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ABSTRACT

A model of the thermocline linearized around a specified stratification and the barotropic linear wind-

driven Stommel solution is constructed. The forcings are both mechanical (the surface wind stress) and

thermodynamical (the surface buoyancy boundary condition). The effects of diapycnal diffusivity and of eddy

fluxes of buoyancy, parameterized in terms of the large-scale buoyancy gradient, are included. The eddy fluxes

of buoyancy are especially important near the boundaries where they mediate the transport in and out of the

narrow ageostrophic down-/upwelling layers. The dynamics of these narrow layers can be replaced by ef-

fective boundary conditions on the geostrophically balanced flow. The effective boundary conditions state

that the residual flow normal to the effective coast vanishes. The separate Eulerian and eddy-induced com-

ponents may be nonzero. This formulation conserves the total mass and the total buoyancy while permitting

an exchange between the Eulerian and eddy transport of buoyancy within the down-/upwelling layers. In turn,

this exchange allows buoyancy gradients along all solid boundaries, including the eastern one. A special focus

is on the buoyancy along the eastern and western walls since east–west buoyancy difference determines the

meridional overturning circulation.

The inclusion of advection of buoyancy by the barotropic flow allows a meaningful distinction between the

meridional and the residual overturning circulations while retaining the simplicity of a linear model. The

residual flow in both meridional and zonal directions reveals how the subsurface buoyancy distribution is

established and, in particular, how the meridional buoyancy gradient is reversed at depth. In turn, the hori-

zontal buoyancy gradient maintains stacked counterrotating cells in the meridional and residual overturning

circulations. Quantitative scaling arguments are given for each of these cells, which show how the buoyancy

forcing, the wind stress, and the diapycnal and eddy diffusivities, as well as the other imposed parameters,

affect the strength of the overturn.

1. Introduction

The meridional overturning circulation (MOC) is

forced by a combination of buoyancy, through differ-

ential heating and freshwater fluxes at the surface, and by

wind stress. Both forcing mechanisms contribute to the

establishment of the vertical and horizontal subsurface

buoyancy gradients (Young and Rhines 1982; Luyten

et al. 1983; Salmon 1990; Samelson and Vallis 1997).

One way to efficiently monitor the MOC is to observe

the baroclinic component of the pressure (i.e., the buoy-

ancy) at the eastern and western boundaries: these end-

point values control the geostrophic transport of the

zonally integrated flow (Hirschi and Marotzke 2007;

Kanzow et al. 2008). Preliminary results from the Rapid

Climate Change–Meridional Overturning Circulation and

Heatflux Array (RAPID–MOCHA) observational pro-

gram indicate that this is an effective monitoring strategy

(Kanzow et al. 2009; Rayner et al. 2010, manuscript sub-

mitted to Deep-Sea Res.). Unfortunately, these observa-

tions are limited to the MOC, which is the transport of

mass (or volume in a Boussinesq fluid). Another quantity

of interest is the residual overturning circulation (ROC),

which measures the transport of temperature and other

tracers by all components of the flow. The ROC would be

more useful to monitor than the MOC since it measures

the transport of heat. However, there is no obvious way

to measure the ROC using endpoint values only.

Although various scalings have been proposed that

relate the strength of the MOC to external parameters

(cf. Vallis 2000), we still do not have a coherent picture

that unifies all the scalings. Little attention has been paid
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to the scaling of the ROC. There are two major diffi-

culties in providing a comprehensive scalings for either

the MOC or the ROC. First, it is necessary to under-

stand how the large-scale oceanic stratification and flow

are established. Because the oceanic large-scale strati-

fication is forced at the top, there are several processes,

sometimes competing, that distribute the surface buoy-

ancy signal down the water column. Second, knowledge

of the fluctuating components of temperature and ve-

locity are needed, and these fields are concentrated at

the mesoscales. The contribution of the eddy component

to the buoyancy flux has often been neglected in theories

of the large-scale stratification.

One of the processes that transfer the surface buoy-

ancy gradients downward is ventilation (Luyten et al.

1983). Ventilation establishes buoyancy gradients only

in the subtropical regions where the Ekman pumping is

downward. The effectiveness of ventilation is controlled

by the extent to which the mean potential vorticity is

conserved along the mean flow: simulations that include

the spontaneous development of time-dependent eddies

show that the large-scale mean potential vorticity is, in

fact, not well conserved because the divergence of eddy

fluxes is as important as the divergence of the mean flux

of potential vorticity (Cox and Bryan 1984). When eddies

are important, potential vorticity homogenization (Rhines

and Young 1982; Young and Rhines 1982; Pedlosky and

Young 1983) is more prominent than ventilation. Neither

homogenization nor ventilation explains the horizontally

averaged stratification: the quasigeostrophic theories are

pivoted around a specified basic stratification, and the

ventilation theories require the depth of the isopycnals to

be known on the eastern boundary; that is, the stratifica-

tion needs to be prescribed all along the eastern boundary.

At the opposite spectrum of the ‘‘ideal’’ theories sum-

marized above are the ‘‘diffusive’’ scalings proposed by

Welander (1971) and Gill (1985, hereafter G85), which

invoke diapycnal diffusion as the primary process that

transfers buoyancy downward.

A partial reconciliation of the diffusive and potential

vorticity conserving paradigms is achieved by consider-

ing that the diffusive scaling applies in an internal bound-

ary layer below the ventilated/homogenized thermocline

(Stommel and Webster 1962; Young and Ierley 1986;

Salmon 1990; Samelson and Vallis 1997). However, this

framework is appropriate only in the subtropical regions

where there is downward Ekman pumping. In the sub-

polar region, where the maximum of the Eulerian over-

turning circulation is found, the depth of the thermocline

cannot be determined by ventilation: either diffusion

(e.g., in the mixed layer) or remote processes must con-

trol the dynamics. All of the above theories neglect the

contribution to the buoyancy gradients from the eastern

boundary. In this work, we show how buoyancy gradients

are established on the eastern boundary and to what ex-

tent the eastern boundary buoyancy contributes to the

time-averaged MOC and ROC.

Recent modeling work (Wolfe and Cessi 2010) has re-

vealed that the existence of a reentrant portion in the

World Ocean is essential to establish deep stratification:

the westerly winds in the Antarctic Circumpolar Current

(ACC) region induce an ageostrophic meridional flow that

overturns the isopycnals very effectively. This overturn is

modestly opposed by the restratification due to baroclinic

eddies, which are less effective at restratification than

the basinwide gyres supported by meridional boundaries.

The net result is that the stratification obtained in a re-

entrant geometry reaches much farther down the water

column than in a fully enclosed basin geometry. The deep

stratification established in the reentrant region is then

communicated to the enclosed portions of the World

Ocean by the residual circulation. It is thus meaningful

to consider the circulation and buoyancy distribution

that ensues in the closed portion of the domain, given

the deep stratification emanating from the ACC region

(cf. Gnanadesikan 1999).

In this work we attempt to offer a comprehensive, al-

beit simplified, picture of both the MOC and ROC in the

context of a single hemisphere in a fully enclosed domain.

We consider the simplest model with specified stratifi-

cation N2, that is, the planetary geostrophic equations,

with buoyancy linearized around a given uniform N2 as

in G85.

We also include a parameterized form of eddy-flux di-

vergence since this is an important process for both the

MOC and the ROC, especially near the boundaries. In

particular, eddy fluxes of buoyancy relax the condition

that the normal component of the geostrophic flow must

vanish at the eastern boundary. As in previous work

(Salmon 1986; Cessi and Wolfe 2009, hereafter CW09), we

include the contribution of side upwelling and downwel-

ling layers. The net effect of the mass and buoyancy

transport in these thin layers on the interior flow can be

described by an ‘‘effective boundary condition,’’ derived

in the following section, which applies to both the mo-

mentum and the buoyancy equations. The derivation has

previously been given in CW09, but here we emphasize

that this is the correct boundary condition that should be

used in coarse-resolution models in which the eddy fluxes

of tracers are parameterized.

The effective boundary condition allows horizontal

buoyancy gradients along the eastern boundary, which

is a major step in the direction of greater realism for

this idealized class of models. These gradients support

a counterrotating overturning cell below the main ther-

mally direct MOC. This cell exists because of the reversed

2076 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 40



subsurface horizontal gradient created by the interaction

of the thermally direct MOC with the deep stratification.

An important conclusion is that without buoyancy gra-

dients along the eastern boundary this cell would not

exist.

Advection of buoyancy by the barotropic flow, which

can be calculated separately from the buoyancy field,

is also allowed, a process that was neglected in CW09.

Barotropic advection is not as comprehensive as the ad-

vection by the total flow, but it captures a large fraction of

the buoyancy advection while still dealing with a linear

problem. Importantly and instructively, consideration of

advection by the barotropic flow allows a meaningful

distinction between the MOC and the ROC. We find that

the advection by the barotropic flow opposes the pole-

ward transport by the MOC in the subtropical gyre and

reinforces it in the subpolar gyre. The net result is a shift

of the maximum of the ROC poleward relative to the

MOC. This shift is also found in the eddy-resolving

computations reported in Wolfe and Cessi (2010).

2. The model equations and boundary conditions

We employ the planetary geostrophic equations, in-

compressible and hydrostatic, with buoyancy linearized

around a prescribed vertical stratification bo(z), such

that dbo/dz 5 N2(z), and is advected by the barotropic

flow only. Then, the baroclinic velocity u, y, w, and as-

sociated perturbation pressure p and buoyancy b satisfy

�f y 5�p
x

1 t
z
� x, (1)

f u 5�p
y

1 t
z
� y, (2)

0 5�p
z

1 b, (3)

0 5 u
x

1 y
y

1 w
z
, (4)

and

J(c, b) 1 wN2 5 k
e
=2b 1 k

y
b

zz
. (5)

The streamfunction c characterizes the barotropic ve-

locity and is determined independently of the buoyancy

through the Sverdrup relation

bc
x

5
1

H
curltj

z50
� r=2c ,

c 5 0 at x 5 0, x
e
, y 5 0, L, (6)

where H is the depth of the ocean and r is the small

coefficient of bottom friction. In (1)–(4), the baroclinic

velocity has zero vertical average and f 5 by.

Large-scale theories of the thermocline (Colin de

Verdière 1989; Salmon 1990; Samelson and Vallis 1997)

include advection of buoyancy by all components of the

large-scale flow, resulting in a nonlinear problem. By

considering advection by the barotropic flow only, the

problem is linear and captures the largest contribution

to buoyancy advection. This is because, by thermal wind

balance, the horizontal velocity of each vertical mode is

orthogonal to the buoyancy gradient of the same mode

so that only advection by a different vertical mode is

possible. Since the amplitude of each vertical mode de-

cays with mode number, the largest interaction is be-

tween advection by the barotropic velocity of the first

baroclinic mode for buoyancy (Smith and Vallis 2001).

Eddy fluxes of buoyancy, parameterized as down-

gradient diffusion (Gent and McWilliams 1990), are ex-

plicitly included. Because buoyancy is linearized around

bo(z), that is, the isopycnals are horizontal to a first ap-

proximation, isopycnal eddy fluxes are also approximately

horizontal: this is the first term on the rhs of (5). In other

words, in this linearized model, we neglect the vertical

component of the buoyancy eddy fluxes, w9b9 (cf. the

discussion in CW09).

The system (1)–(5) is solved in a closed domain bounded

by solid walls at x 5 0, xe and y 5 0, L. The bottom,

located at z 5 2H, is flat, and we make the rigid-lid

approximation, so the surface is at z 5 0. Previous work

on the planetary geostrophic set (1)–(5) (Salmon 1990;

Samelson and Vallis 1997) has demonstrated that it is

not possible to impose no-normal flow for u and y and

no-normal flux of buoyancy on the horizontal bound-

aries without adding additional physics.1 Salmon (1990)

adds nonhydrostatic effects and Samelson and Vallis

(1997) add hyperdiffusion of buoyancy. In the follow-

ing we argue that a single effective boundary condition

for both the normal flow and the buoyancy flux can

be specified, which takes into account the effect on the

interior of unresolved viscous, nonhydrostatic, down-/

upwelling boundary layers. Notice that we consider a

completely inviscid momentum balance for the inte-

rior baroclinic flow so that, below the Ekman layer, the

baroclinic velocity is in geostrophic balance everywhere.

The effective boundary condition requires that only the

residual normal flow, that is, the sum of the Eulerian

plus eddy-induced flow, vanishes at the outer edge of the

down-/upwelling boundary layer, but not each separate

component.

We derive the effective boundary condition for a

general form of the eddy fluxes of buoyancy and then

1 The addition of bottom drag or inertia does not solve this

problem.
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apply it to the downgradient diffusion parameteriza-

tion used in (5). Thus, we consider the general buoy-

ancy balance

ub
x

1 yb
y

1 wb
z

1 (u9b9)
x

1 (y9b9)
y

1 (w9b9)
z

5 k
y
b

zz
,

(7)

where the overbar denotes a time average and the prime

departure from the time average. The mass balance for

both barred and prime quantities is (4).

In the thin boundary layer next to an eastern wall, x 5 xe,

the gradients of the mean velocities, u
x

and y
x
, are large

and so is w. However, b
x

and y are not large because

b (and the pressure) is almost constant in the boundary

layer (cf. Barcilon and Pedlosky 1967; Pedlosky 1969;

CW09). In other words, in the viscous, nonhydrostatic

boundary layer the normal velocity changes to leading

order, but not the pressure or buoyancy, only their gra-

dients. As shown in CW09, the mean vertical velocity w

also becomes large; similarly, the eddy-flux divergence of

buoyancy (u9b9)
x

is large. Thus, the dominant mass and

buoyancy balances in the thin down-/upwelling boundary

layer are

u
x

1 w
z

’ 0 (8)

and

wb
z

1 (u9b9)
x

’ 0. (9)

We now integrate (8) across the boundary layer, using

the condition that u 5 0 on the solid wall:

uj
x5x

e
�dbl

’

ðx
e

x
e
�dbl

w
z

dx. (10)

Integrating (9) across the boundary layer of width dbl,

using the condition that u 5 u9b9 5 0 on the solid wall,

we find

ðx
e

xe�dbl

w dx ’
u9b9

b
z

j
x5x

e
�dbl

. (11)

In other words, the amount of fluid integrated over the

up/downwelling layer is proportional to the eddy flux of

buoyancy at the outer edge of the boundary layer, that

is, at the ‘‘effective coast’’ as far as the interior fluid is

concerned.

Substituting (11) into (10) we finally arrive at the

result

u 5
u9b9

b
z

 !
z

at x 5 x
e
� d

bl
, (12)

which is the effective boundary condition to be used at the

effective boundary instead of the condition u 5 u9 5 0.

The above arguments can be repeated on any bound-

ary, and the effective boundary condition applied to the

normal velocity at the seaward edge of the boundary

layer, that is, at the effective coast, is

u � n 5
u9b9 � n

b
z

 !
z

, (13)

where n is the outward unit vector normal to the bound-

ary. The rhs of (13) is the negative of the eddy-induced

(or ‘‘bolus’’) flow normal to the boundary. Thus, (13)

states that the residual flow vanishes on the boundary, but

not the mean and eddy component separately. Notice

that the final boundary condition (13) is independent of

the boundary layer width or any other detail of the vis-

cous dynamics of the up/downwelling layers. The effec-

tive boundary condition is now applied to the inviscid

momentum equation because viscosity only acts within

the boundary layer.

Notice that the effective boundary condition (13) ap-

plies only to the baroclinic component of the flow: both

terms in the equality must have zero vertical average so

as to ensure mass conservation. The barotropic flow is

unaffected by the up/downwelling dynamics of the side

boundary layers and satisfies the no-normal flow con-

dition. Figure 1 diagnoses the two sides of (13) from the

eddy-resolving simulation described in Wolfe and Cessi

(2010) and shows agreement, except in regions of con-

vective adjustment, where mixing is not negligible, and

near the equator. Because of the limited resolution of

the model, the diagnostic is evaluated three points from

the eastern boundary, that is, 16.3 km offshore. This is

a distance much larger than the typical width of non-

hydrostatic turbulent boundary layers in the ocean, and

subdominant terms that should vanish in the limit as

dbl / 0 do not. Preliminary calculations show that the

agreement improves as the grid size is reduced.

In coarse-resolution ocean models the eddy flux of

buoyancy is parameterized in terms of the large-scale

gradient of buoyancy (Gent and McWilliams 1990) so

that (13) is a relation between the wall-normal hori-

zontal component of the velocity and the horizontal

buoyancy gradient normal to the boundary:

u � n 5�
k

e
$b � n
b

z

 !
z

. (14)

It is easy to show that the above boundary condition

conserves the total buoyancy by integrating (5) over the
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domain and applying (14) on the lateral boundaries (and

w 5 0 on the top and bottom).

We believe that (14) is the coarse-resolution boundary

condition that should be applied to the baroclinic (zero-

vertical average) component of the horizontal velocity

and to the buoyancy flux.2 In other words, in coarse-

resolution ocean models using parameterized eddy fluxes,

(14) serves as the boundary condition for both momentum

and buoyancy equations.

The need for a single lateral boundary condition re-

lating the normal velocity u � n to the buoyancy flux

k
e
$b � n, is evident when the system (1)–(5) is reduced to

a single equation in terms of the buoyancy. Forming the

vertical derivative of the potential vorticity (PV) equa-

tion, this system is

b

f 2
b

x
1

J(c, b)

N2

� �
zz

5
k

e
=2b 1 k

y
b

zz

N2

 !
zz

1 curl
t

zz

f

� �
.

(15)

The effective boundary condition can be expressed in

terms of the buoyancy alone by taking the vertical de-

rivative of (14) and using (1) and (2); that is,

f
k

e
$b � n
N2

� �
zz

5 ($b� t
zz

) � s, (16)

where n and s [ z 3 n are the outward normal and tan-

gent unit vectors on the boundary, respectively. Thus, the

buoyancy gradient along the boundary is proportional

to the buoyancy gradient across the effective boundary,

maintained by the eddy flux of buoyancy.

Boundary conditions need also to be specified at the

top and bottom boundaries. Here, we specify the buoy-

ancy perturbation at the top and assume no signal at the

bottom. Usually, it is the flux of buoyancy, 2kybz, that is

required to vanish at the bottom. However, we will show

that the buoyancy signal decays rapidly away from the top

surface so that both b and bz vanish at the bottom. Finally,

the vertical velocity is required to vanish at z 5 0, 2H. In

summary, the vertical boundary conditions are

b 5 b
s
(x, y), J(c, b

s
)� k

e
=2b

s
� k

y
b

zz
5 0 at z 5 0

(17)

and

b 5 k
y
b

zz
5 0 at z 5�H. (18)

In the following we will use the forcing:

b
s
5 B

0
B(y), t 5 (t

0
t̂(y), 0) (19)

with

B(y) 5 cosp
y

L
(20)

and

t 5 ez/ds(y) 5 ez/d �cos
3p

2

y

L
1 0.8 exp

�y2

2(0.09L)2

 !
.

(21)

FIG. 1. The eddy buoyancy flux (u9b9/bz)z and ubc 16.3 km off the

eastern boundary for an eddy-resolving computation (the subscript

‘‘bc’’ refers to the baroclinic component of the flow, with zero

vertical average). Smoothing is applied in the y direction using

a Gaussian filter with a half-width of 60 km to remove grid noise

excited by hydrostatic convection. The parameters of the model

are described in Wolfe and Cessi (2010).

2 The requirement that both sides of (14) have zero vertical

average implies ke 5 0 at z 5 0, 2H. This condition is implemented

in most ocean models. In this study, we take ke to be constant and

thus in general do not satisfy the condition that the eddy stream-

function vanishes at z 5 0, 2H. Application of (14) to mass con-

servation requires that on the boundary 0 5
Ð 0
�H dz

Þ
u � n dl 5

�keN�2
Þ

$b � nj0�H dl and this vanishes for the particular choice (20).
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This is the same forcing applied to the eddy-resolving

computations that we are using for comparison (cf. Wolfe

and Cessi 2010). Figure 2 shows B and t as a function

of y.

The final formulation (15) is similar to that of CW09

except that here we include horizontal advection of

buoyancy, although limited to the barotropic flow. We

also apply the boundary conditions (16) on all four lat-

eral boundaries, in a fully closed domain, rather than

assuming no net meridional flow at y 5 0, L, as in CW09.

The boundary conditions used by CW09, where the

buoyancy is assumed constant along the meridional

boundaries, are recovered in the limit where xe�L, and

t(0) 5 t(L) 5 0.

3. Nondimensionalization

We scale the amplitude of the solution with the sur-

face buoyancy B0. The PV dynamics (15) together with

the effective boundary conditions (16) provide the nat-

ural scales of the solution, both horizontal and vertical.

Thus, we use the following nondimensionalization (in-

dicated by carets):

b 5 B
0
b̂, x 5 lx̂, y 5 Lŷ, z 5 hẑ , c 5

t
0
l

bHL
ĉ,

(22)

where l and h are

l [
bL2k2

e

N2k
y

 !1/3

, h [
bL2 ffiffiffiffiffiffiffiffiffi

k
e
k

y

p

N2

 !1/3

. (23)

This is the same ‘‘canonical scaling’’ used in CW09,

which characterizes the intrinsic scales of the solution.

For oceanographically relevant parameters h ; 300 m

and l ; 1000 km (cf. Table 1); that is, both scales are less

than the domain scales but larger than a thin boundary

layer. Assuming that N2 is constant, the vorticity equation

becomes

b̂
x̂

ŷ2
1 �J(ĉ, b̂

ẑẑ
) 5 (=̂2b̂ 1 b̂

ẑẑ
)

ẑẑ
� m

t̂
ẑẑ

ŷ

� �
ŷ

. (24)

The nondimensional barotropic vorticity is

ĉ
x̂

5�s
ŷ
�

d
s

l
=̂2ĉ, (25)

where s is the nondimensional wind stress at the surface

given in (21) and ds 5 r/b is the Stommel (1948) boundary

layer width. The nondimensional effective boundary con-

ditions become

b̂
ŷ

5 ŷb̂
x̂ẑẑ

at x̂ 5 0, X
e

(26)

and

b̂
x̂

5 � l

L

� �2

ŷb̂
ŷ

1 mt̂

" #
ẑẑ

at ŷ 5 0, 1. (27)

The solution is determined by the following parameters:

m [
t

0
l

B
0
h2

, � [
t

0
l2

bL2Hk
e

, X
e
[ x

e
/l. (28)

Additionally, the aspect ratio l/L enters in the definition

of the nondimensional Laplacian3, =̂2 [ ›
x̂x̂

1 (l/L)2
›

ŷŷ
.

Other dynamical scales

The canonical scaling (23) shows that, in the absence

of an externally imposed zonal or vertical scale, the

buoyancy gradient is naturally established over a depth

h and an east–west length l. However, the surface forc-

ing is imposed over the width of the whole basin, xe 6¼ l.

On the scale xe, eddy diffusion is negligible and buoy-

ancy acquires the vertical scale hG identified in G85,

such that

FIG. 2. The shapes of the surface buoyancy B (solid) and zonal

wind stress s (dashed) are shown as a function of y. Both quantities

are in nondimensional units. Notice that there is no wind stress or

buoyancy gradient at the northern boundary so that there is very

little upwelling there. There is easterly wind at the southern

boundary, which causes local upwelling.

3 In practice, we decrease the eddy diffusivity in the y direction

by a further factor of 9 so that the aspect ratio l/L in (27) and in =̂2 is

artificially decreased by a factor of 3. This choice mimics the finding

in the eddy-resolving model that the eddy diffusivity along the

northern boundary is much smaller than that along the eastern and

western boundaries.
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h
G

[
k

y
bL2x

e

N2

 !1/4

. (29)

Thus, if xe� l, the depth of the surface buoyancy signal

at the western boundary is the Gill depth hG . h. This

implies that the baroclinic western boundary layer,

where eddy-diffusion becomes important, is of width

dP , l, with

d
P

[ k
e
L

b

k
y
x

e
N2

 !1/2

. (30)

The scale dP is one of the possible western boundary

layer widths for the baroclinic component of the flow

considered by Pedlosky (1969). The scaling (30) makes it

clear that the width of the western boundary layer for

the baroclinic flow is completely different than the width

of the western boundary layer for the barotropic flow,

which is Stommel’s scale ds [ r/b. The former depends

on the eddy diffusivity and the stratification, whereas the

latter depends on the bottom drag. The scales hG, xe, and

dP are the vertical and horizontal scales that dominate

the subsurface buoyancy distribution because the sur-

face forcing is imposed on the basin scale. At depth, the

externally imposed scale is not relevant and the buoy-

ancy field exhibits the intrinsic scales h and l.

With the barotropic advection characterized by c,

we have an additional vertical scale hc, which measures

the deflection of the geostrophic contours from latitude

lines by c, defined as

h
c

[

ffiffiffiffiffiffiffiffiffiffiffi
t

0
x

e

N2H

r
. (31)

This is the depth to which, in this formulation, the theory

of Young and Rhines (1982) would predict homogeni-

zation of potential vorticity, that is, the vertical scale at

which advection by c of vortex stretching [the second

term on the lhs of (15)] balances advection by the baro-

clinic flow of planetary vorticity [the first term on the lhs

of (15)]. If both eddy and diapycnal diffusions were weak,

then homogenization of potential vorticity would be ex-

pected in the region of closed potential vorticity contours.

In the large-scale limit and if advection by all components

of the flow were taken into account, then homogenization

would occur in a ‘‘bowl’’ whose depth at the western

boundary, hy, scales as hy ; (t0xe /N2)1/3 (cf. Young and

Rhines 1982) or, in the planetary-scale nonlinear regime,

to a depth given by (cf. Pedlosky and Young 1983)

h
y
5

t
0
x

e

B
0

� �1/2

. (32)

The scalings for hy and hc coincide if we equate H with

hc in (31) (and N2 5 B0/hy): in other words, if the vertical

scale of the advecting flow and the vertical scale of the

buoyancy coincide. Here, because only advection by the

barotropic flow is included, the vertical scale of the ho-

mogenization bowl is smaller than that predicted by the

large-scale nonlinear theory.

The essential point is that, for the parameter values

given in Table 1, hc , hG and diapycnal diffusion domi-

nates over advection. As shown in Table 1, for typical

oceanic values hy is at most of the same order as hG, so

diapycnal diffusivity would prevent homogenization

even in the case where advection by the total flow is

considered.

4. The solution

a. Method of solution

The solution of (24) can be obtained by a Galerkin

projection in vertical modes, with convergence acceler-

ated by the addition of a particular solution that satisfies

the boundary conditions on b at z 5 0, 2H:

b̂ 5 B(y) 1 1
ẑ

Ĥ

� �
1 �

‘

n50
b

n
(x̂, ŷ) sin(k

n
ẑ), with

k
n

[
np

Ĥ
, (33)

TABLE 1. Parameter values for the control calculation shown in Figs. 3, 4, 6, and 7. The buoyancy amplitude corresponds to a difference

of 168C, and the wind stress (divided by the density) corresponds to a momentum flux of 0.1 N m22. With this choice for B0 the range of

surface buoyancies is comparable to the range spanned by the prescribed stratification since N2H 5 1 3 1022, violating the linearization

assumption. We use these values to make quantitative comparisons with the results of our eddy-resolving computations.

External scales (m) L 5 4.9 3 106 xe 5 2.4 3 106 H 5 2400 d 5 12

External parameters b 5 2.3 3 10211 m21 s21 N 5 2 3 1023 s21 r 5 1 3 1026 s21

Diffusivities (m2 s21) ke 5 1.2 3 103 ky 5 1 3 1024

Intrinsic lengths (m) l 5 1.2 3 106 dP 5 9.2 3 105 ds 5 4.2 3 104

Intrinsic depths (m) h 5 362 m hG 5 424 hc 5 158 hy 5 122

Forcing amplitudes B0 5 0.016 m2 s21 t0 5 1 3 1024 m2 s22

Control parameters m 5 0.06 � 5 0.1 Xe 5 1.9 l/L 5 0.25
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where Ĥ [ H/h. In terms of the vertical modes, the po-

tential vorticity becomes

›
x̂
b

n
1 ŷ2k2

n[=̂2b
n
� � Ĵ(ĉ, b

n
)� k2

nb
n
]

5
2

H
k

n
ŷ2 =̂2B� � Ĵ(ĉ, B)1 m

s

ŷ

� �
ŷ

1

1 1 d2k2
n

" #
. (34)

The system (34) is a set of second-order uncoupled

PDEs in x̂ and ŷ that must be supplemented by the ef-

fective boundary conditions (26) and (27), projected

onto the vertical sine modes; that is,

k2
n ŷ›

x̂
b

n
1 ›

ŷ
b

n
5

2

Ĥk
n

B
ŷ

at x̂ 5 0, X
e
;

� l

L

� �2

ŷk
n
›

ŷ
b

n
1 ›

x̂
b

n
5

2

Ĥ
k

n

l

L

� �2

ŷB
ŷ
� ms

1 1 d2k2
n

" #

at ŷ 5 0, 1. (35)

The system (34) and (35) is discretized using Chebychev

interpolating polynomials (Trefethen 2000), and the re-

sulting matrix equation is inverted with MATLAB. The

terms in the series in (34) decay like n23, so a truncation

at about n 5 50 is adequately converged. Because (34)

is singular at the equator, ŷ is shifted by a small amount,

yo 5 0.05.

b. The buoyancy field and the residual overturning
circulation

Figure 3 shows buoyancy in the x–y plane at different

levels for the parameters given in Table 1. The buoyancy

pattern below the surface shows a reversal with depth

in the latitudinal gradient. This reversal is due to the

buoyancy forcing (i.e., the reversal is qualitatively the

same when t0 5 0) and is also obtained in models where

the mean stratification, N2, is determined as part of the

solution (Colin de Verdière 1988). The reversal is most

prominent on the eastern and southern sides of the basin.

The vertical structure of the buoyancy is illustrated in

Fig. 4, which shows the endpoint values at the eastern

and western boundaries and their difference, be 2 bw.

For the choice of parameters in Table 1 the total buoy-

ancy, b 5 b 1 N2z, is unstably stratified in the subpolar

region, clearly violating the range of validity of the lin-

earization procedure. With a larger value of N2, b would

be stably stratified everywhere, as is observed in the

eddy-resolving simulation used as a comparison (cf.

Wolfe and Cessi 2010, and Fig. 5). Although incapable of

determining the basic stratification, the linear model

indicates how N2 is established: N2 is such that the total

buoyancy b 1 N2z is stably stratified everywhere. Since

the buoyancy perturbation is most unstably stratified in

the upper portion of the water column where the vertical

scale of b is hG, then N2 ; Db/hG in which Db is the

amplitude of the horizontal buoyancy difference in (15).

As discussed in more detail in section 5, Db can be

proportional to B0 or t0, according to which forcing

dominates the solution. In general, Db depends on both

B0 and t0.

To understand how the three-dimensional buoyancy

structure is determined, it is useful to construct the

FIG. 3. Three plan views of the dimensional buoyancy for the

linear solution (33) at various depths for the parameter values

given in Table 1. Notice the reversal of the north–south buoyancy

gradient at depth in the bottom panel, which can also be seen in the

boundary values (cf. the two panels in Fig. 4). The contour interval

is (top) 1 3 1023 m s22, (middle) 0.5 3 1023 m s22, and (bottom)

2 3 1024 m s22; negative values dashed.
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residual circulation for the linear model. Using (4) to

eliminate w from (5), we rewrite the buoyancy equa-

tion as

(N2x)
x

1 (N2f)
y
5 k

y
b

zz
, (36)

where we have defined the residual streamfunctions:

x [�
ðz

�H

u(x, y, ~z) d~z 1 cb
y
/N2 � k

e
b

x
/N2 (37)

and

f [�
ðz

�H

y(x, y, ~z) d~z� cb
x
/N2 � k

e
b

y
/N2. (38)

In (36) the baroclinic flow is only advecting the basic

buoyancy N2z, while the advection of horizontal buoy-

ancy is effected by the barotropic flow only.4 The re-

sidual flow in (37) and (38) is composed of three parts:

the time-mean baroclinic flow; the ‘‘standing eddy’’

component due to the advection by the barotropic gyre

of the perturbation buoyancy; and the eddy flux due to

mesoscale eddies, parameterized as downgradient dif-

fusion ke.

The formulation (36) makes it apparent that the effec-

tive boundary condition (14) conserves buoyancy. Taking

(37), for example, the first and last terms on the right-hand

side cancel on the eastern and western boundary and the

second term on the rhs naturally vanishes on the bound-

aries. Likewise, in (38) the first and third terms on the rhs

cancel on the northern and southern boundaries.

Figure 6 (top) shows x at y 5 2020 km: there is a

clockwise circulation in the x–z plane in the upper por-

tion of the water column and an anticlockwise circulation

below. Figure 6 (bottom) shows the Eulerian component

FIG. 4. (top) Bouyancy (top) be on the eastern boundary, x 5 xe,

for the same solution shown in Fig. 3; (middle) bw on the western

boundary, x 5 0; and (bottom) the difference be 2 bw. The contour

interval is 2 3 1023 m s22, negative values dashed.

FIG. 5. Total buoyancy (top) be on the eastern boundary, x 5 xe,

for the Northern Hemisphere portion of the same eddy resolving

described in Fig. 1 (cf. Wolfe and Cessi 2010) and (bottom) bw on

the western boundary, x 5 0. A thermostad extends from north to

south and from east to west, which contains the bulk of the residual

and meridional overturnig circulations. The contour interval is 2 3

1023 m s22.

4 If the advection of buoyancy perturbation by the baroclinic

flow were included, this would be the additional term 2(bxx 1

byf)z on the lhs of (36).
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of x. The most notable feature is a flow into and out of the

east and west boundaries, which is compensated by the

eddy flux of buoyancy, through the effective boundary

conditions in (14). Because the zonal baroclinic flow is in

geostrophic balance everywhere, any horizontal buoy-

ancy (and pressure) gradient along the boundary is

accompanied by flow into the effective boundary. This

u � n 6¼ 0 is allowed, without violating mass and without

altering the buoyancy balance, by the effective boundary

condition, which returns the flow into the effective wall at

a different level while leaving the buoyancy unchanged.

The clockwise cell and positive zonal shear in Fig. 6

are driven by the surface buoyancy diffused down to

a depth of order hG on the west and h on the east. Be-

cause of the meridional boundaries, there is downwel-

ling at x 5 xe and upwelling at x 5 0. With the basic

stratification N2, the clockwise flow pushes buoyant fluid

down on the east and dense fluid up on the west, causing

a positive east–west buoyancy gradient and a meridional

shear. This meridional shear is responsible for the me-

ridional overturn, as shown in the top panel of Fig. 7

where we contour the ROC defined as

F [

ðx
e

0

f dx, (39)

where f is defined in (38). In turn, F brings low buoy-

ancy fluid up near the equator and high buoyancy fluid

down near the northern boundary, producing the re-

versal in the meridional buoyancy gradient seen in the

bottom panel of Fig. 3. This reversed buoyancy gradient

drives the anticlockwise cells seen in the bottom halves

of Figs. 6 and 7. The zonal section shown in Fig. 6 is in

the middle of the basin: farther south the anticlockwise

cell expands until it occupies all of the water column; this

expansion is consistent with the shoaling of the reversed

meridional buoyancy gradients toward the southeast,

seen in Fig. 3. The MOC contoured in Fig. 7 induces

vortex compression (expansion) in the poleward half of

the domain in the upper (lower) part of the water col-

umn. The equatorward half of the domain experiences

the opposite pattern of vortex compression and expan-

sion. This vortex stretching is accompanied by meridi-

onal flow in the interior of the basin, with a cyclonic

(anticyclonic) gyre in the poleward half of the domain

in the upper (lower) portion of the water column and

a baroclinic gyre of the opposite sign in the equatorward

half of the domain. This buoyancy-driven circulation

is modified quantitatively, but not qualitatively, by the

wind forcing.

The ROC, F(y, z), (Fig. 7, top) is weaker than the

MOC (Fig. 7, bottom) because there is partial cancel-

lation between the meridional mean flow and the ad-

vection by the barotropic flow, that is, between the first

and second terms on the rhs of (38). Specifically, in the

FIG. 6. (top) The residual streamfunction x, defined in (37), is

contoured in the x–z plane at y 5 2020 km and (bottom) the Eu-

lerian component of the streamfunction x (i.e., �
Ð z

�H u(x, y, ~z) d~z)

is contoured in the x–z plane at the same latitude. The contour level

is 0.2 m2 s21, negative contours dashed.

FIG. 7. (top) The residual overturning circulation F [
Ð xe

0 f dx,

with f defined in (38), is contoured in the y–z plane. (bottom) The

meridional overturning streamfunction C, defined in (40), is con-

toured in the y–z plane. The contour level is 1 3 106 m3 s21, neg-

ative contours dashed.

2084 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 40



subtropical gyre 2c is negative while bx is positive

(negative) where the MOC is positive (negative), hence

the partial cancellation. In the subpolar gyre 2c . 0 and

the advection by the barotropic flow reinforces the

Eulerian transport, shifting the maximum of F north of

the maximum of the MOC. These results are in qualitative

agreement with the findings in the eddy-resolving com-

putations described in Wolfe and Cessi (2010). In the

eddy-resolving calculations, the reduction and north-

ward shift in the maximum of the ROC compared to the

MOC are even more pronounced because the flow in

the upper portion of the column is larger (it occurs over

the depth hG rather than H); furthermore, it is sub-

stantially augmented over the Sverdrup value by the

presence of an inertial recirculation (cf. Figs. 15 and 18

of Wolfe and Cessi 2010).

The eddy-flux term is negligible except near the

boundaries at y 5 0 and y 5 L where it allows some flow

into the effective walls, accompanied by an alongshore

buoyancy gradient. The eddy-flux term is also positive

everywhere except close to the boundaries, contrary to

the finding in our eddy-resolving computations, where

there is upgradient buoyancy eddy transport in the west-

ern boundary current extension region (Wolfe et al. 2008).

Clearly, upgradient eddy fluxes cannot be captured with

a Gent–McWilliams-type parameterization.

c. The meridional overturning circulation

The largest component of the residual overturning

circulation comes from the mean meridional velocity,

one measure of which is C, the meridional overturning

circulation, defined as

C
z

[�
ðx

e

x
w

y dx. (40)

Here C can be obtained from the east–west buoyancy

difference through the formula (cf. CW09)

f C’
z

H
11

� �ð0

�H

dẑ

ðẑ

�H

(b
e
� b

w
) dz

�
ðz

�H

dẑ

ð ẑ

�H

(b
e
� b

w
)d~z1

ðxe

0

t� z

H
11

� �
tj

z50

h i
dx,

(41)

and its structure is shown in Fig. 7 (bottom). The MOC is

dominated by the contribution from be 2 bw, shown in

Fig. 4, with the wind stress component important near

the surface. An interesting feature of C is the counter-

rotating cell below the thermally direct cell. In single-

hemisphere or symmetric double-hemisphere domains

there is no counterrotating cell below the main cell. This

is because these configurations have very weak inter-

mediate and deep stratification. Without deep stratifi-

cation, the thermally direct cell reaches all the way to the

bottom (h, hG / ‘) and no counterrotating cell de-

velops. In our linearized model and in domains with two

hemispheres with a circumpolar Southern Ocean, there

is deep stratification that allows the development of a

counterrotating cell. In double-hemisphere geometries

the thermally indirect cell has been attributed to the

transequatorial intrusion of the anticlockwise MOC from

the opposite hemisphere (Klinger and Marotzke 1999).

However, our model demonstrates that a counterrotating

deep cell can also be driven by processes local to the

Northern Hemisphere, in particular to the equatorial

upwelling and subpolar downwelling associated with the

main direct overturning cell. The presence of a Southern

Hemisphere with a circumpolar portion is implied by

our assumption that there is the deep stratification upon

which the counterrotating cell relies.

5. Scaling of the overturning cells

In this section, we provide scaling laws for the me-

ridional overturning cells obtained in the linear model.

From (41) the amplitude of C is proportional to the

east–west buoyancy difference Db and the square of a

scale height D. In the following, we show that these two

scales are different for the different cells seen in Fig. 7,

leading to different scalings.

a. The buoyancy-driven cells

For the subsurface clockwise cell, seen in Fig. 7, the

vortex stretching that balances the meridional flow is

dominated by vertical diffusion of the surface buoyancy.

Thus, the relevant amplitude is Db 5 B0 and the scale

height is D 5 hG in (29). We thus have the scaling:

C
max

;
Db h2

G

f
5 B

0

k
y
x

e

N2b

� �1/2

. (42)

The scaling for Cmax recovers both the diffusive and the

internal thermocline regimes once the appropriate scaling

for N2 is chosen (cf. Vallis 2000): in the diffusive regime

stratification is set by diffusing buoyancy from the surface,

that is, N2 ; B0 /hG, so that hG ; (kybL2xe /B0)1/3 and

C
max

; (
ffiffiffiffiffiffi
B

0

p
k

y
bL2x

e
)2/3; in the internal thermocline

regime stratification is set by ventilation and homogeni-

zation, that is, N2 ; B0/hy, and Cmax ; (B0hy ky bL2xe)
1/2,

with hy given in (32).

Because hG characterizes the vertical scale of bw, it is

tempting to conclude that be does not contribute to C.

However, comparison between the three panels of Fig. 4
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shows that both endpoint values contribute to bw 2 be,

especially at depth. As shown in the bottom panel of

Fig. 3, the reversed buoyancy gradients are more prom-

inent on the eastern side of the basin. In this region,

laminar, eddyless theories would predict the ‘‘shadow

zone’’ where no pressure gradient is allowed. Here, the

effective boundary condition allows gradients along the

eastern boundary, which, as shown by comparing the top

and middle panels in Fig. 4, are transferred to the western

boundary from be along the northern boundary of the

domain so that reversed buoyancy gradients are found at

both x 5 0 and x 5 xe. The importance of the horizontal

buoyancy gradients on the eastern boundary is also clear

from Fig. 5: in the northern half of the domain be 2 bw is

all due to be.

Thus, the relevant depth scale for the deep minimum

of the overturning is D 5 h, not D 5 hG. We thus have

the scaling

C
min

;
Db h2

f
5 B

0

k
e
k

y
L

N4b

� �1/3

(43)

so that the subsurface minimum scales like Cmin ;

(kyke)
1/3. Indeed, this scaling is obtained in the linear

model when these two parameters are varied: in Fig. 8

only ky is varied, and the dependence on ke has been

verified (figure not shown). This indicates that the gra-

dients on the eastern boundary are essential for the ex-

istence of the counterrotating cell. To our knowledge, no

scaling has been previously proposed for the counter-

rotating deep cell shown in Fig. 7.

The same scalings hold for the zonally integrated re-

sidual circulation F, which satisfies the zonal integral of

(36); that is,

N2F
y

5 k
y

ðx
e

0

b
zz

dx. (44)

Thus, F ; N22kyDbD22LxL, where again Db denotes

the buoyancy difference, D the vertical scale, and Lx

the zonal scale. The discussion for C can be repeated

for F: for the subsurface maximum the relevant scales

are D 5 hg, Db 5 B0, and Lx 5 xe (circles, triangles, and

FIG. 8. The subsurface maximum (open circles and squares) and minimum (crosses and open

diamonds) of F are plotted as a function of the diapycnal diffusivity ky. We consider forcing by

both the wind and buoyancy together (open circles and plus signs), buoyancy forcing alone

(open squares and diamonds), and wind forcing alone (asterisks and crosses). For the wind-

forcing-only cases (cf. Fig. 11), the absolute maximum and minimum are plotted. Lines of slope

k1/2
y (dotted–dashed), k1/3

y (dashed), and ky
0 (solid) are also plotted. All the other parameters are

as in Table 1.
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dashed–dotted line in Fig. 8). For the subsurface mini-

mum, the relevant scales are D 5 h, Db 5 B0, and Lx 5 l

(crosses, diamonds, and dashed line in Fig. 8). Using the

expressions for l, h, and hG shows that F and C have the

same scalings.

The scalings (42) and (43) are valid for the case of

a single hemisphere. When two hemispheres are pres-

ent, nonlocal effects due to interhemispheric flows can

add to the structure of the MOC and change the scalings.

Indeed, the deep cell obtained in the linear model is

weaker, shallower, and farther poleward than that ob-

tained in the eddy-resolving model in a domain consisting

of a semienclosed, double-hemisphere basin, with a re-

entrant region in the southernmost eighth of the domain

[cf. Fig. 9 (top) and Wolfe and Cessi (2010)].

In the semienclosed domain used for the eddy-resolving

computations, neither the thermally direct MOC nor

the counterrotating cell obey the scalings (42) if there

are shared surface buoyancy values between the Northern

Hemisphere and the reentrant channel in the Southern

Hemisphere. In fact, Wolfe and Cessi (2010) show that

even the thermally direct northern MOC is driven

nonlocally by dynamics in a southern channel analogous

to Drake Passage. However, if the surface buoyancy

distribution is such that the densest water formed in

the Northern Hemisphere is lighter than any water

formed in the channel [the ‘‘warm pole’’ cases of Wolfe

and Cessi (2009, 2010)], then interhemispheric flows

are weak but there is deep stratification. A secondary

counterrotating cell then appears above the interhemi-

spheric deep cell (cf. Fig. 9, bottom). This cell appears to

be driven by the single-hemisphere dynamics described

above. Indeed, the magnitude of this intermediate

depth cell scales according to (42) (cf. Fig. 10). The

maximum of the thermally direct MOC in the eddy-

resolving model is influenced by an inertial recircula-

tion near the western boundary current extension: this

causes the upper MOC to develop a vertically elon-

gated structure not seen in the linear model. Never-

theless, the scaling (42), with N2 appropriately chosen

to account for the thermocline stratification in the in-

ternal thermocline regime, is verified in the eddying

computations.

b. The wind-driven overturning cells

Above the large, thermally direct overturning cell

shown in Fig. 7 (top and bottom) are two shallow cells,

one thermally indirect north of the subtropics and the

other thermally direct in the tropics. These are the wind-

driven cells, whose surface branch is the Ekman flow—

southward in the region of westerlies and northward in the

region of easterlies. For the parameter values in Table 1,

these cells are obscured by the dominantly buoyancy-

driven overturn except near the surface.

These shallow cells are most clearly examined by sup-

pressing the buoyancy forcing, that is, by replacing the

top boundary condition with b 5 0 at z 5 0. Buoyancy

forcing still exists implicitly since we assume a prescribed

background stratification N2. The resulting overturning,

with the parameters set as in Table 1 (except B0 5 0), is

shown in Fig. 11.

The vertical and horizontal scales of the buoyancy

perturbations are as in section 3, that is, (23), (29), and

(30). However, the amplitude of the solution is now

determined by the top boundary condition on the ver-

tical velocity, which below the Ekman layer is approxi-

mately given by the Ekman pumping (G85); that is,

k
y
b

zz

N2
5 w ’ w

E
5� t

f

� �
y

at z 5 0. (45)

This relation immediately gives the amplitude of the

overturning since C
y

5
Ð xe

0 w dx. Thus, the scaling of the

shallow meridional overturning streamfunction Cup is

given by

FIG. 9. The time-average meridional overturning streamfunction

C (thick lines) and the time-average buoyancy (thin gray lines)

from the eddy-resolving model (two hemispheres with a channel

in the southernmost eighth of the domain) for cases where the

transequatorial overturning is (top) strong and (bottom) weak

[experiments CP-k4 and WP-k4 of Wolfe and Cessi (2010), re-

spectively]. A secondary counterrotating cell is visible (bottom

panel) near 750 m depth in the subtropical Northern Hemisphere.

The contour interval is 0.5 3 106 m3 s21 for the streamfunction and

2 3 1023 m s22 for the buoyancy, negative contours dashed.
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C
up

; w
E

Lx
e
, (46)

independent of the diapycnal diffusivity. This scaling has

been confirmed in the linear model (asterisks and mul-

tiply symbols in Fig. 8). The scaling for F forced by the

wind only, with B0 5 0, closely follows the arguments

given for C, applied to (44), and we find that the am-

plitude of the shallow, wind-driven residual cells is also

given by

F
up

; w
E

Lx
e
. (47)

The wind-driven thermally indirect surface cell, char-

acterized by Cup and Fup, goes in the direction opposite to

the thermally direct buoyancy-driven cell and, when the

amplitudes become comparable, some cancellation occurs

between the two: thus, the buoyancy and local wind stress

forcing compete in the scalings for both the MOC and the

ROC. When the contributions from both become com-

parable, the individual scalings are obscured, leading to an

apparent steeper scaling, which is simply a superposition

of two competing power laws. For the range of parameters

examined here, the wind-driven cells are subdominant for

most values of diffusivity shown in Fig. 8, but they become

comparable for the lowest value of diffusivity.

6. Summary and discussion

A model of the thermocline linearized around pre-

scribed basic stratification, N2, and the wind-driven,

barotropic flow gives remarkably realistic buoyancy and

zonally averaged meridional transports when effective

boundary conditions are used. The effective boundary

conditions require that the residual flow normal to the

boundary vanishes but not the individual Eulerian and

eddy components. There can be an exchange between

these two components inside the ‘‘effective coast’’ (i.e.,

inside the unresolved viscous, nonhydrostatic layers) while

conserving mass and buoyancy. This process enables re-

alistic buoyancy gradients along all boundaries in a quasi-

adiabatic, inviscid regime.

Especially important in the context of the MOC is the

value of the buoyancy on the eastern boundary, be(y, z),

since it is the difference between be and the buoyancy on

the western wall bw(y, z) that geostrophically maintains

the zonally averaged meridional velocity. Although the

main thermally direct overturning cell is on the same

vertical scale as bw, be makes a comparable contribution.

The linear model provides clear scalings for the MOC

and allows us to separately identify the contribution

from the buoyancy and wind-driven forcing. The buoy-

ancy forcing and the wind stress compete in driving the

main overturning cell: the buoyancy forces a thermally

direct surface cell and the wind stress a thermally in-

direct one. The main contribution to these surface cells

occurs on the horizontal scales dictated by the surface

forcing, which in our case are the scales of the basin.

Thus, the vertical scale of the buoyancy is the Gill depth

hG, defined in (29).

There is also a buoyancy-driven counterrotating cell

at depth associated with a deep reversed north–south

buoyancy gradient. Previously, this cell has been at-

tributed to the cross-equatorial intrusion of the MOC

from the opposite hemisphere, formed with denser wa-

ter (e.g., Vallis 2000). Here we show that a counter-

rotating cell can also be locally driven, as long as there is

stratification at depth. Well below the surface, the hor-

izontal scale of the buoyancy is internally determined

FIG. 10. Magnitude of the intermediate counterrotating cell Cmin

times the Coriolis parameter f(o) plotted as a function of the dia-

pycnal diffusivity ky scaled by f 2/N4 for the eddy-resolving model in

the warm pole configuration shown in Fig. 9 (bottom). Also plotted

is a line of slope ( f 2ky /N4)1/3.

FIG. 11. The overturning streamfunction C, without surface

buoyancy forcing: that is, when the parameters are as in Table 1

except that Bo 5 0. The contour interval is 4 3 105 m3 s21, negative

values dashed.
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and is dominated by the scale at the eastern boundary, l,

so that the vertical scale is h [both scales are defined in

(23)]. Therefore, the strength of this cell depends, inter

alia, on the ‘‘eddy diffusivity’’ ke, which in this model is

externally prescribed.

A weakness of the linear formulation is that the basic

stratification N must be prescribed, so the model is not

completely predictive.5 However, our understanding of

the basic stratification is now quite advanced, and we

have two mechanisms that have been clearly established:

ventilation and homogenization (Luyten et al. 1983;

Rhines and Young 1982) and diffusion (Welander 1971;

G85). Thus, we can use these established results to ex-

tend our scalings to the nonlinear regime and recover

the published scalings (Vallis 2000). A third mechanism,

remote control of N2 by the dynamics of the Southern

Ocean, has also been proposed (Samelson 2009; Wolfe

and Cessi 2010), and this is naturally considered by our

formulation with prescribed stratification.

Another weakness of the present model is that it is

pivoted around geostrophy and thus cannot accommo-

date a transequatorial domain [(15) is singular at the

equator]. Therefore, all nonlocal processes that con-

tribute to stratification and the MOC cannot be cap-

tured. In particular, the contribution to the MOC of the

pole-to-pole circulation is missed in a single-hemisphere

formulation.

Although the linear model has some natural hori-

zontal scales, l and dP, these are not representative of the

eastern and western boundary currents found in the

eddy-resolving model that we have used for comparison.

This is painfully apparent if one compares l ; 103 km

with the 30-km eastern boundary layer scale found in

eddy-resolving models (cf. Fig. 12). We conjecture that

there are two reasons for this discrepancy: first, the di-

vergence of eddy momentum flux cannot be neglected

near the boundaries, and it could provide an alternative

scale for the eastern boundary current; second, the ad-

vection by the baroclinic component of the velocity has

been neglected. The top panel of Fig. 6 shows that the

typical east–west flow is toward the eastern boundary in

the upper part of the water column. This flow might help

to confine the buoyancy signal near the boundary, es-

pecially in the poleward half of the domain, leading to

the formation of the narrow current seen in Fig. 12.

Finally, although we have not examined the time-

dependent problem, our steady-state results suggest that

the variability of the MOC will have substantial contri-

butions from the time dependence of both be and bw. In

particular, we anticipate that the MOC variability from

the eastern boundary would receive comparable contri-

butions from the wind stress and from the surface buoy-

ancy since the intrinsic vertical and horizontal scales of the

response are the same for both processes.
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FIG. 12. Temperature (gray contours), (a) meridional velocity (black contours), and (b)

vertical velocity (contours) near the eastern boundary in the middle of the northern subpolar

gyre for the eddy-resolving model. The contour intervals for temperature, meridional velocity,

and vertical velocity are 0.258C, 2.5 cm s21, and 0.25 mm s21, respectively; negative contours

are dashed. The origin of x has been shifted to the eastern boundary.

5 We note that, although our formulation is linearized, we have

used values of the parameters well beyond the range of validity of

the linear approximation.
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