Third recitation on Thursday April 16th

Reading assignment

Read lecture 4 Why integrals? and section 3.2 The Landau Symbols. I won’t have time to cover this material in class.

Problem 3.6 Asymptotic equivalence

True or false as \(x \to \infty \)

\[
\begin{align*}
(i) \; x + \frac{1}{x} & \approx x, \quad (ii) \; x + \sqrt{x} & \approx x, \quad (iii) \; \exp\left(x + \frac{1}{x}\right) & \approx \exp(x), \\
(iv) \; \exp\left(x + \sqrt{x}\right) & \approx \exp(x), \quad (v) \; \cos\left(x + \frac{1}{x}\right) & \approx \cos x, \quad (v) \; \frac{1}{x} & \approx 0?
\end{align*}
\]

Problem 3.8 — the definition of asymptoticity

Show from the definition of asymptoticity that

\[e^{-1/x} \sim 0 + 0 x + 0 x^2 + 0 x^3 + \cdots \quad \text{as} \; x \downarrow 0. \]

Note that \(e^{-1/x} \) is not \(\approx 0 \). Thus one really should insist on the distinction between \(\approx \) and \(\sim \). But most people don’t and just write \(\sim \) in both cases.

Problem 4.7 — Euler’s constant

Euler’s constant is defined by

\[\gamma_E \overset{\text{def}}{=} -\Gamma'(1). \]

(i) Show by direct differentiation of the definition of the \(\Gamma \)-function that:

\[\gamma_E = - \int_0^\infty e^{-t} \ln t \, dt. \]

(ii) Judiciously applying IP to the RHS, deduce that

\[\gamma_E = \int_0^1 \frac{1 - e^{-t} - e^{-t^{-1}}}{t} \, dt. \]

Problem 5.2 — IP medley

Using integration by parts to find \(x \to \infty \) asymptotic approximations of the integrals

\[A(x) = \int_0^x e^{-t^4} \, dt, \quad B(x) = \int_0^x e^{+t^4} \, dt, \quad D(x) = \int_1^2 \frac{\cos xt}{t} \, dt. \]

In each case obtain a two-term asymptotic approximation and exhibit the remainder as an integral. Explain why the remainder is smaller than the second term as \(x \to \infty \).
Figure 1: Upper panel is the exact integrand in (9) (the solid curve) and the Gaussian approximation (dashed). Lower panel compares the $F(x)$ obtained by numerical quadrature (solid) with the asymptotic approximation. The comparison is not great — the problem below asks you to calculate the next term in the asymptotic expansion and add that to the figure.

Second hand-in: due in class on Thursday April 24th

Problem 5.7 — IP and Watson’s lemma

Make sure you have read section 4.6. Complexification. There we evaluate $\text{Ai}(0)$ and encounter a special case, namely $n = 3$, of the integral

$$Z(n, x) \overset{\text{def}}{=} \int_0^{\pi/(2n)} e^{-x \sin n \theta} \, d\theta.$$

(8)

In section 4.6 we use Jordan’s lemma to show that $\lim_{x \to \infty} Z(n, x) = 0$. This is not an asymptotic result because Jordan’s lemma does not precisely identify the rate at which Z vanishes.

Convert $Z(n, x)$ to a Laplace transform and use Watson’s lemma to obtain the first three terms of the $x \to \infty$ asymptotic expansion.

Problem 6.12 — Laplace’s method (the version in the notes is garbled)

Find three terms in the $x \to \infty$ asymptotic expansion of

$$F(x) \overset{\text{def}}{=} \int_0^1 \exp \left(-\frac{xt^2}{1+t} \right) \, dt.$$

(9)

Improve figure 1 by adding some higher-order approximations to the lower panel.
%% Laplace's method -- some steps have been replaced by ??????

```matlab
T = linspace(0,1); phi = T.^2./(1+T);
for x = [1 5 25 125]
    subplot(2,1,1)
    plot(T,exp(-x*phi))
    hold on
    plot(T,exp(-x*T.^2),'--')
end

xlabel('$t$', 'interpreter','latex','fontsize',16)
ylabel('Integrand', 'interpreter','latex')
text(0.8,0.77,'$x=1$', 'interpreter','latex','fontsize',12,'rotation',-9)
text(0.5,0.52,'$x=5$', 'interpreter','latex','fontsize',12,'rotation',-23)
text(0.28,0.35,'$x=25$', 'interpreter','latex','fontsize',12,'rotation',-35)
text(0.1,0.55,'$x=125$', 'interpreter','latex','fontsize',12,'rotation',-70)

x = linspace(0,50);
ExactIntegral = zeros(1,length(x));
nloop = 0;
for n=1:length(x)
    nloop = nloop + 1;
    F=@(v)exp(-x(nloop)*v.^2./(1+v));
    ExactIntegral(nloop) = quad(F,0,1);
end
subplot(2,1,2)
plot(x,ExactIntegral)
hold on
%sx = linspace(5,max(x)); % didn’t use this variable
plot(x,?????????,'--')
xlabel('$x$', 'interpreter','latex','fontsize',16)
ylabel('$F(x)$', 'interpreter','latex')
h = legend('quad','?????????')
set(h,'interpreter','latex')
axis([0 max(x) 0 1.05])
```