 2

0 /c2
0 = 0 and the eigenfunction p0(z) = 1.

The eigenmodes are

pn(z) =

⎧
⎨
⎩

e(ξ−ξT )/2 2mn cos mnξ − sin mnξ

2mn cos mnξT − sin mnξT

, 0 � ξ � ξT ,

1, ξT < ξ.

(B 3)

Above, mn is defined by

c2
n ≡ 4s2

4m2
n + 1

; (B 4)

the stretched coordinate is

ξ ≡ − log

(
1 − z

z0

)
, (B 5)

and

ξT ≡ − ln

[
1 − H − Hmix

z0

]
. (B 6)

The eigencondition, determining cn and mn, is

sin mnξT + εmn cos mnξT = 0, (B 7)

where

ε ≡
(

1

2
+

z0 − H

Hmix

)−1

. (B 8)

The eigenfunctions satisfy the orthogonality condition:
∫ H

0

pk(z)pl(z) dz =
Hmix

(
4m2

k + 1
)[

ε + ξT

(
1 + ε2m2

k

)]

4ε(2 + ε)m2
k

δkl. (B 9)

The integral over p1(z)pn(z)pn′(z) in (5.8) can also be evaluated analytically which is
how we computed the matrix Mnn′ in § 5. However, the expression for Mnn′ is unwieldy
and so we omit it.
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