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2.  First-order linear equations

We want the solution (x,y) of

(1) a x, y( )
x
+ b x, y( )

y
= 0

where a x, y( )  and b x,y( )  are given functions.  If a and b are constants, then =F(bx-ay)
where F is an arbitrary function.  If we regard y as time, then this is a wave traveling toward
positive x at speed a/b.

If a x, y( )  and b x,y( )  are not constants, we may regard them as the components of a
steady velocity field

(2) v = a x,y( ),b x, y( )( ) u,v( ) .

Our equation,

(3) u x, y( )
x
+ v x, y( )

y
= 0

tells us that  is uniform along the streamlines of v.  To find these streamlines we solve the
coupled ordinary differential equations,

(4)
dx

dt
= u x, y( ),

dy

dt
= v x, y( )

for the “particle trajectory” x t( ), y t( )( )  and then eliminate t to get y(x) or x(y).  Not that the
“time” t is an auxiliary variable, introduced for convenience.  It plays no role in the final
solution.

Example.

(5) y
x
+ x

y
= 0 .

Then

(6)
dx

dt
= y,

dy

dt
= x dt =

dx

y
=
dy

x
xdx + ydy = 0

Thus

(7) x2 + y2 = const

and the streamlines are concentric circles.  The general solution of (5) is

(8) = F x2 + y2( )
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where F is an arbitrary function.  To obtain a unique solution, we must specify  at one (and
only one) point on each circle.

Mathematicians call the “streamlines” characteristics.  The generalization to n
dimensions is obvious:  To find the solution 

  
x1, x2,K, xn( )  of

(9)
  

u1 x1, x2 ,K, xn( )
x1
+ u2 x1,x2,K, xn( )

x2
+L + un x1, x2 ,K,xn( )

xn
= 0

we solve the n equations

(10)
  

dx1
ds

= u1 x1, x2 ,K,xn( ),
dx2
ds

= u2, K
dxn
ds

= un

where we have adopted the more neutral symbol s for the parameter along the trajectory.
(We might want to use t later as one of the xi ’s.)  We may attempt to integrate the n 1
equations

(11)
  

ds =
dx1
u1 x( )

=
dx2
u2 x( )

=L =
dxn
un x( )

but this will only be possible if the ui x( )' s  take a simple form.  If we succeed in integrating
the n 1  equations, then we will have n 1  relations of the form

(12)
  1
x( ) = c1, 2 x( ) = c2 , K , n 1 x( ) = cn 1

where the ci  are n 1  constants of integration.  Each equation in (12) represents an n 1
dimensional surface in n-dimensional space.  The intersection of these surfaces is a line.
We have a different line for each set of ci ’s.  Thus the general solution of (9) is

(13)
  
= F 1 x( ), 2 x( ),K, n 1 x( )( )

where F is an arbitrary function of n 1  variables.  However it is not generally possible to
integrate (11).  Thus (10) is the more important equation.  It demonstrates that the solution
of any first-order partial differential equation may be reduced to the solution of coupled
ordinary differential equations.  That is the fundamental point!

__________________________

Example.  To solve

(14) y x
x
+ z

y
+

z
= 0

we write the trajectory equations

(15)
dx

ds
= y x,

dy

ds
= z,

dz

ds
=1
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and obtain 2 equations by eliminating ds between any pair in (15).  For example, from the
first 2 equations in (15), we obtain

(16)
dx

y x
=
dy

z
.

In attempting to integrate (16) students sometimes make the silly mistake of treating z as a
constant:

(17)
dx

y x
=
dy

z
ln x =

1

2

y2

z
+ C WRONG!

This is wrong because x(s), y(s) and z(s) all vary along the trajectory.  A correct approach
would be to begin with an equation containing only 2 variables,

(18)
dy

z
= dz y =

1

2
z2 + C

and use this to eliminate y from

(19)
dx

y x
= dz

dx
1

2
z 2 + C 

 
 
 
x

= dz ln x =
1

6
z3 + Cz + C1.

Thus, along the trajectories determined by (15), the quantities

(20) y
1

2
z 2

and

(21) ln x
1

6
z3 y

1

2
z2 

 
 
 
z = ln x +

1

3
z3 yz

are constant.  Thus the general solution of (14) is

(22) = F y
1

2
z2, ln x +

1

3
z3 yz 

 
 
 

where F is an arbitrary function of 2 variables.  The reader should check this by direct
substitution of (22) into (14).

Note once again that s is a parameter that helps us to find the solution, but it does
not appear in the final result.  We could use any other parameter s( )  as long as
d / ds 0 .  To make the solution (22) unique we must specify   at one point along each
characteristic.

_____________________

Now suppose that (9) is further generalized to
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(23)
  

u1 x1, x2 ,K, xn( )
x1
+ u2 x1,x2,K, xn( )

x2
+L + un x1, x2 ,K,xn( )

xn
= F ,x( )

where F is an arbitrary function.  This includes the most general first-order, linear equation,
for which F = A x( ) + B x( ) .  However, we can as easily discuss the case in which F
depends nonlinearly on .  In that case (23) is called semi-linear.  When F 0 , (23) takes
the form

(24)
d

ds
= F ,x( )

where

(25)
  

d

ds
= u1 x1

+ u2 x2
+L + un xn

.

Thus we solve (23) by solving the n +1  coupled ODEs,

(26)
  

dx1
ds

= u1 x( ),
dx2
ds

= u2 x( ), K
dxn
ds

= un x( ),
d

ds
= F ,x( )

These equations trace out a trajectory in the (n+1)-dimensional space spanned by

  
(x1,x2,K, xn, ) .  As before, we may attempt to integrate (26) by writing

(27)
  

(ds =)
dx1
u1 x( )

=
dx2
u2 x( )

=L =
dxn
un x( )

=
d

F , x( )

but of course (27) may be too difficult to integrate.

Once again, to make the solution unique, we must specify  at one point on each
characteristic.  However, if some of the characteristics are closed loops, then the case F 0
could be problematic;  the integration around the characteristic could lead to a different value
of  than we started with.  This demonstrates that, although the method of characteristics has
reduced our PDE to a system of ODEs, this system may have peculiarities.

Suppose that the characteristic are unclosed.  Then, as “boundary conditions”, we
may specify  along any line that cuts across the charcteristics as shown:
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But consider what happens as the angle between the “data line” and the characteristics
decreases:

                                         

When the data line coincides with a characteristic, the solution is overdetermined along that
characteristic, and undetermined everywhere else.  In that case we have two choices:

1.)  Choose the boundary condition to be consistent with d / ds = F  along the
characteristic that coincides with the data line.  Since  remains arbitrary along every other
characteristic, there are an infinite number of solutions for (x).

2.)  Choose the boundary condition to be inconsistent with d / ds = F .  Then there are no
solutions for (x).

Mathematicians call these 2 choices the Fredholm alternative, after the first man who faced
such a choice.

Although the geometrical picture given above is superior, we can rephrase all this
more analytically as follows.  In 2 dimensions (for example), we have

(28) u x, y( )
x
+ v x, y( )

y
= F .

Our boundary condition is = 0 r( )  along the data curve x = x0 r( ), y = y0 r( ) .  That is,

(29) x0 r( ),y0 r( )( ) = 0 r( )

which implies

(30)
x

dx0
dr

+
y

dy0
dr

=
d 0

dr
.

Suppose we want to find  at the point P, which is very near the data curve:
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Obviously we need to know / n , the derivative normal to the data line.  We will know
/ n  if we know / x  and / y .  Equations (28) and (29) are 2 equations in these

2 quantities.  These 2 equations have a unique solution if

(31) det
u v
dx0
dr

dy0
dr

 

 

 
 

 

 

 
 
= u, v( )

dx0
dr
,
dy0
dr

 
 

 
 
0

But this is just a fancy way of saying that data line cannot coincide with a characteristic.  If
the determinant (31) vanishes, there can still be a solution (many, in fact), but only if
d / dr0  obeys a consistency condition that makes (28) equivalent to (29).

Thus, in general, characteristics may not be used as data lines.  This property is
sometimes taken to be the definition of characteristics.  Another common definition is this:
characteristics are lines along which discontinuites in the solution may propagate.

Finally, the problem can be further generalized to the quasilinear case,

(32)
  

u1 x,( )
x1
+ u2 x,( )

x2
+L + un x ,( )

xn
= F x,( )

Equation (31) is nonlinear in the dependent varibale , but it remains linear in the derivatives
of .  Characteristic methods still provide a means of solution, but now there is a new twist:
Because the direction of each characteristic depends not only on x, but also on the value of 
swept along the characteristic, the characteristics can cross one another, leading to multi-
valued solutions.  We will consider this further in Lecture 4.

References.  Ockendon pp 6-15,  Zauderer  pp 46-62.

                                


