Sixth recitation on Thursday May 14th

Problem 13.6 — an elliptic integral

Find two terms in the expansion the elliptic integral

\[K(m) \overset{\text{def}}{=} \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - m^2 \sin^2 \theta}}, \]

as \(m \uparrow 1 \).

Problem 14.1 — a basic boundary layer problem

Find the leading-order uniformly valid boundary-layer solution to the Stommel problem

\[-(e^x h)_x = \epsilon h_{xx} + 1, \quad \text{with BCs} \quad f(0) = f(1) = 0.\]

Do the same for

\[(e^x f)_x = \epsilon f_{xx} + 1, \quad \text{with BCs} \quad f(0) = f(1) = 0.\]

Problem 14.4 — variable speed Stommel problem

Analyze the variable-speed Stommel problem

\[\epsilon h'' + (x^a h)_x = -1, \quad \text{with BCs} \quad h(0) = h(1) = 0, \]

using boundary layer theory. (The case \(a = 1/2 \) was discussed in the lecture.) How thick is the boundary layer at \(x = 0 \), and how large is the solution in the boundary layer? Check your reasoning by constructing the leading-order uniformly valid solution when \(a = -1, a = 1 \) and \(a = 2 \).

Problem 14.8 — a Burgers boundary layer

Find a leading-order boundary layer solution to the forced Burgers equation

\[\epsilon h_{xx} + \left(\frac{1}{2} h^2 \right)_x = -1, \quad h(0) = h(1) = 0. \]

Use \texttt{bvp4c} to solve this problem numerically, and compare your leading order solution to the numerical solution: see the figure in the notes.
Hand-in problems due Tuesday May 19th

Problem 13.2 — evaluating integrals by matching

Find useful approximations to

\[F(x) \overset{\text{def}}{=} \int_0^\infty \frac{du}{\sqrt{x^2 + u^2 + u^4}} \]

as (i) \(x \to 0 \); (ii) \(x \to \infty \). (iii) Use MATLAB to compare your approximations with a numerical evaluation of the integral on the range \(0 < x < 10 \).

Problem 14.2 — basic boundary layers

(i) Solve the boundary value problem

\[h_x = \epsilon h_{xx} + \sin x, \quad u(0) = u(\pi) = 0, \]

exactly. To assist communication, please use the notation

\[X \overset{\text{def}}{=} \frac{x - \pi}{\epsilon}, \quad \text{and} \quad E \overset{\text{def}}{=} e^{-\pi/\epsilon}. \]

This should enable you to write the exact solution in a compact form. (ii) Find the first three terms in the regular perturbation expansion of the outer solution

\[h(x) = u_0(x) + \epsilon h_1(x) + \epsilon^2 h_2(x) + O(\epsilon^3). \]

(iii) There is a boundary layer at \(x = \pi \). “Rescale” the equation using \(X \) above as the independent variable and denote the solution in the boundary layer by \(H(X) \). Find the first three terms in the regular perturbation expansion of the boundary-layer equation:

\[H = H_0(X) + \epsilon H_1(X) + \epsilon^2 H_2(X) + O(\epsilon^3). \]

(iv) The \(H_n \)’s above will each contain an unknown constant. Determine the three constants by matching to the interior solution. (v) Construct a uniformly valid solution, up to an including terms of order \(\epsilon^2 \). (vi) With \(\epsilon = 0.5 \), use MATLAB to compare the exact solution from part (i) with the approximation in part (v).