Salmon: Lectures on partial differential equations

1. Review of some fundamental techniques

This first lecture covers some techniques that you have probably already
encountered; it is mainly a review. To illustrate the techniques, we use the heat equation
with various initial and boundary conditions.

First we consider the initial-value problem on the infinite domain:

0 =k0_, -o<x<+0, >0

D he.0) = 1)

where f(x) is a given function. The boundary conditions are § — 0 as x — =00, In the
method of separation of variables one seeks solutions in the form

2)  0B(x,t) = F(t)G(x).
Then

F G
3 6,=x0,=>FG=xFG,Z=—==—">=const
KF G

By the boundary conditions, this constant must be negative, i.e. const=—k’. Then
@) G=Ce™+Ce™ and F=Ce™™.

where C, are arbitrary constants. From this we conclude that

(5)  6(x,1) = Ae™

is a solution to the heat equation in the unbounded domain, where A is any constant, and k is
any real constant. The general solution is a superposition of solutions like (5), each with a
different A and k. Since k can take any (real) value, this superposition takes the form of an
integral,

©)  O(x.1)= [A(K)e"™ R

where A(k) is an arbitrary function. To satisfy the initial condition in (1), we choose A(k) to
make

+00

(7 6(x,0)= fA(k)é”“dk: f(x).

Thus A(k) is the Fourier transform of f{x). Recalling Fourier’s theorem —which we prove
below —we obtain

®)  Alk)=— i F(x)e ™ dx' .

1-1



Salmon: Lectures on partial differential equations

Thus the solution to the initial value problem (1) is

©  0x1)= f[zlﬂff e dx

That is,

f(x)dx'.

zkx k2 Ktk = }O[ }o tk(x—x‘)—sztdk

—00

+00

(10)  6(x,t) =fG(x,x‘,t)f(x')dx'

where

+00

' _ L —k*kt _ '
(11)  G(x,x',t) = = _fwcos(ké)e dk, E=x-x'".

This is an integral which may be looked up in the form,

(12) fe “* cos(bx)d ‘/ge_bz“‘a .

Thus

1 2
(13) G(x,x' ,t) = o lx=x )14kt

,/4m< t

The function G(x,x',t) is called the Green’s function. Its physical interpretation is this:

(14)  G(x,x',t)=0(x,t) when  f(x)=6(x-x").

That is, the Green’s function is the response to an initial pulse at x = x'. Thus the Green’s
function is defined by the problem:

2

(15) EG(X,XOJ)=K§G()C,XO,I), —o<x<+4%0, t>0

G(x,xO,O) = 6(x —xo)

Instead of the method we have followed for solving (1), we could instead use (15) to
determine G(x, xo,t), and then take (10) as the solution of (1). This second method has
several advantages:

1. The Green’s function offers physical insight. It contains the essence of the heat
equation: As ¢ increases, the Green’s function flattens and widens, keeping its area the same
(conservation of heat).

2. The same G(x, xo,t) works for any f(x). Thus we need to solve for G only once.

1-2



Salmon: Lectures on partial differential equations

3. We can sometimes manufacture the Green’s function for a new problem from the
Green’s function known from another problem.

As an example of the last property, consider the problem

0=xk0_, O<x<+x, >0
(16)  6(0,1)=0, 0—0 as x—»
6(x.,0) = f(x)

on the semi-infinite domain. The problem (16) is clearly equivalent to (1) with f(x) extended
as an odd function to negative x. Then the solution of (1) is

+00

17  0(x,t) = fG(x - X", 0)f(x')dx

where G is given by (13), and f'is extended to negative x by

18)  f(x)==f(~x).
Using (18), (17) can be written
(19) 6(x,t)=ﬂG(x—x‘,t)—G(x +x' ,t)]f(x‘)dx'.

The square brackets in (19) enclose the Green’s function of (16). Note that the result (19)
might have been guessed directly, using the physical interpretation of the basic Green’s
function G.

What is the Green’s function for (16) with the boundary condition replaced by
0.(0,1)=0 ?

Before going on to more examples, we pause for a proof of

+00 +00

Fourier’s theorem. If f(x) = fF(k)e”“dk, then F(k)= 2_ff(x)e—lkxdx‘
Y ad
Alternatively,
20) () = == [ea
27 :[O )

Rough-and-ready proof:
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+00

(21) [e"dk = [coskx dk +i [sinkx dk
However, neither integral makes sense except as a limit. Letting

[eosk dk = lim [coskx e dk = 1im‘/E e 1 227 8(x)
£

e—0 e—=0
—00 —00

(22)

[sinkx dk = lim [sinkx & *dk = 0

—00

we obtain the result. More rigorous proofs are accompanied by hypotheses that F(k) and
f(x) vanish sufficiently fast at infinity, making it unnecessary to take the limits.

Fourier analysis in relation to separation of variables

Fourier transformation is more direct than separation of variables. For example, to
solve (1) we could introduce the Fourier transforms

+00

23)  O(x,1) = fé(k,t)e"’“dk, f)=f f(k)e™dk.
Then the transform of (1) is

9 A ~
0(k,t) = -k k’0(k,1)

Q) =

with initial condition 6(k,0) = f(k). The solution is 8(k,#) = f(k)e™*", so
1 e ikx-Kk >t
(25 0x1) = _fwf(k)e dk,

which is just (9). The Green’s function problem (15) could also be solved in this way.
(Fourier’s theorem tells us that the Fourier transform of 8(x) is 1/ 2 .)

One disadvantage of Fourier analysis is that it often fails to be useful if the domain
is bounded. In that case, we might still use separation of variables. For example, consider
the problem

0=x60_, O<x<L
(26)  6(0,1)=6(L,t)=0
0(x.0) = f(x)
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In this case, the hypothesis 0(x,?) = F(t)G(x) yields G = Asinkx + Bcoskx as before, but

now the boundary conditions imply that B=0 and k = nt / L where n=1,2,3... The general
solution constructed in this way is

2”2
Kl L (nax
sin{ —
L

n

Q7 6(x,1)= i Ae

n=1

where A, is chosen to staisfy f(x)= E A sin(%) . We find that

n=1
2" nJx
28 A =—|[flx sin(—)dx.

28) A, L!ﬂ) T
This is not a Fourier transform, but it is closely related; it is a sine transform. What is the
Green’s function corresponding to (27-28)?

The experienced applied mathematician would not require separation of variables to
identify (26) as a suitable candidate for a sine transform. However, some problems have
basic solutions whose forms are very hard to guess beforehand. Separation of variables can

often be used to find them. For example, consider the problem

0,=x0,, O0<x<L
29) 6(0,1)=6_(L,t)=0
0(x,0) = f(x)

which differs from (26) by a single boundary condition. In this case separation of variables
leads to the basic solution

(30)  6(x,t) =e " “sin(k, x)

where

JT
3k =Z(2n+1).

n

To solve (29) we choose the coefficients in

(32)  O(x,1)= i A e sin(k, x)

n=1

to meet the initial condition. To do this, it helps to recognize that the functions
G,(x)= sin(knx) are orthogonal,

n

(33) fG (x)G, (x)dx ==6
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Thus we might regard separation of variables as a kind of generalized Fourier analysis.

When does Fourier analysis fail? Usually when there are nonconstant coefficients.
For example, the equation

(34) 6, =«(x)0,,

cannot generally be solved by (spatial) Fourier transformation.

When does separation of variables fail? Often when symmetry is lacking. For
example,

(35 0, =«k(x,1)0,,

cannot be solved by separation of variables unless «(x,#)= &, (x)x,(¢).

Fourier analysis in relation to Green’s functions

These can be viewed as alternative representations of the functions in the problem.
In the Fourier viewpoint,

(36)  f(x) = [f(k)e" dk,

and f (k) is the amplitude of the basis function ¢™*. Each k corresponds to a different basis

function. The problem is solved one basis function at a time, and the solution is obtained
by adding up the results.

In the Green’s function viewpoint,
BN )= [flx)olx-x)dx,,

and f (xo) is the amplitude of the basis function 6(x - X, ) Each x, corresponds to a
different basis function. Again the problem is solved one basis function at a time.

Both methods clearly rely on the superposition of solutions and hence only apply to
linear equations. Note that ¢™ are very nonlocal basis functions, whereas 6(x - xo) are
very local. Thus the two methods represent extremes.

Some more examples of finding one Green’s function from another

We continue to let
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1 e—(x—x0)2/4l<t

‘/4m( t

denote the basic Green’s function for the initial value problem (1) on the infinite domain.
Now we consider the infinite-domain problem

(38)  G(x-x,.1)=

0,=k60_+0(x,t), —-o<x<+o, >0

CD g0y =0

with the source Q(x,7). The problem (39) includes (1) as a special case, namely
Q(x,t) = f(x)5(z), suggesting that the solution of (39) is

40)  O(x,1) =fdt0fdon(xo’to)G(x = Xosl = to) .
0 —o
It is as if Q lays down a new initial condition at each time. To check (40) we compute
0, -x6 fdt fdxo (2010 )]0, — K0 . |G (x = xp07 — +fdx0 (x0:)G(x = x,,1 = 1)
=0+ fdxo O(x,.1) 8(x = x,) = Ox,1)

where we have used the properties (15) of G.

Next consider the semi-infinite domain problem with an inhomogeneous boundary
condition,

0,=x0_, 0<x<owo, >0
41) 6(x,0)0=0
0(0,1)=g(t)  (5(0)=0)
The trick here is to define the new dependent variable
42)  wix,t)=0(x,1)-g(t).
In terms of w, the problem (41) takes the form
W, =KW, —g'(t), O<x<wo, >0
43) w(x,0)=0
w(0,£)=0

Except for the boundary condition at x=0, (43) has the form of (39) with Q(x,z) = —g(z).
We handle the boundary condition by the image method, as before. Thus
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Ly

w(x,1) fdtfdxo O(x.1, [ (x—xo,t—to)—G(x+xo,t—t0)]
(44) fdtfdxo (x,.1,)Glx,x,,1 —1,)

=—fdtfdx0g G(xxo, - 1)

We wish to express this in “Green’s function form”, that is, as an integral involving the
given function g(¢) rather than its derivative. This suggests that we integrate (44) by parts:

45)  w(x,t) = [—g dexO] +fdt0g %dxo
0

The first term in (45) is

(46)  =g(0)f Glx.x,,0)dx, = —g(t).

To do the second term we note that

G oG 9°G »G
@47 =Z=--Z - xF-—x
ot, ot 0x

Thus

Since

([ (=x))  ( (xtx))

. 1

we have
aé 1 X —x? /4K (t-1y)
50 — = '
O x| _, ‘/471:K(t —1,) k(r to)e
Thus
51 wlx,r)=-g(r) +f;dt0 g(to) o (X_ 0)3/2 )
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and finally

(52) G(X’t) = W(x’t) + g(t) =j;dt0 é(x’t_ t0>g(to)

where

X —x? 14K (t-15)
377 €
Ak (¢ - 1,)

(53)  Glxt-1,)=

is the Green’s function for the problem (41). At what location x is 6(x, ) most affected by
the imposed boundary temperature G(O,to) at the earlier time #,? Show that the solution
(52-53) actually satisfies the boundary condition 6(0,z) = g(z).

Similarity (symmetry group) methods

Special solutions to partial differential equations may sometimes be found by
methods that amount to guessing the form of the solution based on a symmetry property of
the equation. Consider our original problem of determining the basic Green’s function (13)
from its defining problem (15). With no loss in generality we take x, = 0. Then the

problem is to solve

oG 9’G
54) —=x
S ot ox’

with initial condition G(x,0)= &(x). For this we use “dimensional analysis.” Since the
variables have the dimensions

55 [x]=L [f]=T [x]=LC /T, [G]=1/L.

we guess that

_ ol X0
(56) JEG_F\JE}

where F is a function to be determined. That is, we assume that the 2 dimensionless

quantities Jir G and x/ <kt are functionally related. The form (56) is one of several
equivalent possibilities. (We discuss the reasoning behind (56) more thoroughly after
showing how it can save some work.)

To determine F, we substitute (56) into (54). To simplify the algebra we set k=1
and then resurrect x in the final result. From

(57) G= %F(

it follows that

X
Jt)
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1 1
(58) G.=—=3F"(g) G- ‘W(F +EF' (€))
where
(59) E=x/Af.

Substituting (58) into (54) yields the ordinary differential equation

60) 2F"(&)+F(§)+EF(E)=0,

which integrates to

61) 2F(§)+EF(E)=C.

By the symmetry of the problem, both terms on the left-hand side of (60) must vanish when

&=0; hence the constant C=0. Then multiplying (60) by e*'* and integrating again, we
obtain

62) F(&)= Ae™"

where A is another constant. Thus

63)  G(x,t)= %e‘*‘z ra

To determine A we use the “conservation of heat”:
(64) fw G(x,1) dx=1

which implies that A = 1/+/4sr . Then replacing ¢ by kt and x by x — x, we obtain our
previous result.

Now what is the real reason behind (56)? That is, how does “dimensional analysis” help
us to solve a problem that, from a mathematician’s viewpoint, involves only pure numbers?
What we are really talking about are the transformation properties of the equations. We
are using the following property of (54): If

2

|
65) x=ax, f=ft K==k, G=—G
p a

where o and f are arbitrary constants, then the whole problem is the same in the primed
variables as in the unprimed variables. That is, the transformation (65) implies that

! 2
66 002G
ot' (0x")

and  G'(x',0)=0(x")
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(in which o and 8 do not appear). Note the analogy between (65) and (55). The
transformation (65) is called the dimensional group of the heat equation.

If @’ = f8, then k'= K , and the problem has been transformed into itself. Let
G = F(x,t) be the solution to the unprimed problem. Its transformation is

67) aG‘:F(i,t—z).
o o

But we know that G' (x',7) is a solution of the same problem. Since the solution is unique,
the two solutions must be identical, that is,

(68) %F(%é) _ Fx,1).

Since (68) holds for arbitrary «, F must take the form

69)  F(x,1)= % F( %)

(or an equivalent form such as F (x /1t )/ X).

These ideas can be greatly extended. For example, it is a remarkable fact that the
transformation

I'=t+c
(70) x'=x-2ct-c’
0 = E)exp[cx -ct-c/ 3]

(where c is an arbitrary constant) transforms the heat equation into itself. That is,

90 20
or ox' ?

90 0’6
(71) Pyt
(Once again we set k=1 with no loss in generality.) This is much less obvious than in the
case of (65) and requires laborious computation to check.

The transformation (70) has 2 invariants:
(72)  x+£ =x+(t)

and

(73)  Oexp[-xt- 21 /3]=0'exp|-x r -2(¢)'/3].
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These are the analogs of x/ 7> and 8¢ in the previous example. Thus any solution that
is unaffected by the transformation (70) must take the form

(74) 0= exp[xr +20° /3| Fx +17)

where F is found by substituting (74) into the heat equation to obtain an ordinary
differential equation.

How does one find transformations like (70)? By a very elegant method invented
by Sophus Lie over a century ago. The method is remarkable in that it can be applied to
nonlinear equations as easily as linear ones.

Note that (70), unlike (65), does not preserve the initial condition 8(x,0) = 6(x).
Thus (74) leads to special solutions of the heat equation that do not include the Green’s
function.

References. The primary reference for this lecture (on the heat equation) is Kevorkian pp 4-
54. An excellent introduction to Lie’s theory can be found in

Peter J. Olver Applications of Lie Groups to Differential Equations. Springer, 1986.

The appendix to this lecture is my attempt at a brief explanation. Read it only if you wish.
It is not an official part of the course.



