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9.  Higher order PDEs as systems of first-order PDEs.  Hyperbolic systems.

For PDEs, as for ODEs, we may reduce the order by defining new dependent
variables.  For example, in the case of the wave equation,

(1) θ tt = c
2θxx ,

the definitions

(2) u ≡ θ t       and      v ≡θ x

imply

(3) ux = vt ,

while (10) itself may be written as ut = c
2vx .  Thus the second-order equation (1) is

equivalent to the first-order system

(4)
ut − c

2vx = 0
ux − vt = 0

The motivation for this approach is our success with first-order equations.  We
found that

(5) a x,t( )
∂θ
∂t

+ b x,t( )
∂θ
∂x

= f x,t( )

could be written as

(6) dθ
ds

= f

where

(7) d
ds

= a
∂

∂t
+ b

∂

∂x

is the directional derivative along the curve

(8) dt
ds

= a, dx
ds

= b .

Can we do a similar trick for first-order systems?

Consider the general system with 2 dependent variables, u(t,x) and v(t,x), in the 2
independent variables x and t:

(9)
D1u + d1v = f1
D2u + d2v = f2
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Here,

(10)
D1 = A1 x,t,u, v( )

∂

∂t
+ B1 x, t,u,v( )

∂

∂x

d1 = a1 x,t,u,v( )
∂

∂t
+ b1 x,t,u,v( )

∂

∂x

(and similarly, with 2 replacing 1) are the directional derivatives that appear in the given
system.  We allow the coefficients to depend on u and v as well as x and t;  such systems
are called quasilinear.

The system (9) is the generalization of (5) to the case of 2 dependent variables.  The
theory can be extended to n dependent variables in m independent variables (see Whitham
chapter 5).  However, success is rare when there are more than 2 independent variables, and
more than 2 dependent variables complicates the notation;  for these reasons we shall be
content with (9).

The primary difference between (5) and (9) is that each equation in (9) contains 2
directional derivatives which generally “point” in different directions.  Thus it is generally
impossible to integrate either of (9) in the same way as (5).  But what about linear
combinations of (9)?  Multiplying (9a) by c1 and (9b) by c2 , where c1 and c2  are functions
of (x,t,u,v) to be determined, and adding the equations, we obtain

(11) c1D1 + c2D2( )u + c1d1 + c2d2( )v = c1 f1 + c2 f2 .

We want the directional derivative of u in (11) to be proportional to the directional derivative
of v in the same equation.  That is, we want

(12) c1D1 + c2D2 = α c1d1 + c2d2( )

where α (another function of x,t,u,v( ) ) is the factor of proportionality.  Rewriting (12) in
the form

(12a)
  
L( )

∂

∂t
+ L( )

∂

∂x
= 0

and requiring the coefficients of ∂ / ∂t  and ∂ / ∂x  to vanish, we obtain 2 equations for c1
and c2 :

(13)
A1 − α a1 A2 − α a2
B1 − α b1 B2 − α b2
 
 
 

 
 
 

c1
c2
 
 
 

 
 
 =

0
0
 
 
 
 
 
 .

For nonzero (c1,c2 ), the determinant in (13) must vanish.  This gives a quadratic equation
for α.  If the 2 roots of this quadratic equation are real, and if the corresponding pairs
(c1,c2 ) are different (so that the 2 equations of form (11) are independent equations), then
we have achieved our goal of writing (9) in the form of 2 equations, each of which involves
derivatives along a single family of lines in the xt-plane.  In this case, the system is said to
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be hyperbolic, and the 2 families of lines are its characteristics.  If we are very lucky, we
might even succeed in manipulating (11) into the form

(14) dR1
ds1

= F1,
dR2
ds2

= F2

where d / ds1  and d / ds2  are the directional derivatives corresponding to the 2 families of
characteristics.  Then, if it happens that F1 = F2 = 0 , the variables R1 t,x,u,v( )  and
R2 t, x,u,v( )  are called Riemann invariants.  In exceptional cases, the 2 families of
characteristics may actually coincide.

In working out particular problems, it is almost never worthwhile to use the general
notation used above.  It is almost always better to simply follow the foregoing strategy in
each particular case.  However, the general notation shows why the method usually fails in
the case of 3 or more independent variables.  In the case of 2 dependent variables in 3
independent variables, (13) becomes a set of 3 equations (corresponding to the 3 kinds of
first-derivative) in the 2 unknowns (c1,c2 ) and is thus generally overdetermined.  In the
remainder of this section, we focus on examples.

_______________

Example.  In the case of system (4) the linear combination is

c1 ux − vt( ) + c2 ut − c2vx( ) = 0

so we want

c2 ,c1( ) = α −c1,−c
2c2( ) ,         that is,       

α 1
1 αc2
 
 
 

 
 
 
c1
c2
 
 
 

 
 
 =

0
0
 
 
 
 
 
 .

Thus α 2c2 −1 = 0 ⇒ α = ±1 / c .    The choice α = +1 / c   corresponds to
d / ds1 = ∂t − c∂x    and R1 = u + cv .  The choice α = −1 / c  corresponds to
d / ds2 = ∂t + c∂x  and R2 = u − cv .

__________________

Example.  For the heat equation, θ t −κθxx = 0 , we let u = θ  and v =θ x  to obtain the system

ut −κ vx = 0
v − ux = 0

The second equation fits the desired form, but no other linear combination does, because
there is no vt -term.  Thus there is only one characteristic, and therefore the system is not
hyperbolic (big surprise).

____________________

Example.  For Laplace’s equation, θ xx +θyy = 0 , the choices u = θx  and v =θ y  yield the
system
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ux + vy = 0
uy − vx = 0

The general linear combination is

c1 ux + vy( ) + c2 uy − vx( ) = c1∂ x + c2∂ y( )u + c1∂y − c2∂ x( )v = 0 .

Thus we want

c1∂ x + c2∂ y( ) = α c1∂ y − c2∂ x( )     ⇒      
1 α

α −1
 
 
 

 
 
 
c1
c2
 
 
 

 
 
 =

0
0
 
 
 
 
 
      ⇒      α = ±i .

Thus there are no characteristics, and the system is not hyperbolic.
_________________

Example.

∂u
∂t

+
∂u
∂x

− et
∂v
∂t

+
∂v
∂x

+ v 
 

 
 

= 0

∂u
∂t

−
∂u
∂x

+ x
∂v
∂t
−
∂v
∂x

 
 

 
 
− v = 0

These equations are already in characteristic form;  the directional derivatives in each
equation point in the same direction.  Defining

d
ds

=
∂

∂t
+
∂

∂x
       and       d

dr
=
∂

∂t
−
∂

∂x

we have

(*) du
ds

− et
dv
ds

+ v 
 

 
 = 0      and       du

dr
+ x

dv
dr

− v = 0 .

The first of these implies

du
ds

−
d
ds

etv( ) + v d
ds
et − etv = 0        ⇒         d

ds
u − etv( ) = 0

since dt / ds = 1.  Similarly, the second of (*) implies

d
dr

u + xv( ) − v
dx
dr

− v = 0        ⇒         d
dr

u + xv( ) = 0

since dx / dr = −1.  Thus the 2 Riemann invariants are u − etv  and u + xv .  The
characteristics corresponding to d / ds  are x − t = const .  Thus u − etv = F x − t( )  where F
is an arbitrary function.  Similarly, the characteristics corresponding to d / dr  are
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x + t = const .  Thus u + xv = G x + t( )  where G is another arbitrary function.  The general
solution can be written

u =
x F x − t( ) + et G x + t( )

x + et
,            v = G x + t( ) − F x − t( )

x + et

_________________

In the remainder of this section we consider a far more interesting example, the one-
dimensional shallow-water equations:

(15)

∂u
∂t

+ u ∂u
∂x

= −g ∂h
∂x

∂h
∂t

+ h
∂u
∂x

+ u
∂h
∂x

= 0

Note that these equations are nonlinear.

Before proceeding with the analysis of (15), we note that these equations may be
viewed as a special case of the equations for a one-dimensional polytrope, a homentropic
gas with equation of state p = cργ , where c and γ  are constants.  The equations governing
the gas are

ut + uux = −px / ρ       and        ρt + uρx + ρux = 0 .

Thus (15) correspond to ρ = h , c = g / 2  and γ = 2 .  Using this analogy, many of the
general results from gas dynamics (Whitham chapter 6) may be taken over to the shallow-
water system.

The general linear combination of (15) is

(16) c1 ut +u ux + g hx( ) + c2 ht + hux + u hx( ) = 0

which is equivalent to

(17) d
ds1

u +
d
ds2

h = 0

where

(18) d
ds1

≡ c1
∂

∂t
+ c1u

∂

∂x
+ c2 h

∂

∂x

and

(19) d
ds2

≡ c1g
∂

∂x
+ c2

∂

∂t
+ c2u

∂

∂x
.
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To make the directional derivatives proportional we set

(20) d
ds1

= α
d
ds2

which implies

(21)
c1 − α c2 = 0
c1u + c2 h − α gc1 − α c2 u = 0

Substituting (21a) into (21b) we obtain

(22) c2 h −α
2gc2 = 0 .

If c2 ≠ 0  then α 2 = h / g  and we obtain α = ± h / g .  Thus the system is hyperpolic if
h>0.  We choose c2 = g;  then c1 = ± gh ;  and we have

(23) d
ds2

= g ∂t + u ± gh( )∂ x( ) ≡ g dds
and

(24) d
ds1

= α
d
ds2

= ± gh
d
ds

.

Thus (17) becomes

(25) ± gh
du
ds

+ g
dh
ds

= 0 ⇒
d
ds

u ± 2 gh( ) = 0 ⇒

(26) ∂

∂t
+ u ± gh( ) ∂

∂x
 

  
 

  
u ± 2 gh( ) = 0

where both signs are to be taken the same.  The 2 equations (26) fit the form of (14) with

(27)

R1 = u + 2 gh R2 = u − 2 gh

d
ds1

=
∂

∂t
+ u + gh( ) ∂

∂x
d
ds1

=
∂

∂t
+ u − gh( ) ∂

∂x

and F1 = F2 = 0  (where we have re-defined d / ds1  and d / ds2 ).

Suppose that u and h are given along some curve in the x-t plane, such as t=0.  Then
the solution elsewhere is obtained by integrating along the curves defined by the directional
derivatives d / ds1  and d / ds2 .  Since these directional derivatives depend on both u and h,
each step in this integration requires information carried by both sets of characteristics:
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Thus the initial conditions in THIS interval determine the solution below THESE 2
characteristics.  This situation differs from the linear equation θ tt = c

2θxx  in that the
characteristics have a slope that depends on u and h.  Just as in the case of quasilinear first-
order equations, this may lead to multi-valued solutions.  For general hyperbolic systems
the situation can become very complex.

We consider the following initial-value problem for our shallow-water system:  The
fluid is initially at rest (u=0) with uniform depth (h = h0 ), and lies to the right of a wall at
x=0.  Beginning at t=0, the wall moves to the left along the trajectory x=X(t) as shown:

What is the motion of the fluid?

From the analysis above we know that u + 2 gh  is constant along (+)
characteristics with slope dx / dt = u + gh , while u − 2 gh  is constant along (-)
characteristics with slope dx / dt = u − gh .

If u < gh , then the (-) characteristics originating on the positive x-axis fill up the
entire area of the x-t plane occupied by the fluid.  This implies that

(28) u − 2 gh = −2 gh0          throughout the fluid.

On the (+) characteristics with slope

(29) dx
dt

= u + gh

we have

(30) u + 2 gh = const ,
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but the constant in (30) is different along each particular characteristic.  Nevertheless it
follows from (30) and (28) that u and h are (different) constants along each (+)
characteristic.  Hence by (29) each of the (+) characteristics is a straight line.

For the (+) characteristics intersecting the x-axis, the slope is dx / dt = gh0 .  On
these characteristics the constant in (30) is 2 gh0 .  Thus we conclude that

(31)
u = 0
h = h0

 
 
 

        for all   x > gh0 t .

                                             

To determine the solution in the remaining part of the domain, we use the fact that u = ˙ X t( )
at the wall.

By (28) and (29) the slope of the (+) characteristics may be written as

(32) dx
dt

=
3
2
u + gh0

Thus

(33) dx
dt

=
3
2

˙ X τ( ) + gh0

where τ is the time at which the characteristic intersects the wall.  Since, as we already know,
the right-hand side of (33) must be a constant, it follows from (33) that

(34) x = X τ( ) +
3
2

˙ X τ( ) + gh0
 
 

 
 t − τ( ) .

Given any (x,t) in the region of the moving fluid, we can determine u(x,t) and h(x,t) as
follows. First we solve (34) for τ, the time at which the (+) characteristic passing through
(x,t) intersects the wall.  Then

(35) u x,t( ) = ˙ X τ( )

and by (28)

(36) gh x,t( ) = gh0 +
1
2

˙ X τ( ) .

Eqns (35) and (36) hold at all points along the characteristic.  The solution will be single-
valued if (34) has only one solution for τ.
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An interesting special case is

(37) ˙ X = −V     (constant)

corresponding to a wall moving steadily to the left at speed V>0.  In this case the slope of
the (+) characteristics intersecting the wall is

(38) dx
dt

= −
3
2
V + gh0

On these characteristics the solution is

(39) u = −V, gh = gh0 −
1
2
V

Between this region and the region of quiescent flow lies a fan region, in which the (+)
characteristics pass through the origin with every slope between (38) and gh0 , and the
solution varies smoothly across the characteristics.  As V → 2 gh0 , the fan extends right
up to the wall, and the depth at the wall vanishes.  When V > 2 gh0  the wall simply
outruns the fluid, and the problem reduces to the “dam break” problem, in which the wall is
made to disappear at t=0.

In the dam-break problem, all the (+) characteristics to the left of the quiescent
region on x > gh0 t  emanate from the origin x = t = 0 .  Each (+) characteristic has the
constant slope (29), and since it passes through the origin, we may write its equation as

(40) x = u + gh( ) t .

But then the solution in the entire fan region may be obtained from (40) and (28).  We find

(41) u =
2
3

x
t
− gh0

 
 

 
              and          gh =

2
3

gh0 +
1
3
x
t
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Once again, the rightward edge of the fan region is x = gh0 t .  At this edge u=0 and
h = h0 , matching the solution on x > gh0 t .  At the leftward edge, x = −2 gh0 t , h=0, and
u = −2 gh0 .  This is the speed at which the flood covers dry ground.  The solution looks
like this:

               

Cases, like that just considered, in which one of the Riemann invariants is uniform
throughout the flow, are called simple waves.  In such cases one can usually use the
uniformity of the Riemann invariant to eliminate one of the dependent variables a priori, and
thereby reduce the entire problem to a first-order equation.  For example, in the dam-break
problem we may use (28) to eliminate u in

(42) ∂h
∂t

+
∂

∂x
hu( ) = 0

which then takes the form

(43) ∂h
∂t

+ c h( )
∂h
∂x

= 0          with          c h( ) = 3 gh − 2 gh0( ) .

It is in fact far simpler to solve the dam break problem in the form (43) than by the previous
method;  it follows easily from (43) that

(44) gh =

gh0 , x > gh0 t

2
3

gh0 +
1
3
x
t
, −2 gh0t < x < gh0 t
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and u may then be obtained from (28).

___________________

Now, returning to the problem with the moving wall, we consider the case X = Vt  in
which the wall moves to the right at a uniform speed V.  We shall find that the fan appearing
in the previous solution is replaced by a shock.

We begin by noting, from symmetry considerations, that, just as in the case of the
leftward moving wall, the solution must take the form u = u x / t( ), h = h x / t( ) .  The
boundary conditions are u=0 and h = h0  along the x-axis, and u=V along x = Vt , the
trajectory of the wall.  We let h = hw  along the wall trajectory, where hw  is a constant which
must be determined by our solution to the problem.

Let x,t( )  be a point in the fluid domain.  If the 2 characteristics through x,t( )
intersect the x-axis, then, as before,

(45)
u + 2 gh = 0 + 2 gh0
u − 2 gh = 0 − 2 gh0

imply that u = 0  and h = h0 ;  the fluid is quiescent as in its initial state.  On the other hand,
if the 2 characteristics through x,t( )  intersect the wall trajectory, then

(46)
u + 2 gh = V + 2 ghw
u − 2 gh = V − 2 ghw

imply that u = V  and h = hw ;  the fluid moves at the same speed as the wall, but its uniform
depth hw  is as yet undetermined.  These 2 solutions obviously disagree, and the only
conclusion can be that the quiescent solution holds in a wedge-shaped region near the x-
axis, whereas the solution with u = V  holds in a wedge-shaped region near the line x = Vt .
These 2 regions are separated by a shock along x =Ut , where U too must be determined.

To analyze the shock with complete physical correctness, we must add viscosity to
the problem, and treat the shock as an internal boundary layer in which u and h vary rapidly
between the uniform values on either side.  However, as we realize from our study of
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Burger’s equation, we can model the shock as a true discontinuity if we are careful to apply
jump conditions that express conservation laws that would survive the inclusion of viscosity.

The shallow-water equations imply the conservation of mass,

(47) ∂h
∂t

+
∂

∂x
hu( ) = 0

and momentum

(48) ∂

∂t
hu( ) +

∂

∂x
1
2
gh2 + hu2 

 
 
 = 0 .

Both of these fit the form

(49) ∂P
∂t

+
∂Q
∂x

= 0

considered in Section 4.  There we showed that (49) implies

(50) U P[ ] = Q[ ]

where U is the velocity of the shock, and [ ] denotes the jump across the shock.

In the present case the jump conditions imply

(51) U hw − h0( ) = Vhw − 0
and

(52) U Vhw − 0( ) =
1
2
ghw

2 + hwV
2 

 
 
 −

1
2
gh0

2 .

Eqns (51) and (52) determine the values of hw  and U, completing the solution.  We find that

(53) U =
ghw
2h0

h0 + hw( )         and        V =U
hw − h0( )
hw

.

(It is easier to regard U and V as functions of hw .)

Reference.  Whitham chapters 5 & 6 and pp. 454-460.


