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Preface

This book is a sequel to my earlier book Lectures on Geophysical Fluid Dy-
namics published more than 20 years ago. Unlike LGFD the present book
assumes a substantial background knowledge of geophysical fluid dynamics,
such as that which could be obtained from LGFD or from any of the other in-
troductory books. The emphasis here is on topics that have seen significant
development in the past twenty years or were incompletely covered in the
earlier book. The primary focus is on Lagrangian methods and variational
principles.

This is a work of pedagogy in which I make no effort to cite original
sources. Although some elements are new, most of the ideas presented here
have been percolating in the field for a considerable time. I have sprinkled
the text with some of the great names whose work has most most influenced
me. The list will get longer as more chapters are added.

This is admittedly a covid project, undertaken with the advice and en-
couragement of my friend and colleague Nick Pizzo.

Rick Salmon
in the pandemic, October 2020
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Chapter 1

Mean flow generated by a
surface wave packet

We consider a surface gravity wave packet propagating to the right (in the
direction of increasing x) with y increasing upward and y = 0 corresponding
to the surface of the water when at rest (figure 1.1). The water velocity under
the crests is rightward, in the direction of propagation. The water velocity
under the troughs is leftward. The velocity field associated with the crests
and troughs decays rapidly with depth. At a depth equal to the wavelength
of the wave it has mostly disappeared. The crests and troughs move at the
deep-water phase speed

c =
ω

k
=

√
g

k
(1.1)

while the wave packet itself moves at the group velocity

cg =
dω

dk
=

1

2

√
g

k
(1.2)

Such a wave packet is easily observed in the wave tank at the Hydraulics
Lab.

Less easy to observe is the field of mean velocity that is attached to the
wave packet. This mean velocity is much smaller than the oscillatory fluid
velocity within the wave packet itself, but the field of mean velocity is much
broader. In the broader perspective of figure 1.2, the wave packet is but a
speck near the surface of the water. The mean flow includes the Stokes drift
in the wave packet itself, but also the much broader and deeper recirculating
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Figure 1.1: A close-up of the crests and troughs inside the wave packet.

flow outside the wave packet. To observe this mean flow, you need to seed
the wave tank with neutrally buoyant beads.

The mean-flow pattern is attached to the wave packet and hence this pat-
tern—not the fluid itself!—moves at the group velocity of the wave packet.
But something strange happens if the waves in the packet experience break-
ing. If breaking occurs, removing (say) half the energy of the wave packet,
then half the mean-flow pattern is jettisoned by the wave packet at the point
of breaking and remains behind as a semi-permanent, stationary flow (figure
1.3). The rest of the mean-flow pattern continues to be carried along by the
wave packet. This somewhat surprising behavior can also be observed in the
wave tank.

The purpose of this chapter is to explain these observed features. We
shall do so by solving the fluid equations in Lagrangian coordinates. In the
Lagrangian description of the fluid, the independent variables are a set of
fluid particle labels, (a, b), and the time τ . The dependent variables are the
locations x(a, b, τ) and y(a, b, τ) of the fluid particle labeled (a, b) at the time
τ . The pressure is p(a, b, τ). Each fluid particle keeps its same value of (a, b)
as it moves around. Thus the value of (a, b) tells us which fluid particle
we are considering. We use the special symbol τ for time to emphasize that
∂/∂τ (with a and b held fixed) is the time derivative following a fluid particle.
Thus

∂

∂τ
≡ D

Dt
(1.3)

The labels can be arbitrarily assigned, but they must vary continuously
throughout the flow, and the mapping from (a, b) to (x, y) must be one-to-
one at all times. A common choice is to assign the (a, b) to equal (x, y) at
some ‘labeling time’ in the past. We adopt this convention, and we further
assume that, at the labeling time, the fluid was in a state of rest. The state
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Figure 1.2: A broad recirculating mean flow is carried along by the wave
packet at its group velocity. This figure is a poor imitation of a figure drawn
by Michael McIntyre in 1981.

Figure 1.3: A portion of the mean-flow pattern is jettisoned by the wave
packet at the point of breaking, and remains behind as a semi-permanent,
stationary flow.
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of rest is described by

x(a, b, τ) = a (1.4)

y(a, b, τ) = b (1.5)

p(a, b, τ) = −gb (1.6)

where g is the gravity constant. The fluid occupies the domain b < 0, and
the free surface corresponds to b = 0. Since every fluid particle conserves
its labels, and since the fluid particles on the free surface remain there, the
free surface corresponds to a fixed boundary, b = 0, in Lagrangian coordi-
nates. The free surface elevation at time τ is y(a, 0, τ). To express the free
surface elevation in the conventional manner as y = y(x, t), we would need
to eliminate a between x(a, 0, τ) and y(a, 0, τ).

To get started we must write the equations of motion in Lagrangian co-
ordinates. The equations are

xττ = −∂(p, y)

∂(a, b)
(1.7)

yττ = −∂(x, p)

∂(a, b)
− g (1.8)

∂(x, y)

∂(a, b)
= 1 (1.9)

where subscripts denote partial derivatives, and

∂(F,G)

∂(a, b)
≡ FaGb − FbGa (1.10)

for any F and G. The fluid velocity is (xτ , yτ ), and the acceleration is
(xττ , yττ ). Equation (1.9) states that the fluid is incompressible. Recalling
that the Jacobians can be manipulated like fractions, we see that

∂(p, y)

∂(a, b)
=
∂(a, b)

∂(x, y)

∂(p, y)

∂(a, b)
=
∂(p, y)

∂(x, y)
=
∂p

∂x
(1.11)

In Lagrangian coordinates, the acceleration terms are linear terms, and the
pressure terms are nonlinear. This is just the opposite of the situation in Eu-
lerian coordinates. The boundary condition is p = 0 at the free surface, b = 0.
Note that this is the only boundary condition; the so-called kinematic bound-
ary condition is automatically satisfied in Lagrangian coordinates. This is a
primary advantage of the Lagrangian formulation.
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The equations of motion are (1.7)-(1.9). Any solution of these equations is
a physical possibility. However, we are interested in solutions with vanishing
vorticity, because only such solutions can be excited from rest by pressure
forces. The condition of vanishing vorticity is

∂v

∂x
− ∂u

∂y
=
∂(xτ , x)

∂(a, b)
+
∂(yτ , y)

∂(a, b)
= 0 (1.12)

We solve the Lagrangian equations (1.7)-(1.9) with auxiliary condition
(1.12) by pedestrian perturbation theory. We expand

x = a+ x(1)(a, b, τ) + x(2)(a, b, τ) + · · · (1.13)

y = b+ y(1)(a, b, τ) + y(2)(a, b, τ) + · · · (1.14)

p = −gb+ p(1)(a, b, τ) + p(2)(a, b, τ) + · · · (1.15)

The leading terms represent the state of rest. At the next order, the wave
packet will appear. At the order after that, we obtain the mean flow. The
superscript-(1) variables are O(A), where A is the amplitude of the wave. The
superscript-(2) variables are O(A2). We substitute the expansions (1.13)-
(1.15) into (1.7)-(1.9) and collect like powers of A. At the leading order, all
the terms cancel because the state of rest satisfies the equations. At O(A)
we obtain

x(1)ττ = −gy(1)a − p(1)a (1.16)

y(1)ττ = +gx(1)a − p
(1)
b (1.17)

x(1)a + y
(1)
b = 0 (1.18)

The solution of interest is

x(1) = Aekb sin(ka− ωτ) (1.19)

y(1) = −Aekb cos(ka− ωτ) (1.20)

p(1) = 0 (1.21)

where A, k and ω are constants, and ω2 = gk. The result p(1) = 0 seems
bizarre, but remember that the full pressure at this order is p = −gb+p(1) =
−gb and that b is a fluctuating function of (x, y, t).
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At the next order, O(A2), we obtain

x(2)ττ = −gy(2)a − p(2)a (1.22)

y(2)ττ = +gx(2)a − p
(2)
b (1.23)

x(2)a + y
(2)
b = A2k2e2kb (1.24)

At this order, the wave appears as a forcing term in the mass conservation
equation (1.24). We also need to enforce the requirement (1.12) of vanishing
vorticity. Substituting (1.13)-(1.15) into (1.12) we obtain[
∂y

(1)
τ

∂a
− ∂x

(1)
τ

∂b

]
+

[
∂y

(2)
τ

∂a
− ∂x

(2)
τ

∂b
+
∂(x

(1)
τ , x(1))

∂(a, b)
+
∂(y

(1)
τ , y(1))

∂(a, b)

]
= 0 (1.25)

and substituting (1.19)-(1.21) into (1.25) we obtain

[ 0 ] +

[
∂y

(2)
τ

∂a
− ∂x

(2)
τ

∂b
+ 2ωk2A2e2kb

]
= 0 (1.26)

Our task is to solve (1.22)-(1.24) and (1.26) for the superscript-(2) vari-
ables. A particular solution to (1.22)-(1.24) is

x(2) = 0, y(2) =
1

2
A2ke2kb, p(2) = 0 (1.27)

A homogeneous solution to (1.22)-(1.24) is

x(2) = U(b)τ, y(2) = 0, p(2) = 0 (1.28)

where U(b) is an arbitrary function. Our solution will be the solution (1.27)
plus the solution (1.28) with the arbitrary function U(b) chosen to sat-
isfy (1.26), which implies U ′(b) = 2ωk2A2e2kb. Thus we choose U(b) =
ωkA2e2kb = cA2k2e2kb. Putting all this together, we have

x = a+ Aekb sin(ka− ωτ) + cA2k2e2kbτ +O(A3) (1.29)

y = b− Aekb cos(ka− ωτ) +
1

2
A2ke2kb +O(A3) (1.30)

p = −gb+O(A3) (1.31)

where c = ω/k and ω2 = gk. Again, A and k are constants.
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The solution (1.29)-(1.31) is the complete water-wave solution, correct to
O(A2). The oscillatory components are familiar, as is the Stokes drift term,
the last term shown in (1.29). The last term in (1.30) is less obvious. And
where, you may ask, are the Stokes corrections to the basic wave?

The Stokes corrections are there, but they are hidden in the transfor-
mation back to Eulerian coordinates. Suppose, for example, we want the
standard representation, y = y(x, t), for the free surface elevation. The free
surface corresponds to b = 0. At b = 0 we have

x = a+ A sin(ka− ωτ) + cA2k2τ (1.32)

y = −A cos(ka− ωτ) +
1

2
A2k (1.33)

To obtain y(x, t) we must eliminate a between (1.32) and (1.33). To get the
waveform we may set τ=0. Then (1.32)-(1.33) become

x = a+ A sin(ka) (1.34)

y = −A cos(ka) +
1

2
A2k (1.35)

By (1.34) we have
a = x− A sin(kx) +O(A2) (1.36)

Substituting (1.36) into (1.35) we obtain

y(x) = −A cos (kx− Ak sin(kx)) +
1

2
A2k

≈ −A cos(kx) + A sin(kx) (−Ak sin(kx)) +
1

2
A2k

= −A cos(kx)− A2k sin2(kx) +
1

2
A2k

= −A cos(kx) +
1

2
A2k cos(2kx) (1.37)

which is the familiar, leading-order, Stokes correction to the wave form. To
get the leading-order correction to the phase speed, it is necessary to compute
the superscript-(3) terms in (1.13)-(1.15). We will not do this.

Up to now we have considered A to be a constant. Now we consider a
wave packet in which k is constant but A(a, τ) varies slowly, on a time scale
much larger than the wave period, and on a horizontal length scale much
larger than the wavelength. We replace the constant A in (1.19)-(1.21) by the
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slowly varying function A(a, t). That is, we replace (1.19)-(1.21) by the linear
superposition of basic waves that add up to make the wave packet. In the
next order equations, (1.22)-(1.24) and (1.26), we replace A by A(a, τ). This
replacement is legal, because the derivatives performed on the superscript-(1)
solution to obtain (1.22)-(1.24) and (1.26) were derivatives with respect to
the ‘fast’ variations of wave phase. The derivatives of A(a, τ) are negligible
in comparison to these.

Since we are considering a wave packet, we can be even more specific.
We know that the wave packet moves at the group velocity corresponding to
the carrier wavenumber k. Thus assuming that k > 0 (wave propagating to
the right) we take A(a, τ) = A(a − cgτ), where A() is now an arbitrary but
slowly varying function of its single argument, and cg is given by (1.2). The
superscript-(2) equations, (1.22)-(1.24) and (1.26), become

x(2)ττ = −gy(2)a − p(2)a (1.38)

y(2)ττ = +gx(2)a − p
(2)
b (1.39)

x(2)a + y
(2)
b = k2A(a− cgτ)2e2kb (1.40)

y(2)τa − x
(2)
τb = −2ωk2A(a− cgτ)2e2kb (1.41)

Let u(2) = x
(2)
τ and v(2) = y

(2)
τ . Then the time-derivative of (1.40) is

u(2)a + v
(2)
b =

∂

∂τ

(
k2A(a− cgτ)2e2kb

)
(1.42)

and eqn (1.41) becomes

v(2)a − u
(2)
b = −2ωk2A(a− cgτ)2e2kb (1.43)

The right-hand side of (1.42) is much smaller than the right-hand side of
(1.43), because |Aτ | << ωA. Thus the divergence of the mean velocity field
is much smaller than its curl, and we may set

u(2) = −ψb, v(2) = ψa (1.44)

Eqn (1.43) becomes a Poisson equation for the mean streamfunction,

ψaa + ψbb = −2ωk2A(a− cgτ)2e2kb (1.45)

The mean flow sees the free surface as a rigid lid, hence ψ = 0 at b = 0.
This boundary condition is intuitively obvious, but it will be justified more
formally below.
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The solution of (1.45) is easiest if we consider the problem in the reference
frame moving with the wave packet. This amounts to a Galilean transfor-
mation in label space. In the comoving frame the A2-term in (1.45) becomes
a steady source. Introducing the new independent variables

α = a− cgτ (1.46)

β = b (1.47)

s = τ (1.48)

and applying the transformation equations

∂

∂τ
=

∂

∂s
− cg

∂

∂α
(1.49)

∂

∂a
=

∂

∂α
(1.50)

∂

∂b
=

∂

∂β
(1.51)

we find that (1.45) becomes

ψαα + ψββ = −2ωk2A(α)2e2kβ ≡ S(α, β) (1.52)

To justify the boundary condition ψ = 0, we take the time derivative of
(1.38) at b = 0 (where p(2) = 0). The result is

u(2)ττ = −gv(2)a at b = 0 (1.53)

In the comoving reference frame this becomes

c2gu
(2)
αα = −gv(2)α at b = 0 (1.54)

Since the mean velocity vanishes very far from the wave packet, (1.54) implies

u(2)α = −4kv(2) at b = 0 (1.55)

and hence v(2) ≈ 0 at b = 0 because u(2) varies on a scale much larger than
k−1.

Our solution for the mean flow generated by a wave packet boils down
to the Poisson equation (1.52) with boundary condition ψ = 0. Although
it is difficult to write down the analytical solution, the general character of
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the solution is obvious from (1.52), which equates the vorticity of the mean
flow to the source term S(α, β). This source term is negative because cg
is positive for a right-moving packet. The source term is also compact; it
vanishes outside the wave packet, which extends only to a depth of order
k−1. Thus, stepping back, we see that the mean flow must be as depicted in
figure 1.3: a broad anticyclonic flow around the wave packet which appears
as a negative ‘point-source’ for mean vorticity. The ‘point source’ is non-
vanishing only in a small region at, and just below, the free surface at b = 0.
The rightward mean flow is confined to a very small depth (the depth of the
wave packet itself) near b = 0. We recognize this shallow rightward mean
flow as Stokes drift, but our calculation shows that there is more to the mean
flow than just the Stokes drift.

Please note that there is considerable irony in our analysis of this flow
in terms of vorticity. The vorticity of the fluid is precisely zero. Our mean
flow does in fact have a non-vanishing vorticity, but its vorticity is cancelled
by the vorticity contained in the wave packet itself. Thus we have solved a
relatively complicated problem of irrotational flow by analyzing the vorticity
equation for the flow.

But there is an additional benefit to our separation of the vorticity into
mean and fluctuating parts. The benefit is this: The fluctuating vorticity
has a very precarious existence. At any moment, wave-breaking (followed by
turbulence and viscous dissipation) can destroy some or all of it. In contrast,
the mean vorticity is much less affected by viscosity.

The effect of wave breaking is most easily understood by thinking of the
fluid evolution as a movie. The breaking occurs in a single frame. In the
frames before and after the breaking frame, the dynamics analyzed by us
apply.

Suppose that the breaking removes half the wave energy. This means that
the wave packet amplitude is reduced by a factor 1/

√
2. The wavenumber k

is unaffected. In the frames following the breaking frame, the wave packet
continues to move at its same group velocity, but with only half its previous
energy. But since (1.52) must apply to all the post-breaking frames, the mean
flow dragged along by the wave packet can have only half the amplitude that
it had before breaking. What happens to the additional mean-flow vorticity?
It cannot have been dissipated by viscosity. The mean flow is too broad to
be dissipated in a single movie frame. The answer is that this excess mean
vorticity is simply jettisoned, left behind at the point of wave breaking. This
explains the observations summarized at the beginning of this chapter. The
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zero vorticity of the initial wave packet has been converted by jettisoning,
into real, actual vorticity by the action of wave breaking.

Even if the wave packet doesn’t break, it can cause permanent changes
to the flow. Suppose you are a fluid particle or a neutrally buoyant glass
bead very near the free surface. Before the wave packet arrives, you are at
rest. As the wave packet passes, you move to the right in the Stokes drift of
the mean flow. After the wave packet passes, you are at rest again, but at
a location that is to the right of where you started. You have experienced
a change in location. If you are a molecule of passive tracer, you have been
transported by the wave packet. If there is a succession of wave packets, you
just keep moving. The limiting case is a infinite sinusoidal wave in which you
move steadily at the Stokes velocity.

Of course, if the wave breaks right on top of you, you acquire a semi-
permanent velocity as a part of the jettisoned mean vorticity field. But let’s
continue to consider a non-breaking wave packet. Suppose, instead of a glass
bead, you are a vorticity line or a part of a vortex tube that existed in the
fluid before the arrival of the wave packet. As the wave packet passes you
move with the attached mean flow, and then you stop. Thus, after passage of
the wave packet, any already-existing field of vorticity has been re-arranged.
There is a permanent change in the pre-existing flow even though the wave
packet didn’t break. This is the ‘ratcheting effect’ referred to in many of
McIntyre’s papers.

The analysis presented here falls within the domain of ‘wave-mean’ the-
ory, the subject of the beautiful book by Oliver Bühler. This subject is made
difficult by the fact that various investigators have approached it from quite
dissimilar directions. Even if you learn it in one particular way, you may
have trouble following someone else’s application. Following an alternative
approach, the right-hand side of (1.52) emerges as the curl of the pseudomo-
mentum. The pseudomomentum is defined as

P = kA =
kE

ω
(1.56)

where A = E/ω is the wave action, and

E = gkA2e2kb (1.57)

is the energy density of the wave packet. Thus

P = ωkA2e2kb (1.58)



Salmon: More Lectures on GFD 14

and the curl of the pseudomomentum is

−∂P
∂b

= −2ωk2A2e2kb (1.59)

as claimed. This is a general result, true for all types of waves. We will meet
it again, many times, in the following chapters.



Chapter 2

Mean flow generated by an
internal wave packet

In this second chapter we compute the ‘Bretherton flow’ associated with an
internal wave packet propagating through a stratified fluid. As in the previ-
ous chapter, we assume that the fluid was initially at rest. Now, however, we
consider the full three-dimensional character of the flow. (Although surface
gravity waves are often long-crested, internal waves frequently are not.) We
do not consider coordinate system rotation, but that could easily be added.
Also, we ignore top and bottom boundaries; our wave packet moves at its
group velocity through a stratified fluid of infinite extent. However, the
analysis of a vertical mode, with packet geometry in the horizontal, would
proceed along similar lines.

We take the governing dynamics to be Boussinesq dynamics. In standard
Eulerian form the Boussinesq equations are

Du

Dt
= −px (2.1)

Dv

Dt
= −py (2.2)

Dw

Dt
= −pz + θ (2.3)

ux + vy + wz = 0 (2.4)

Dθ

Dt
= 0 (2.5)

with θ the buoyancy, D/Dt = ∂t + u∂x + v∂y + w∂z, and z positive up. In

15
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Lagrangian coordinates these equations become

xττ = −∂(p, y, z)

∂(a, b, c)
(2.6)

yττ = −∂(x, p, z)

∂(a, b, c)
(2.7)

zττ = −∂(x, y, p)

∂(a, b, c)
+ θ(c) (2.8)

∂(x, y, z)

∂(a, b, c)
= 1 (2.9)

We satisfy (2.5) by taking θ to be a prescribed function of the label c. The
state of rest corresponds to

x(a, b, c, τ) = a (2.10)

y(a, b, c, τ) = b (2.11)

z(a, b, c, τ) = c (2.12)

p(a, b, c, τ) =

∫ c

0

θ(c′)dc′ ≡ p(0)(c) (2.13)

where the zero level is arbitrary. We solve (2.6)-(2.9) by a perturbation
expansion about the state of rest, in which the waves are assumed to be
weak, and the induced mean flow is assumed to be even weaker. Thus

x(a, b, c, τ) = a+ x(1)(a, b, c, τ) + x(2)(a, b, c, τ) + · · · (2.14)

y(a, b, c, τ) = b+ y(1)(a, b, c, τ) + y(2)(a, b, c, τ) + · · · (2.15)

z(a, b, c, τ) = c+ z(1)(a, b, c, τ) + z(2)(a, b, c, τ) + · · · (2.16)

p(a, b, c, τ) = p(0)(c) + p(1)(a, b, c, τ) + p(2)(a, b, c, τ) + · · · (2.17)

Before the wave packet arrives, the fluid is at rest. We introduce a con-
straint that enforces this. The appropriate constraint is that the potential
vorticity has the value it had in the rest state. This is analogous to the vanish-
ing of ordinary vorticity in the previous chapter. The Boussinesq equations
conserve potential vorticity in the form

D

Dt
(ω · ∇θ) = 0 (2.18)
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where u = (u, v, w), and ω = ∇ × u is the vorticity. Thus the appropriate
constraint is

ω · ∇θ = 0 (2.19)

To translate (2.19) into Lagrangian coordinates, we note that

ω · ∇θ = εijk
∂θ

∂xi

∂ur
∂xj

∂xr
∂xk

=
∂(ur, xr, θ)

∂(x, y, z)
=
∂(ur, xr, θ)

∂(a, b, c)
(2.20)

where repeated indices are summed. Thus the appropriate form of the con-
straint is

∂(xτ , x, θ)

∂(a, b, c)
+
∂(yτ , y, θ)

∂(a, b, c)
+
∂(zτ , z, θ)

∂(a, b, c)
= 0 (2.21)

However, since θ = θ(c) and we assume θ′(c) 6= 0, (2.21) takes the form

∂(xτ , x)

∂(a, b)
+
∂(yτ , y)

∂(a, b)
+
∂(zτ , z)

∂(a, b)
= 0 (2.22)

Compare (2.22) to (1.12). Our task is to solve (2.6)-(2.9) with the constraint
(2.22). (Recognizing that the τ -derivative of (2.22) follows from (2.6)-(2.9),
we emphasize that (2.22) is a constraint on the initial conditions.) At O(A)
(2.6)-(2.9) become

x(1)ττ = −p(1)a + θ(c)z(1)a (2.23)

y(1)ττ = −p(1)b + θ(c)z
(1)
b (2.24)

z(1)ττ = −p(1)c − θ(c)(x(1)a + y
(1)
b ) (2.25)

x(1)a + y
(1)
b + z(1)c = 0 (2.26)

These equations take a more familiar form if we define

p̂(1) ≡ p(1) − θ(c)z(1) (2.27)

Then (2.23)-(2.26) become

x(1)ττ = −p̂(1)a (2.28)

y(1)ττ = −p̂(1)b (2.29)

z(1)ττ = −p̂(1)c −N2(c)z(1) (2.30)

x(1)a + y
(1)
b + z(1)c = 0 (2.31)
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where N2(c) ≡ θ′(c). For simplicity we assume N2(c) = N2
0 (constant),

corresponding to a uniform stratification in the state of rest. The solution of
interest is

x(1) = − k

ω2
A(a, b, c, τ) sinφ (2.32)

y(1) = − l

ω2
A(a, b, c, τ) sinφ (2.33)

z(1) =
(k2 + l2)

ω2m
A(a, b, c, τ) sinφ (2.34)

p̂(1) = A(a, b, c, τ) cosφ (2.35)

where
φ = ka+ lb+mc− ωτ (2.36)

and

ω2 =
N2

0 (k2 + l2)

(k2 + l2 +m2)
(2.37)

In this solution, k, l,m, ω are constants and A(a, b, c, τ) varies slowly com-
pared to φ. We will also need an expression for the energy of the wave packet.
The kinetic energy, averaged over a wave cycle, is

1

2
〈(x(1)τ )2 + (y(1)τ )2 + (z(1)τ )2〉 =

(
k2 + l2 +

(k2 + l2)2

m2

)
A2

4ω2
=

K4A2

4N2
0m

2
(2.38)

where k ≡ (k, l,m) and K = |k|. Recalling that the kinetic energy equals
the potential energy in internal waves, we find the energy density of the wave
packet to be

E(a, b, c, τ) =
K4

2N2
0m

2
A(a, b, c, τ)2 (2.39)

It will also be handy to have the group velocity,

cg =

(
∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)
=
N2

0m

ωK4

(
km, lm,−k2 − l2

)
(2.40)

Note that k · cg = 0 as expected for internal waves.
We note that solutions of the form (2.32)-(2.35) are not the only solutions

to (2.28)-(2.31). In addition, we may have steady, two-dimensional, hydro-
static flows in horizontal planes. These horizontal flows come into play as we
proceed.
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At the next order, we obtain

x(2)ττ = −p(2)a + θ(c)z(2)a −
∂(p(1), y(1))

∂(a, b)
− ∂(p(1), z(1))

∂(a, c)

= −p̂(2)a +N2
0 z

(1)z(1)a −
∂(p̂(1), y(1))

∂(a, b)
− ∂(p̂(1), z(1))

∂(a, c)
(2.41)

y(2)ττ = −p(2)b + θ(c)z
(2)
b −

∂(p(1), z(1))

∂(b, c)
− ∂(x(1), p(1))

∂(a, b)

= −p̂(2)b +N2
0 z

(1)z
(1)
b −

∂(p̂(1), z(1))

∂(b, c)
− ∂(x(1), p̂(1))

∂(a, b)
(2.42)

z(2)ττ = −p(2)c − θ(c)
(
x(2)a + y

(2)
b

)
− ∂(x(1), p(1))

∂(a, c)
− ∂(y(1), p(1))

∂(b, c)

= −p̂(2)c −N2
0 z

(2) +N2
0 z

(1)z(1)c −
∂(x(1), p̂(1))

∂(a, c)
− ∂(y(1), p̂(1))

∂(b, c)
(2.43)

x(2)a + y
(2)
b + z(2)c = 0 (2.44)

where
p̂(2) ≡ p(2) − θ(c)z(2) (2.45)

Note that the symbol p̂ replaces p in the second lines of (2.41)-(2.43). Note
also the correspondence between (2.45) and (2.27). In writing (2.41)-(2.43)
we have used

∂(x(1), y(1))

∂(a, b)
=
∂(y(1), z(1))

∂(a, c)
= 0 etc. (2.46)

because x(1), y(1) and z(1) differ only by a constant factor.
Compared to the second-order surface wave equations, these equations

are a mess. And there is worse to come. If you attempt to evaluate the
(1)-(1) terms in (2.41)-(2.43) by treating A(a, b, c, τ) as a constant, which
is the approach followed in the previous chapter, then you find that all of
the Jacobian terms in (2.41)-(2.43) actually vanish. Good riddance, you
think. Things get simpler. Unfortunately, however, all the remaining (1)-(1)

terms are negligible for a different reason. Take z(1)z
(1)
a for example. Since

z(1) ∝ sinφ and z
(1)
a ∝ cosφ, their product is proportional to sin 2φ. To
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the broad induced mean flow, this looks like a compact, rapidly fluctuating,
source with an average value of zero. Squint your eyes and it disappears.

What has gone wrong? The answer is this: The (1)-(1) terms in (2.41)-
(2.43) will contribute, but only if we take the slow variations of A(a, b, c, τ)
into account. This is an enormous difference from the surface wave problem,
best understood as follows. In the surface wave problem, the wave packet
has a monopole component; the average of the source term does not vanish.
The internal wave packet has no monopole component; averaging the source
terms over the internal wave packet just gives zero. The mean flow responds,
but its response will be a dipole. We must work harder.

Now take the term

∂(x(1), p̂(1))

∂(a, b)
≡ [x(1), p̂(1)] ∝ [A sinφ,A cosφ] (2.47)

Since
[A,A] = [sinφ, cosφ] = 0 (2.48)

we have

[A sinφ,A cosφ] = A[sinφ,A] cosφ+ sinφ[A, cosφ]A

= A cosφ[φ,A] cosφ− sinφ[A, φ]A sinφ

= A[φ,A] = A(kAb − lAa) (2.49)

Thus,
∂(x(1), p̂(1))

∂(a, b)
= − k

ω2
(kAb − lAa)A (2.50)

The other Jacobians can be evaluated in a manner analogous to (2.50).
Then (2.41)-(2.44) become

x(2)ττ = −p̂(2)a −
k

2ω2m

(
km∂a + lm∂b − (k2 + l2)∂c

)
A2 (2.51)

y(2)ττ = −p̂(2)b −
l

2ω2m

(
km∂a + lm∂b − (k2 + l2)∂c

)
A2 (2.52)

z(2)ττ = −p̂(2)c −N2
0 z

(2) − m

2ω2m

(
km∂a + lm∂b − (k2 + l2)∂c

)
A2 (2.53)

x(2)a + y
(2)
b + z(2)c = 0 (2.54)
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We have dropped terms such as z(1)z
(1)
a that phase-average to zero. Using

(2.40), the momentum equations (2.51)-(2.53) can be written more succinctly
as

u(2)
τ = −∇p̂(2) −N2

0 z
(2)∇c− kK4

2m2ωN2
0

cg · ∇A2 (2.55)

where u(2) = (u(2), v(2), w(2)) = (x
(2)
τ , y

(2)
τ , z

(2)
τ ) and ∇ = (∂a, ∂b, ∂c) is the

gradient operator in label space. Note that ∇c is the vertical unit vector in
label space. Similarly, the τ -derivative of (2.54) can be written

∇ · u(2) = 0 (2.56)

The potential vorticity constraint is handled in a similar manner. To the
first two non-vanishing orders, (2.22) becomes

y(1)aτ −x
(1)
bτ + y(2)aτ −x

(2)
bτ +

∂(x
(1)
τ , x(1))

∂(a, b)
+
∂(y

(1)
τ , y(1))

∂(a, b)
+
∂(z

(1)
τ , z(1))

∂(a, b)
= 0 (2.57)

The first two terms vanish, and the Jacobian terms are handled in the same
manner as above. We obtain

v(2)a − u
(2)
b =

1

ω
(l∂a − k∂b)E(a, b, c, τ) (2.58)

after use of (2.39).
Our goal is to find the mean velocity field u(2) induced by the wave packet.

The left-hand side of (2.58) is the vertical component of its curl. The right-
hand side of (2.58) is also the vertical component of a curl—the curl of the
vector

P ≡ k

ω
E (2.59)

Thus (2.58) can be rewritten as

∇c ·
[
∇×

(
u(2) −P

)]
= 0 (2.60)

where P is the pseudomomentum of the wave packet.
Now, (2.60) is just a single equation, and we need to determine all three of

the components of u(2). It is obvious, therefore, that (2.60) cannot be enough.
Surprisingly, however, it is enough. In a sense to be carefully qualified, (2.60)
tells us everything that we really need to know about u(2). But what does it
actually tell us?



Salmon: More Lectures on GFD 22

The horizontal components of u(2) may be expressed quite generally as

u(2) = −ψb + λa, v(2) = ψa + λb (2.61)

where ψ(a, b, c, τ) is the stream function and λ(a, b, c, τ) is the velocity po-
tential in label space. Substituting (2.61) into (2.60) we obtain

ψaa + ψbb = ∇c · [∇×P] (2.62)

Since the pseudomomentum is prescribed, this gives us ψ. If we could use
another equation to determine λ, then we would know u(2) and v(2); and
(2.56) in the form

λaa + λbb + w(2)
c = 0 (2.63)

would give us w(2). It appears that our work is far from done. But, in a sense
to be carefully qualified, λ and hence w(2) turn out to be negligible. The sim-
ple equation (2.62) tells the whole story. Before explaining the qualifications,
let us see what it says.

With no loss in generality, we may assume l = 0. This corresponds to
rotating the horizontal axes until the a-axis points in the direction of phase
propagation. Then (2.62) takes the form

ψaa + ψbb = −Pb (2.64)

where P is the magnitude of P. This is the same equation obtained in the
previous chapter! The only differences are: (1) In this chapter a and b are
horizontal coordinates, while in the previous chapter b was the vertical coor-
dinate; and (2) In the previous chapter P decayed with depth in such a way
that Pb was always positive, while here Pb takes both signs. The monopole
has become a dipole. Figure 2.1 clarifies. If A(a, b, c), the amplitude of the
wave packet, is a single hump, then Pb > 0 (corresponding to a negative
source in (2.64)) when b < 0; and Pb < 0 (corresponding to a positive source
in (2.64)) when b > 0. The induced mean flow corresponding to ψ is a broad
dipole, represented by the closed directional curves in figure 2.1.

This flow occurs at each level c as the wave packet passes the level. Before
and after passage, the mean flow vanishes unless the internal waves inside
the packet decide to break. If breakage occurs, then some of the mean flow is
jettisoned as a semi-permanent dipole at the level at which breakage occurred.
The remarks made in the previous chapter about re-arrangements of any pre-
existing vorticity field apply here as well. In fact, virtually every remark we
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Figure 2.1: Wave packet and induced dipole on a surface of constant label
c. The wave vector is (k, 0,m), and the straight parallel lines are lines of
constant phase (wave crests) within the packet. The packet moves upward,
in the direction of increasing c, if m < 0, and downward if m > 0. The
dipolar mean flow is present at level c only while the wave packet is present
there unless the waves inside the packet break, losing some of their energy. If
breakage occurs, some of the dipolar mean flow gets left behind at the level
at which breakage occurred.



Salmon: More Lectures on GFD 24

made about the surface wave packet is true here as well. Even the biggest
difference between the two—monopole versus dipole—disappears if, in the
previous chapter, the free surface boundary condition on the mean flow is
replaced by a counter-rotating image vortex above the free surface. The two
problems really seem to be the same problem!

But what about our assumption that the mean flow surrounding the in-
ternal wave packet takes the approximate form

u(2) = −ψb, v(2) = ψa, w(2) = 0 (2.65)

What justifies that? It turns out that this is not so much a matter of jus-
tification as it is a matter of choice. A skeptic would say that you have to
solve the complete, second-order dynamical equations (2.55) and (2.56) to
see everything that happens. Using (2.39) we rewrite these equations in the
form

ū(2)
τ = −∇p̂(2) −N2

0 z
(2)∇c− k

ω
cg · ∇E(a, b, c, τ) (2.66)

∇ · u(2) = 0 (2.67)

Comparing (2.66)-(2.67) to (2.28)-(2.31), we see that they are the same ex-
cept for the forcing terms contributed by the wave packet in (2.66). We are
interested only in the mean flow response to these forcing terms. (Equations
(2.66)-(2.67) also have homogeneous free-wave solutions analogous to (2.32)-
(2.35), but it would be silly to consider them unless they were needed to
satisfy boundary conditions.) But, again, what justifies our assertion that
that this mean flow response takes the form (2.65) ?

In a sense, nothing at all. The free solutions of the mean flow equations
comprise both non-zero-frequency modes satisfying the dispersion relation
(2.37) and zero-frequency modes of the form (2.65). In general both are ex-
cited. The general procedure for determining the forced response has been
beautifully explained by Lighthill. The modes that are most strongly excited
by the wave packet are those whose space and time scales come closest to
matching those of A(a, b, c, τ). But the scales of A(a, b, c, τ) are very slow.
The wave packet, it is true, propagates at the group velocity corresponding
to its wavenumber k, and this is relatively fast. But the wave packet is broad;
it contains many wavelengths; its envelope A(a, b, c, τ) therefore changes very
slowly. It is this slow change that the mean flow sees as its source. Slow forc-
ing begets slow response, and there is nothing slower than the zero-frequency
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modes of the form (2.65). In asserting that (2.64) tells the whole story of
the response, we are simply neglecting the response of the fast modes to the
slow source.

Is this really okay? It depends on what you want to know. Intuition
suggests that a moving wave packet might excite other waves. It might
develop a wake. If the details of this wake are of interest to you, then it
would be a terrible mistake to take (2.64) and (2.65) to be the solution.
However, if you only want to know about the biggest part of the response,
then you can embrace (2.64) and be thankful.

You may recall a method for deriving the quasigeostrophic equations
which goes like this: Choose a particular state of rest. Compute the modes
corresponding to a linearization about this state of rest. They comprise
geostrophic modes and gravity modes. Returning to the fully nonlinear dy-
namics, expand the variables in these linear modes. Since the linear modes
form a complete set, this involves no approximation. Now the approxima-
tion: Set all the gravity mode amplitudes to zero. The resulting equations
describe geostrophic modes interacting with other geostrophic modes. The
full dynamics has been projected onto the geostrophic modes. And another
name for ‘geostrophic mode’ is ‘potential vorticity.’

Our key equation (2.62) has a similar interpretation. It tells us how
the gravity wave packet projects onto the zero-frequency mode. If we had
worked this problem in rotating coordinates, we would have obtained, instead
of (2.60),

f +∇c · [∇× (ū−P)] = 0 (2.68)

where f is the Coriolis parameter, and we would be saying that (2.68) de-
scribes the excitation of the geostrophic mode by a gravity wave packet.

In contrast to the surface wave case, the packet geometry is essential for
the excitation of mean vorticity in the internal wave case. You may recall
that a single, perfectly sinusoidal, internal gravity wave is an exact solution
of the Boussinesq equations. A perfect sinusoid cannot therefore interact
with itself to produce a mean flow. Our analysis is in agreement with this.
The perfectly sinusoidal wave corresponds to A absolutely constant, and,
therefore to the vanishing of the pseudomomentum curl in (2.68) and the
forcing terms in (2.66). To get a response, we must consider a wave packet,
rounding A at its edges, so to speak, giving the sinusoid some bandwith. In
contrast, the surface wave comes automatically with ‘rounded edges’, because
it has no choice but to decay with depth.
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In hindsight, our calculation is not so much an expansion in powers of A
as it is a separation of the flow into rapidly and slowly varying parts. This is
something to keep in mind as we extend our methods to situations in which
the waves and the mean flow interact in more complicated ways.

Although we have obtained the fundamental result (2.60) by enforcing
the condition of vanishing potential vorticity, (2.60) could also be obtained
by taking the vertical component of the curl of (2.66). One then uses

Eτ + cg · ∇E = 0 (2.69)

to obtain the τ -derivative of (2.60).1 Since the potential vorticity vanishes
before the arrival of the wave packet, (2.60) follows. However, this method of
getting (2.60) requires more work and more ingenuity than our approach of
concentrating on the potential vorticity by itself. But how would one know
to do this? And what is so special about pseudomomentum, that seemingly
strange visitor from another planet? The next chapter begins to address
these questions.

1Eqn (2.69) applies because k and hence cg are constant in our case. The general
equation is Eτ +∇ · (cgE) = 0.



Chapter 3

The variational approach

I have a friend who once said: “Hamiltonian philosophy is like avocado. You
either like it or you don’t.”1 In this chapter I will try to make you like it.

Variational principles offer two great advantages. First, they are wonder-
fully compact statements of the physics. Second, their symmetry properties
correspond to conservation laws. The conservation of energy corresponds to
the symmetry property that the Lagrangian is invariant to a translation in
time. The conservation of momentum corresponds to the symmetry prop-
erty that the Lagrangian is invariant to a translation in space. These two
symmetry properties are what physicists call ‘kinematical symmetries’; they
apply to virtually every physical system. But fluid Lagrangians have an ad-
ditional, ‘particle relabeling’ symmetry that corresponds to the conservation
of potential vorticity. This symmetry property is what makes a fluid a fluid,
in contrast (for example) to an elastic solid. In physical terms, the internal
energy of the fluid cares only about how much the fluid has been squeezed
and not, for example, about how much it has been twisted or stretched. The
squeezing is measured by

∂(x, y, z)

∂(a, b, c)
(3.1)

and is not affected by a relabeling of the fluid particles that does not affect
this Jacobian, just as you wouldn’t live any differently if someone changed
your social security number. The relabeling of fluid particles is closely anal-
ogous to the gauge transformation in electrodynamics. In the language of
field theory, both are local gauge symmetries, a concept that underlies the

1Phil Morrison at Walsh Cottage, June, 1993.

27
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four fundamental forces at work in the cosmos. This discussion can be made
very broad, but we come quickly back to Earth.

The Lagrangian for Boussinesq dynamics is

L[x(a, b, c, τ), y(a, b, c, τ), z(a, b, c, τ), p(a, b, c, τ)] =∫∫∫∫
dadτ

(
1

2
(xτ )

2 +
1

2
(yτ )

2 +
1

2
(zτ )

2 + zθ(c) + p

[
∂(x, y, z)

∂(a, b, c)
− 1

])
(3.2)

where da = da db dc and, as in Chapter 2, θ(c) is a prescribed function. The
requirement that (3.2) be stationary with respect to the variations

δx(a, b, c, τ), δy(a, b, c, τ), δz(a, b, c, τ), δp(a, b, c, τ) (3.3)

yields the Boussinesq equations used in Chapter 2. Since, as in Chapter 2,
we are not terribly concerned with boundary conditions, we let the integrals
extend to infinity, and we require the variations to vanish there. (If, on the
other hand, a free surface were present, then the δp-variation would yield
both the incompressibility constraint and the boundary condition p = 0 at
the free surface.) The pressure p is a Lagrange multiplier that enforces the
incompressibility constraint. For more background on the variational princi-
ples of fluid mechanics, see LGFD. For a general introduction to variational
principles, I recommend the classic book by Cornelius Lanczos.

Although it is conventional to take the variations (3.3) in sequence, we
may combine them arbitrarily. That is, we can take any sort of variation
that we like. The result will be a valid equation. A symmetry property is any
sneaky type of variation we can find that will go undetected by some or all of
the terms in the Lagrangian. Mathematicians will cringe at this definition,
but its flexibility proves useful. As our primary example, we consider the
particle relabeling symmetry of (3.2).

In varying the dependence of (x, y, z) on (a, b, c) we are actually varying
the time dependent mapping between two spaces. Since the mapping is
one-to-one, the ‘forward mapping’ from (a, b, c) to (x, y, z) is equivalent to
an ‘inverse mapping’ from to (x, y, z) to (a, b, c). In other words, we could
consider the variations δa(x, y, z), etc., instead of δx(a, b, c), etc. One way
to do this, proceeding formally, would be to rewrite (3.2) in a form that
exchanges dependent and independent variables, replacing∫∫∫∫

da db dc dτ →
∫∫∫∫

dx dy dz dt
∂(a, b, c)

∂(x, y, z)
(3.4)
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and so forth. It is probably better to think about particle relabeling like this:
At every time you change the label on every fluid particle by an infinitesimal
amount, from (a, b, c) to (a′, b′, c′), where

a′ = a+ δa(a, b, c, τ), b′ = b+ δb(a, b, c, τ), c′ = c+ δc(a, b, c, τ) (3.5)

and δa(a, b, c, τ) etc are continuous functions. This is a bit like changing
your social security number. Would that make you behave any differently?
It would, if your Lagrangian depended on your social security number, but
that is unlikely to be the case.

Take a hard look at the last two terms in (3.2). Can we find a sneaky
variation that will go undetected by these terms? We cannot vary the label
c because the prescribed function θ(c) would detect it. Therefore, we must
choose δc = 0. Similarly, the variations δa and δb must be such that

∂(a′, b′, c)

∂(x, y, z)
=
∂(a, b, c)

∂(x, y, z)
⇐⇒ ∂(a′, b′, c)

∂(a, b, c)
= 1 (3.6)

Otherwise these variations would be detected by the Jacobian term in (3.2).
Since the variations are infinitesimal, (3.6) implies

∂δa

∂a
+
∂δb

∂b
= 0 (3.7)

and thus
δa = −γb, δb = +γa (3.8)

for some γ(a, b, c, τ). For such variations,

δL =

∫∫∫∫
dadτ (xτδ(xτ ) + yτδ(yτ ) + zτδ(zτ )) (3.9)

According to the variational principle, δL must vanish. But the time deriva-
tives in (3.2) are certainly affected by the variations, because holding (a′, b′, c′)
fixed means something different than holding (a, b, c) fixed. Let us compute

δxτ = xτ |a′ − xτ |a (3.10)

By the chain rule,

xτ |a′ = xτ |a + xaaτ |a′ + xbbτ |a′ + xccτ |a′

= xτ |a − xa(δa)τ |a′ − xb(δb)τ |a′ (3.11)
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since δc = 0. Thus

δxτ = −xa(δa)τ |a′ − xb(δb)τ |a′

≈ −xa(δa)τ |a − xb(δb)τ |a (3.12)

where the terms neglected in the second step are of second order in the
variations. Substituting this and the corresponding equations for y and z
into (3.2) we obtain

δL =

∫∫∫∫
dadτ [−xτ (xaδaτ + xbδbτ )− yτ (yaδaτ + ybδbτ )− zτ (zaδaτ + zbδbτ )]

=

∫∫∫∫
dadτ [δa(xτxa + yτya + zτza)τ + δb(xτxb + yτyb + zτzb)τ ]

=

∫∫∫∫
dadτ γ [(xτxa + yτya + zτza)τb − (xτxb + yτyb + zτzb)τa]

=

∫∫∫∫
dadτ γ [(xτbxa + yτbya + zτbza)τ − (xτaxb + yτayb + zτazb)τ ]

= −
∫∫∫∫

dadτ γ
∂

∂τ

[
∂(xτ , x)

∂(a, b)
+
∂(yτ , y)

∂(a, b)
+
∂(zτ , z)

∂(a, b)

]
(3.13)

where we have freely used integrations by parts and the fact that the varia-
tions vanish at infinity. Since γ is arbitrary and δL must vanish, it follows
that

∂

∂τ

[
∂(xτ , x)

∂(a, b)
+
∂(yτ , y)

∂(a, b)
+
∂(zτ , z)

∂(a, b)

]
= 0 (3.14)

which is just the potential vorticity conservation law derived in Chapter 2.
But, you say, if we already knew about potential vorticity conservation, why
go through all this? Why re-derive it in this seemingly roundabout way?

The answer has to do with approximations. Francis Bretherton and Ger-
ald Whitham pioneered a strategy of applying approximations directly to
the Lagrangian. The great advantage of this approach is that conservation
laws survive the approximations if the approximations do not violate the
corresponding symmetry properties. Equally important, new conservation
laws arising from symmetries introduced by the approximations are easily
identified. Wave action conservation is an example of such a ‘new’ conser-
vation law. Potential vorticity is always important, even when it vanishes.
Approximations that respect the particle relabeling symmetry automatically
conserve a form of potential vorticity, but it may not be easy to find the
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exact form. The symmetry property is a reliable guide. It never fails to find
the form.

In this chapter we recover the results of Chapter 2 by applying approx-
imations to the Lagrangian (3.2). Subsequent chapters extend the method
and make it easier to use. Our strategy is to substitute the expansions (2.14)-
(2.17) directly into (3.2) and to simplify the result before taking variations.
For example, we substitute

x2τ =
(
x(1)τ + x(2)τ

)2
= (x(1)τ )2 + 2x(1)τ x(2)τ + (x(2)τ )2 (3.15)

and similarly, so that the Lagrangian depends on both the superscript (1) and
(2) variables. Variations of the superscript (1) variables give the evolution
equations for the superscript (1) variables. Variations of the superscript
(2) variables give the evolution equations for the superscript (2) variables.
However, since we will prescribe the superscript (1) variables to have the form
(2.32)-(2.37) of the basic wave, we may omit the terms in the Lagrangian that
involve only superscript (1) variables. That leaves out the first term in (3.15).
The term following it drops out when we average over wave phase, which,
again, is justified by the fact that the mean flow does not respond to a rapidly
oscillating source. The rapid variations blur to zero. The sole remaining term
in (3.15) is the last term. By similar reasoning we can replace the first three
terms in the integrand of (3.2) by

(x(2)τ )2 + (y(2)τ )2 + (z(2)τ )2 (3.16)

As for
θ(c)

(
c+ z(1) + z(2) + · · ·

)
(3.17)

the first term is not varied, the second term fluctuates rapidly, and we will
not be varying z(n) for n > 2. Thus we may replace θ(c)z by θ(c)z(2).

Now the more delicate part of the operation, the Jacobian term in (3.2).
Written out in full it is

(p(0) + p(1) + · · · )
[
∂(a+ x(1) + · · · , b+ y(1) + · · · , c+ z(1) + · · · )

∂(a, b, c)
− 1

]
(3.18)

Since the terms in (3.16) are O(A4), we must keep terms up to O(A4) in(3.18).
This is going to be an awful lot of terms. Let us consider them order by order.
At O(1) we have

p(0) [1− 1] = 0 (3.19)
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Good!
At O(A) the only contributing terms are linear in the superscript (1)

variables and these average to zero. Good again.
At O(A2) there are two classes of terms of terms: terms with two super-

script (1) variables and two ‘rest variables’ like a, b, c or p(0)(c) ; and terms
with one superscript (2) variable and three rest variables. Since the Jacobian
vanishes when two of its arguments are proportional to the same thing (such
as A sinφ) the only terms in the former category are

p(1)
(
x(1)a + y

(1)
b + z(1)c

)
(3.20)

But these are terms that depend only on the prescribed superscript (1) vari-
ables and hence will not be varied. In the latter category, we have the term
p(0)(c)z

(2)
c which integrates to zero. Terms that integrate to zero cannot con-

tribute to the variations.
At O(A3) we have only terms that are linear or cubic in the superscript

(1) variables and these again average to zero. Thus, in the approximate
Lagrangian, we have only the terms

(x(2)τ )2 + (y(2)τ )2 + (z(2)τ )2 + θ(c)z(2) (3.21)

and whatever comes from (3.18) at O(A4).
At O(A4) things finally get interesting. There are three classes of terms.

The first class has four superscript (1) variables that will not be varied. The
second class has two superscript (2) variables and two rest variables. This
class will contribute the terms

p(2)
(
x(2)a + y

(2)
b + z(2)c

)
(3.22)

as well as the terms

p(0)
∂(y(2), z(2))

∂(b, c)
+ p(0)

∂(x(2), z(2))

∂(a, c)
(3.23)

which, after integrations by parts, take the simpler form

−θ(c)z(2)
(
x(2)a + y

(2)
b

)
(3.24)

The third class of O(A4) terms contains one superscript (2) variable and
two superscript (1) variables. Introducing the compact notation

[A,B,C] ≡ ∂(A,B,C)

∂(a, b, c)
(3.25)
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these terms are

p(1)
(

[a, y(1), z(2)] + [a, y(2), z(1)]

+ [x(1), b, z(2)] + [x(2), b, z(1)] + [x(1), y(2), c] + [x(2), y(1), c]
)

= p(1)
( ∂(y(1), z(2))

∂(b, c)
+
∂(y(2), z(1))

∂(b, c)

+
∂(x(1), z(2))

∂(a, c)
+
∂(x(2), z(1))

∂(a, c)
+
∂(x(1), y(2))

∂(a, b)
+
∂(x(2), y(1))

∂(a, b)

)
(3.26)

Putting all this together, we obtain the Lagrangian for the mean flow in the
form

L[x(2), p(2)] =∫∫∫∫
dadτ

[
1

2
x(2)
τ · x(2)

τ + z(2)θ(c) + p(2)∇ · x(2) − θ(c)z(2)
(
x(2)a + y

(2)
b

)
− x(2)

[
∂(p(1), y(1))

∂(a, b)
+
∂(p(1), z(1))

∂(a, c)

]
− y(2)

[
∂(p(1), x(1))

∂(b, a)
+
∂(p(1), z(1))

∂(b, c)

]
− z(2)

[
∂(p(1), x(1))

∂(c, a)
+
∂(p(1), y(1))

∂(c, b)

] ]
(3.27)

after integrations by parts. Using integration by parts again, the terms in
the second line can be written in the simpler form

z(2)θ(c) + p̂(2)∇ · x(2) (3.28)

where we define p̂(2) = p(2)−θ(c)z(2) as in Chapter 2. (Independent variations
of x(2), y(2), z(2), p(2) are equivalent to independent variations of x(2), y(2), z(2), p̂(2).)
With this change of variable, (3.27) takes the form

L[x(2), p(2)] =

∫∫∫∫
dadτ

(1

2
x(2)
τ · x(2)

τ + z(2)θ(c) + p̂(2)∇ · x(2)

− x(2)X(a, b, c, τ)− y(2)Y (a, b, c, τ)− z(2)Z(a, b, c, τ)
)

(3.29)

where X, Y, Z are defined to be the corresponding square-bracket terms in
(3.27). Since we prescribe the linear-wave solution that determines X, Y, Z,
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we may regard these functions as given functions that are not to be varied.
However, instead of the specific choice made in Chapter 2, we could choose
any other solution of the linear equations. If, instead of wave packets, you
are interested in vertical modes or internal wave beams, here is your chance.

You can check that variations of (3.29) with respect to x(2) and p(2) yield
the equations (2.41)-(2.44) for the evolution of the mean flow. If we evaluate
the square-bracket terms in (3.27) by using the wave packet solution (2.32)-
(2.37) to the leading order equations, we recover all the results of Chapter
2.

As in Chapter 2, we can avoid detailed analysis of the the superscript
(2) solutions by projecting the forces X, Y, Z onto the potential vorticity
mode. Again, our reasoning is that a slow forcing produces a slow response,
and nothing is slower than potential vorticity: In Lagrangian coordinates it
just sits there. The point to be emphasized here is that a rather obvious
symmetry property of (3.29) tells us just how to do this.

Look closely at the terms

z(2)θ(c) + p̂(2)
(
x(2)a + y

(2)
b + z(2)c

)
(3.30)

in (3.29). What sneaky variations can we make that will go undetected by
these terms? Because of the metrical nature of (3.30), as opposed to (3.1),
it will be better to seek variations in the form δx(a, b, c), etc., rather than
δa(x, y, z), etc. We cannot vary z(2) because that would be detected by the
first term in (3.30). So we must vary only x(2) and y(2), and in such a way
that

δ
(
x(2)a + y

(2)
b

)
= 0 (3.31)

This implies
δx(2) = −γb, δy(2) = +γa (3.32)

for some γ(a, b, c, τ). For such a variation,

δL =

∫∫∫∫
dadτ

(
−x(2)ττ δx(2) − y(2)ττ δy

(2) − δx(2)X − δy(2)Y
)

=

∫∫∫∫
dadτ γ

(
−u(2)bτ + v(2)aτ +Xb − Ya

)
(3.33)

Since γ is arbitrary, (
v(2)a − u

(2)
b

)
τ

= Ya −Xb (3.34)
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which is a key result of Chapter 2.
Strictly speaking, (3.34) is not a conservation law; it does not fit the form

of
∂

∂τ
something = 0 (3.35)

But in the form we have written (3.29), X, Y, Z could be any prescribed,
slowly varying functions. They need not have the from of an internal wave
packet, and in fact they could represent a slowly varying external source.
Such a source could be putting potential vorticity into the flow, and therefore
no conservation law of the form (3.35) should be expected. We can obtain a
conservation law of the form (3.35) if we use (2.69) to pop a time derivative
out of the right hand side of (3.34). By invoking (2.69) we confer a pedigree
on X and Y . We say, “You are not just any X and Y ; rather you are the X
and Y that come from a wave packet obeying internal wave dynamics.”

How would this distinction emerge from the variational principle? In a
very elegant fashion, but only if we extend the variational principle in such
a way that we can obtain the dynamics of both the superscript (1) variables
and the superscript (2) variables from the same principle. In other words,
we must restore some of the terms we discarded on the way to (3.29). This
we will do in the following chapters.

What to do if you still don’t like avocado. Don’t stop eating. In the
case, to which we aspire, of waves and mean flows that genuinely interact,
the variational approach offers an efficiency and transparency that is far
superior to brute force perturbation theory.

Most important, variational principles allow us to introduce the important
concept of symmetry groups. In later chapters we will suggest an analogy
between the labels (a, b, c) and the scalar and vector potentials in electrody-
namics. Just as you cannot have a variational principle for electrodynamics
without introducing the electrodynamic potentials, you cannot have a varia-
tional principle for fluid dynamics without introducing particle labels. And
the particle labels, like the electrodynamic potentials, are not unique. You
can find a gauge transformation of either that will go undetected in the physi-
cal realm, and these undetectable variations correspond to conservation laws.
Just as the gauge transformation of the fluid labels corresponds to the con-
servation of potential vorticity, the gauge transformation of electrodynamics
corresponds to the conservation of electric charge. Most important of all, you
can choose the gauge to suit the particular problem you are trying to solve.
And here we venture a prediction: Future fluid mechanicists will be talking
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a lot about gauge theory and group theory. The ghost of Garrett Birkhoff
will rise and walk.



Chapter 4

Whitham’s method

It is time for an assessment. What have we actually accomplished? In the
two examples so far considered, the wave packet was prescribed consistent
with linear dynamics and then told not to change. The mean flow responded,
but in a highly subservient manner: It was powerless to alter the wave packet
that had generated it. Our prescription of the wave packet itself was a very
particular one. The amplitude A was allowed to vary slowly, but the wave
vector k was held absolutely constant. Thus the wave packet in Chapters 1-3
corresponds to a quantum particle with a definite momentum but a poorly
determined location.

All of these shortcomings must be fixed, and in Chapter 3 we hinted that
variational principles would be our key to victory. But Chapter 3 offered a
variational redux of Chapter 2 that hardly made things simpler. In fact, read-
ers of Chapter 3 could be forgiven for thinking that the variational approach
was actually more complicated than the more straightforward perturbation
theory of Chapter 2.

In this chapter, we demonstrate the power and flexibility of the variational
approach by deriving wave/mean equations in which the waves and the mean
flow interact in an almost unrestricted manner. The straightforward deriva-
tion of these equations, by applying perturbation expansions directly to the
fluid equations, is complicated. We obtain the same results more simply by
using variational methods that are specially designed for our purpose.

We begin with the observation that fluid mechanists have widely differing
attitudes to variational principles. In one corner are the physicists, for whom
there is a single Ur-principle that is likely to be the particle mechanics one
introduced in Chapter 3. All other variational principles must be ‘derived’

37
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from this Ur-principle by transformations and approximations.
In the other corner are the mathematicians. Their philosophy is the more

pragmatic: First you find a set of equations that you like, and then you look
to see if they are derivable from a variational principle. If so, the equations
may be easier to analyze. Gerald Whitham inclined to the latter viewpoint.
In the 1960’s he developed a powerful variational method for studying linear
and nonlinear waves and extended it to the case of wave-current interactions.
Our methods are but a slight extension of those proposed by him.

Once again we consider internal gravity waves propagating through a
stratified fluid. The dispersion relation is

ω =

[
N2

0 (k2 + l2) + f 2
0m

2

(k2 + l2 +m2)

]1/2
+ U · k ≡ ωr(k, l,m) + U · k (4.1)

where the wave vector k(x, y, z, t) = (k, l,m) and the mean velocity U(x, y, z, t)
are slowly varying functions of space and time. ωr is the relative or intrinsic
frequency—the frequency measured in a reference frame moving with the
mean velocity—and U · k is the Doppler shift. We are in rotating coordi-
nates, but both the Coriolis parameter f0 and the Vaisala frequency N0 will
be assumed constant.

Our general strategy has three main steps: First, find a variational prin-
ciple for the waves by themselves. Whitham tells us how to do that. Second,
find a variational principle for the mean flow (however defined) by itself.
That will be supplied. Third, couple the waves to the mean flow using the
Doppler term.

For the waves by themselves the general Lagrangian proposed by Whitham
is

Lw[φ,A] =

∫∫∫∫
dtdx (ω − ωr(k, l,m)−U · k)A (4.2)

where
ω = −φt, k = ∇φ (4.3)

are merely abbreviations for the derivatives of the phase, φ,

A =
E

ωr
(4.4)

is the wave action, and E is the energy density of the wave. At this stage, we
consider the mean flow U(x, y, z, t) to be prescribed. We propose that (4.2)
is always correct. To consider a particular type of wave, it is merely a matter
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of inserting the appropriate expression for ωr(k). To consider internal waves,
we adopt the expression in (4.1). What justifies this? We postpone that
question until later. For the moment we are content to show that variations
of (4.2) yield good equations.

Whatever the choice for ωr, δLw/δA = 0 implies the dispersion relation
(4.1). For variations of φ we obtain

δLw[φ,A] =

∫∫∫∫
dtdx

(
−(δφ)t −

∂ωr
∂k
· ∇(δφ)−U · ∇(δφ)

)
A

=

∫∫∫∫
dtdx (At +∇ · [(cg + U) A]) δφ (4.5)

where cg(k) = ∂ωr/∂k is the relative group velocity. Thus we have the action
conservation equation,

At +∇ · [(cg + U) A] = 0 (4.6)

As in the previous chapter, we ignore ‘boundary contributions’ that might
arise from integrations by parts. One way to justify this is to say that we are
considering an unbounded fluid that is quiescent at infinity. A better attitude
is this: We assume that the variations themselves vanish at infinity, thereby
recovering equations that hold only in the interior of the fluid, and are there-
fore incomplete in the sense that they omit the boundary conditions. This
attitude is better because boundary conditions, which are always important,
amount to arbitrary specifications of the way in which the fluid connects to
its surroundings. Sometimes the boundary conditions can be incorporated
into the variational principle, but that is seldom worthwhile.

Now for the second step: A variational principle for the mean flow. Asked
about mean flows, nine people out of ten vote quasigeostrophic. The majority
rules. The Lagrangian for quasigeostrophic dynamics is:

Lqg[α, β, ψ] =

∫∫∫∫
dtx

(
−αβt + ψ

∂(α, β)

∂(x, y)
+

1

2
∇2ψ · ∇2ψ +

1

2

f 2
0

N2
0

ψ2
z

)
(4.7)

The variables α, β and ψ depend on (x, y, z, t), but ∇2 ≡ (∂x, ∂y) is the
two-dimensional gradient operator. δLqg = 0 implies

δα : βt + [ψ, β] = 0 (4.8)

δβ : αt + [ψ, α] = 0 (4.9)

δψ : [α, β] = ∇2
2ψ +

f 2
0

N2
0

ψzz ≡ q (4.10)
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where

[A,B] ≡ ∂(A,B)

∂(x, y)
(4.11)

We see that α and β are potential vorticity labels that are conserved following
the quasigeostrophic flow. By taking the time-derivative of (4.10) and using
the Jacobi identity,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (4.12)

we obtain the potential vorticity equation,

qt + [ψ, q] = 0 (4.13)

We could add the term f0 to the right hand side of (4.10) by inserting a
term −f0ψ in the integrand of (4.7), but, because f0 is constant, this is an
unnecessary complication.

Now for the final step. We couple Lw to Lqg by replacing U with the
geostrophic velocity uG = (uG, vG) ≡ (−ψy, ψx) in (4.2), and by assuming
that the Lagrangian for the entire system is the sum, Lw + Lqg, of (4.2) and
(4.7). The first part of this—the replacement—seems obvious, but the second
part—the summation—involves a subtlety that must be explained. First we
see what it gives. Instead of (4.10), δ(Lw + Lqg)/δψ = 0 implies

δψ : [α, β] = q −∇2 × (kA) (4.14)

where ∇2 × (A,B) ≡ Bx − Ay. As in previous chapters, we define the
pseudomomentum

p = kA (4.15)

The same manipulation that led to (4.13) now leads to

Qt + [ψ,Q] = 0 (4.16)

where
Q ≡ q −∇2 × p (4.17)

The wave action equation (4.6) is unchanged, but now U = uG
The most interesting effect of the coupling and summation is the general-

ization of (4.13) to (4.16)-(4.17). By these equations, the quantity q−∇2×p
is conserved following the mean motion of fluid particles. Consider waves
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propagating into a region of fluid that is initially at rest. Before the arrival
of the waves, q = p = 0, and hence

q −∇2 × p = 0 (4.18)

By (4.16), (4.18) applies at all times. Hence

q = ∇2 × p (4.19)

even when waves are present. Equation (4.19) is a concise general description
of Bretherton flow. If wave breaking destroys the pseudomomentum p be-
fore the quasigeostrophic flow has time to react, then real, actual, potential
vorticity q is created and remains behind after the remaining wave energy
propagates away. We have seen all this before!

But there is more. By applying ∇ = (∂x, ∂y, ∂z) to the dispersion relation
(4.1), we obtain the refraction equation

∂k

∂t
+ ((cg + uG) · ∇) k = −k∇uG − l∇vG (4.20)

where again k = ∇φ. If the waves do not break, then the actionA = E/ωr(k)
is conserved. However, the refractive change in k predicted by (4.20) causes
a change in ωr(k) that can be determined from (4.1). If ωr(k) increases,
then the wave energy E must also increase to keep their ratio constant. For
internal waves, ωr(k) is always between f0 and N0. Suppose that ωr ≈ f0
initially. Then refractive changes in k can only increase ωr, thereby increasing
the wave energy E. This wave energy can only have come from the mean
flow. We therefore conclude that inertial waves remove energy from the
quasigeostrophic mean flow.

Such conclusions must be tempered by the realization that, unless the
waves break, the evolution of the entire system is time reversible in the
sense that any mechanical system can be made to ‘run backwards’ if, at
any time, we reverse the velocity of all its constituents. Thus there will
be solutions of our equations in which inertial waves transfer energy to the
mean flow. But such behavior is improbable in the sense that it corresponds
to an inertial spectral peak becoming sharper rather than spreading out. The
generic behavior is a loss of mean energy to inertial waves.

Now we rewrite our complete Lagrangian as

L[φ,A, α, β, ψ] = Lw + Lqg =

∫∫∫∫
dtdx (−φtA− αβt)−

∫
dt H (4.21)
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where

H[φ,A, α, β, ψ]

=

∫∫∫
dx

(
ωrA− ψ

∂(α, β)

∂(x, y)
− 1

2
∇2ψ · ∇2ψ −

1

2

f 2
0

N2
0

ψ2
z +∇2ψ × kA

)
(4.22)

is the Hamiltonian, and (φ,A) and (α, β) form canonical pairs. Using (4.3),
(4.14), and integrations by parts to evaluate (4.22) we find that

H =

∫∫∫
dx

(
E +

1

2
∇2ψ · ∇2ψ +

1

2

f 2
0

N2
0

ψ2
z

)
(4.23)

The energy (4.23) is conserved. The equations corresponding to δL = 0 are

δA : ω ≡ −φt = ωr(k, l,m) + uG · k (4.24)

δφ : At +∇ · [(cg + uG) A] = 0 (4.25)

δψ : Q ≡ [α, β] = ψxx + ψyy +
f 2
0

N2
0

ψzz −∇2 × (kA) (4.26)

δα : βt + [ψ, β] = 0 (4.27)

δβ : αt + [ψ, α] = 0 (4.28)

Again, (4.26)-(4.28) imply

Qt + [ψ,Q] = 0 (4.29)

We are finally in a position to explain why it was correct to obtain the
complete Lagrangian by summing Lw and Lqg. Such an explanation is needed
because any Lagrangian can be multiplied by a constant factor (such as −1)
without changing the equations that result from it. However, it would have
been be a severe mistake to (say) reverse the sign of either Lw or Lqg by
itself and then expect δ(Lw + Lqg) = 0 to give us good equations. In partic-
ular, reversing the sign of only Lw, or only Lqg, would yield a system that
conserved the difference between wave energy and quasigeostrophic energy.
Our full Lagrangian was assembled with malice aforethought, by choosing
the relative sign so that the energy came out right. This consideration must
be added to our simple recipe, which now consists of four steps: Choose your
dispersion relation; choose your mean flow; use the Doppler term to couple
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them together; and, finally, add the two Lagrangians with weights carefully
chosen to give the right energy.

What about the momentum? Just as energy conservation results from
time-translation symmetry, momentum conservation results from space-translation
symmetry. There is an easy method for extracting momentum conservation
from our Lagrangian. It is the energy momentum formalism, which tells us
that

∂T ij

∂xj
= 0 (4.30)

where (x0, x1, x2, x3, ) ≡ (t, x, y, z), and

T ij ≡ ∂φr

∂xi
∂L

∂(∂φr/∂xj)
− Lδij, (4.31)

Here L is the integrand of (4.21), and (φ1, φ2, φ3, φ4, φ5) ≡ (φ,A, α, β, ψ).
Repeated indices are summed. The conservation law (4.30) assumes that L
depends only on the φr and their first derivatives, and contains no explicit
dependence on the xi.

We focus on x-direction momentum. According to the energy momentum
formalism, it obeys the conservation law

∂T 10

∂t
+
∂T 11

∂x
+
∂T 12

∂y
+
∂T 13

∂z
= 0 (4.32)

where

T 10 = φx
∂L
∂φt

+ βx
∂L
∂βt

= −kA− αβx (4.33)

T 12 = φx
∂L
∂φy

+ αx
∂L
∂αy

+ βx
∂L
∂βy

= −kA(cgy + vg)− ugvg (4.34)

T 13 = φx
∂L
∂φz

+ ψx
∂L
∂ψz

= −kAcgz + vg
f 2
0

N2
0

ψz (4.35)

and cg = (cgx, cgy, cgz) = (∂kωr, ∂lωr, ∂mωr) is the relative group velocity. We
shall not require T 11. Thus (4.32) takes the form

∂

∂t
(αβx + kA)−∂T

11

∂x
+
∂

∂y
(ugvg + kA(cgy + vg))+

∂

∂z

(
−vg

f 2
0

N2
0

ψz + kAcgz
)

= 0

(4.36)
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If the flow is periodic in the x-direction, then (4.36) implies

∂

∂t
〈αβx+kA〉+ ∂

∂y
〈ugvg+kA(cgy+vg)〉+

∂

∂z
〈−vg

f 2
0

N2
0

ψz+kAcgz〉 = 0 (4.37)

where 〈·〉 denotes the x-average. By assuming periodicity in x, we are asso-
ciating x with longitude; then 〈·〉 corresponds to the ‘zonal average’.

To make sense of the first term in (4.37), we integrate (4.26), rewritten
as

∇2 × (α∇β) = ∇2 × (ug − kA) +
f 2
0

N2
0

ψzz (4.38)

over the ‘polar cap’ north of latitude y. By Stokes’s theorem,

〈αβx + kA〉 = 〈ug〉+

∫
dy 〈 f

2
0

N2
0

ψzz〉 (4.39)

where the y-integral is over the polar cap. (Technically, our equations apply
to a periodic channel.) Substituting (4.39) into (4.37) we obtain the equation

∂

∂t
〈ug〉(y, z) +

∂

∂t

∫
dy 〈 f

2
0

N2
0

ψzz〉

+
∂

∂y
〈ugvg + kA(cgy + vg)〉+

∂

∂z
〈−ψx

f 2
0

N2
0

ψz + kAcgz〉 = 0 (4.40)

for the zonally averaged eastward flow. This is a favorite equation of meteo-
rologists and of oceanographers studying the Antarctic Circumpolar Current.
The last two terms in (4.40) represent the divergence of the Eliassen-Palm
flux. The term proportional to ψxψz can be interpreted as vertical form drag.
The y-integral represents the average layer thickness in the polar cap. In
steady state, its time derivative vanishes. More generally, one speaks about
‘residual velocity.’ For further discussion, see other books. The point here
is that conservation laws like (4.40) flow automatically from the Lagrangian
and its symmetry properties. They do not require ingenuity to discover.

Energy and momentum conservation correspond to a symmetry of space-
time that is shared by all physical systems: the property that physical law is
the same everywhere and at all times. Physicists regard space-time symme-
try as kinematic. However, a Lagrangian may also possess dynamic symme-
tries corresponding to conservation laws that are particular to that system.
Our Lagrangian, (4.21), has two dynamic symmetries. One of these is the
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particle-relabeling symmetry introduced in Chapter 3. In present context,
it might better be called the potential-vorticity-relabeling symmetry. It cor-
responds to the fact that variations δα, δβ that leave [α, β] undisturbed go
undetected by (4.22). This leads to the conservation law (4.29). The other
dynamic symmetry of (4.21) is ‘phase-translation symmetry’. It corresponds
to the action conservation law (4.25), but its physical content remains to be
explained.

Our recipe adapts easily to other situations. To change the nature of
the waves being considered, choose a different ωr(k). If (4.2) and (4.4) are
always correct, you do not even need to know how the wave energy E depends
on wave amplitude. But are these equations always correct? And, most
importantly, why is wave action conserved?

To address these questions we consider the Lagrangian corresponding to
linear internal waves in the absence of a mean flow. The convenient variables
are the particle displacements (ξ, η, ζ) from the state of rest. In terms of
these variables the linear internal wave equations take the form

ξtt − f0ηt = −px (4.41)

ηtt + f0ξt = −py (4.42)

ζtt = −pz −N2
0 ζ (4.43)

ξx + ηy + ζz = 0 (4.44)

For simplicity we first consider the case f0 = 0 in which the motion can be
confined (without loss of generality) to the xz-plane. In this case η ≡ 0 and
the continuity equation is solved by setting

ξ = −γz, ζ = γx (4.45)

The governing equation is a vorticity equation in the xz-plane, for which the
Lagrangian is

L[γ] =

∫∫∫
dxdzdt

(
1

2
γ2xt +

1

2
γ2zt −

1

2
N2

0γ
2
x

)
(4.46)

The simplifying feature is that (4.46) depends on the single variable γ(x, z, t).
The resulting dynamics is

δγ : (γxx + γzz)tt +N2
0γxx = 0 (4.47)
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which admits solutions of the form

γ = A cos(kx+mz − ωt) (4.48)

where A, k, and m are arbitrary constants, and

ω2 =
N2

0k
2

k2 +m2
(4.49)

Whitham’s method is to seek solutions in the form

γ = A(x, z, t) cos(φ(x, z, t)) (4.50)

in which A(x, z, t), k(x, z, t) ≡ φx, m(x, z, t) ≡ φx, and ω(x, z, t) ≡ −φt all
vary slowly compared to φ(x, z, t). This assumption justifies the approxima-
tions

γx ≈ −Aφx sinφ, γxt ≈ −Aφxφt cosφ, etc (4.51)

which, when substituted into (4.46), yield

L[A, φ] =

∫∫∫
dxdzdt

(
1

2
A2(φ2

x + φ2
z)φ

2
t cos2 φ− 1

2
N2

0A
2φ2

x sin2 φ

)
(4.52)

Whitham’s final step is to average over the fast oscillations of the trigono-
metric terms, effectively replacing the cos2 φ and sin2 φ by 1/2. The resulting
averaged Lagrangian

L[A, φ] =

∫∫∫
dxdzdt

1

4
A2
(
(φ2

x + φ2
z)φ

2
t −N2

0φ
2
x

)
(4.53)

depends only on A and the first derivatives of φ. Thus (4.53) posesses a
φ-translation symmetry that (4.52) does not. It is this symmetry property
that corresponds to action conservation.

The Lagrangian (4.53) fits the form

L[A, φ] ≡
∫∫∫

dxdzdt L(A, φt, φx, φz) =

∫∫∫
dxdzdt A2F(φt, φx, φz)

(4.54)
The variations yield

δA : F(φt, φx, φz) = 0 (4.55)
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and

δφ :
∂

∂t

(
A2 ∂F
∂φt

)
+

∂

∂x

(
A2 ∂F
∂φx

)
+

∂

∂z

(
A2 ∂F
∂φz

)
= 0 (4.56)

Since (4.55) relates the wavenumbers φx and φz to the frequency −φt, it
can only be the dispersion relation. By (4.30)-(4.31), the energy density
corresponding to (4.54) is

E = φt
∂L
∂φt
− L = A2

(
φt
∂F
∂φt
−F

)
= A2φt

∂F
∂φt

(4.57)

Thus the conserved quantity in (4.56) is E/ω, as expected. For the particular
case (4.53),

E =
1

4
A2
(
(φ2

x + φ2
z)φ

2
t +N2

0φ
2
x

)
(4.58)

In asserting (4.2) we are assuming that F can always be written in the
form

F(φt, φx, φz) = −φt − ω(φx, φz) (4.59)

but the Lagrangian (4.53) does not fit this form. However,

L[A, φ] =

∫∫∫
dxdzdt A

(
−φt −

√
N2

0φ
2
x

φ2
x + φ2

z

)
(4.60)

is equivalent to (4.53) because they both yield the same dispersion relation
and action equations.

At the heart of Whitham’s method lie the steps between (4.46) and (4.53).
They seem reasonable, based upon the separation in scales. Do they require
a more rigorous justification? Whitham certainly thought so, for his book
includes a demonstration that the results obtained by his variational method
are equivalent to those obtained by more traditional asymptotic expansions
applied directly to the equations governing the waves. He concludes: “The
direct use of [asymptotic expansions] in the equations leads to the required
results but without the generality and insight of the variational approach”
(p. 402). The focus of Whitham’s work was on nonlinear waves. Our use
of his methods for the linear-waves portion of our wave/mean Lagrangian
scarcely does him justice.



Salmon: More Lectures on GFD 48

The Lagrangian corresponding to the full tree-dimensional equations (4.41)-
(4.44) with f0 6= 0 is

L[ξ, η, ζ, p] =

∫∫∫∫
dxdt

(1

2
ξ2t +

1

2
η2t +

1

2
ζ2t +f0ξηt−

1

2
N2

0 ζ
2+p(ξx+ηy+ζz)

)
(4.61)

For a single wavetrain we can rotate the z-axis so that nothing depends on
y. Then (4.45) applies, and the dynamics (4.41)-(4.44) reduces to a vorticity
equation in the xz-plane,

(γxx + γzz)tt +N2
0γxx + f0ηzt = 0 (4.62)

coupled to the momentum equation in the y-direction,

ηtt − f0γzt = 0 (4.63)

which are together equivalent to the Lagrangian

L[γ, η] =

∫∫∫
dxdzdt

(
1

2
γ2xt +

1

2
γ2zt +

1

2
η2t − f0γzηt −

1

2
N2

0γ
2
x

)
(4.64)

Plane wave solutions of (4.62) and (4.63) take the form

γ = A cos(kx+mz − ωt), η = A
f0m

ω
cos(kx+mz − ωt) (4.65)

Since our convention is that the (relative) frequency is always positive—so
that the wave propagates in the direction of (k,m)—we see that γ and η
are either in phase or 180 degrees out of phase depending on the sign of m.
Substituting the analogues

γ = A(x, z, t) cosφ(x, z, t), η = A(x, z, t)
f0φz

ω(φx, φz)
cosφ(x, z, t) (4.66)

of (4.50) back into (4.64) and averaging, we obtain

L[A, φ] =

∫∫∫
dxdzdt

1

4
A2
(
φ2
xφ

2
t + φ2

zφ
2
t − f 2

0φ
2
z −N2

0φ
2
x

)
(4.67)

which fits the form (4.54) and can be handled in the same way. The key
difference between the prescription (4.50) and the prescription (4.66) is that
the latter includes a specification of modal structure—the relative amplitudes
and relative phases of γ and η. Like the dispersion relation ωr(φx, φy, φz),
this structure must be taken from linear theory.



Chapter 5

Wave-mean theory

We are gradually working our way toward a formulation of wave-mean in-
teraction that is closely analogous to classical electrodynamics. The two in-
gredients of classical electrodynamics are electromagnetic waves and charged
particles. The former are analogous to inertia-gravity waves, and the lat-
ter are analogous to fluid particles possessing potential vorticity. Potential
vorticity is analogous to electric charge. Potential vorticity, we will argue,
is the true ‘slow variable’ of wave-mean theory. Apart from the rapid vi-
brations caused by passing waves, potential vorticity moves at the relatively
slow speed of the fluid itself. The influence of the waves moves at the usually
much greater group velocity. The characterization of the flow associated with
the potential vorticity as a mean flow is unfortunate, because it implies the
need for an averaging that seems only to be an unnecessary complication.

The equations of classical electrodynamics are very difficult to solve in
their general from. Textbooks and research papers focus on two special
cases. In the first of these, the electromagnetic waves are prescribed, and
one computes the motion of the charged particles from the Lorentz equations.
This type of problem is analogous to the problems we have solved in the first
three chapters. There the wave packet was prescribed, and we calculated
the virtual vorticity associated with the wave packet. If the wave packet
experienced dissipation, then some of this virtual vorticity was converted
into real, actual vorticity.

The distinction between virtual and actual vorticity has no analogue in
classical electrodynamics, because classical electromagnetic waves, unlike in-
ertia gravity waves, do not interact. But electromagnetic waves do interact,
albeit weakly, in quantum electrodynamics, producing virtual charges analo-

49
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gous to our virtual vorticity. In this analogy, the Bretherton dipole depicted
in Chapter 2 consists of a photon (the wave packet) and an electron/positron
pair (the counter-rotating virtual vortices in figure 2.1.)

In the other class of simplified electrodynamics problem, one prescribes
the motion of the electric charges, and one computes the radiated electro-
magnetic waves using Maxwell’s equations. Such problems are analogous
to fluids problems in which the motion of the vortices is prescribed and one
computes the radiated inertia-gravity waves. Think of counter-rotating point
vortices or the Kirchoff vortex patch. Such fluids problems are more compli-
cated than their electrodynamic analogues, again because the inertia-gravity
waves, unlike electromagnetic waves, interact with one another, but they
have been successfully attacked by Lighthill, Crow, Ford, and others using
the method of matched asymptotic expansions.

The most difficult type of electrodynamics problem is one in which neither
the waves nor the motion of the charges (potential vorticity) is prescribed.
That is the type of problem we consider in this chapter.

To simplify things somewhat, we consider the fluid motion to be con-
fined to two space dimensions, x and y. All reference to z will be dropped.
The quasigeostrophic flow degenerates into ordinary, two-dimensional, in-
compressible Euler flow—the equations of two-dimensional turbulence. The
relative frequency ωr(k, l) can be anything you like, but now it has only two
arguments. Notation simplifies considerably. The need to distinguish be-
tween ∇ and ∇2 disappears. (It arose from the fact that the quasigeostrophic
velocity field is a two-dimensional vector field that nevertheless depends on
(x, y, z).) In this chapter ∇ = (∂x, ∂y). Vorticity replaces potential vorticity.

The two-dimensional analogue of (4.22)-(4.23) is

L[φ,A, α, β, ψ] =

∫∫∫
dxdydt (−φtA− αβt)−

∫
dt H (5.1)

where

H[φ,A, α, β, ψ] =

∫∫
dxdy

(
ωr(φx, φy)A− [α, β]ψ − 1

2
∇ψ · ∇ψ + [ψ, φ]A

)
(5.2)
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and [A,B] ≡ AxBy − AyBx. The variations yield

δA : −φt = ωr(φx, φy) + [ψ, φ] (5.3)

δφ : At +∇ · (cg A) + [ψ,A] = 0 (5.4)

δβ : αt + [ψ, α] = 0 (5.5)

δα : βt + [ψ, β] = 0 (5.6)

δψ : ∇2ψ − [A, φ] = [α, β] (5.7)

As in Chapter 4 the last three equations combine to give

Qt + [ψ,Q] = 0, Q = ∇2ψ − [A, φ] (5.8)

where the last term in (5.8) is minus the curl of the pseudomomentum. Using
the same Jacobi identity we used to obtain (5.8), we operate on (5.3) and
(5.4) to get the equation for the evolution of pseudomomentum,

[A, φ]t + [ψ, [A, φ]] = −[∇ · (cg A), φ]− [A, ωr(φx, φy)] (5.9)

Adding (5.8) and (5.9) we obtain

∇2ψt + [ψ,∇2ψ] = −[∇ · (cg A), φ]− [A, ωr(φx, φy)] (5.10)

which shows the critical influence of the choice of ωr(φx, φy) in determining
how the waves affect the mean flow.1

We begin our long trek in the direction of electrodynamics by observing
that in electrodynamics charged particles such as the electron really are point
particles. Since vorticity is analogous to electric charge, the electrodynamic
analogy requires the vorticity to be concentrated in point vortices. Thus we
assume

[α, β] =
∑
i

Γiδ (x− xi(t)) (5.11)

where xi(t) is the location at time t of a point vortex with strength Γi. The
subscripts i replace the continuous vorticity labels α and β. The ansatz

1A word about units. Every term in the integrand of (5.2) should have the same units.
If ωrA includes the depth integration, as it probably would in the case of surface waves,
then it would be appropriate to multiply the ∇ψ · ∇ψ term (for example) by a constant
depth H0 over which the mean kinetic energy has also been integrated. Alternatively, such
a factor could be absorbed into the definitions of ψ, α, and β. By not including such a
notation-cluttering factor, I am implicitly adopting that approach.
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(5.11) conserves vorticity because∫∫
dxdy [α, β] =

∫∫
dαdβ =

∑
i

Γi (5.12)

are constant. The Hamiltonian (5.2) becomes

H[φ,A,xi, ψ] = −
∑
i

Γiψ(xi(t))+

∫∫
dxdy

(
ωr(φx, φy)A−

1

2
∇ψ · ∇ψ + [ψ, φ]A

)
(5.13)

To fully convert from (α, β) to xi we must transform the term∫∫∫
dxdydt αβt (5.14)

in (5.1). It becomes∫∫∫
dxdydt α

∂(x, y, β)

∂(x, y, t)
=

∫∫∫
dαdβdτ α

∂(x, y, β)

∂(α, β, τ)

=

∫∫∫
dαdβdτ − x∂(α, y, β)

∂(α, β, τ)
=

∫∫∫
dαdβdτ x

∂y

∂τ
=

∫
dt
∑
i

Γixi
dyi
dt

(5.15)

Thus the complete Lagrangian takes the form

L[φ,A,xi, ψ] =

∫∫∫
dxdydt

(
−φtA− ωr(φx, φy)A+

1

2
∇ψ · ∇ψ − [ψ, φ]A

)
+

∫
dt

(
−
∑
i

Γixi
dyi
dt

+
∑
i

Γiψ(xi(t))

)
(5.16)

Suppose no waves are present; suppose A ≡ 0. Then the Lagrangian (5.16)
simplifies to

L[xi, ψ] =−
∫
dt
∑
i

Γixi
dyi
dt

+

∫∫∫
dxdydt

(
1

2
∇ψ · ∇ψ +

∑
i

Γiψ(x)δ (x− xi(t))

)
(5.17)
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The last term in (5.17) is an alternative way of writing the last term in (5.16).
The equations resulting from (5.17) are

δxi :
dxi
dt

= (−ψy(xi, t), ψx(xi, t)) (5.18)

and
δψ : ∇2ψ =

∑
i

Γiδ (x− xi(t)) (5.19)

We solve (5.19) for

ψ(x, t) =
1

2π

∑
i

Γi ln |x− xi(t)| (5.20)

and substitute the result (5.20) back into (5.17). The second line of (5.17)
simplifies as follows:∫∫∫

dxdydt − 1

2
ψ∇2ψ +

∫
dt
∑
i

Γiψ(xi)

=

∫
dt

(
−1

2
+ 1

)∑
i

Γiψ(xi) =

∫
dt

1

4π

∑
i 6=j

ΓiΓj ln |xi − xj|

=

∫
dt

1

2π

∑
i>j

ΓiΓj ln |xi − xj| (5.21)

and the result is the Lagrangian,

L[xi] =

∫
dt

(
−
∑
i

Γixi
dyi
dt

+
1

2π

∑
i>j

ΓiΓj ln |xi − xj|

)
(5.22)

for point vortex dynamics,

dxi
dt

=
1

2π

∑
j 6=i

Γj
(yj − yi, xi − xj)
|xi − xj|

(5.23)

Three important points. First, it is generally quite wrong to substitute an
equation resulting from the variational principle back into the Lagrangian.
(See what happens if you substitute the dispersion relation (5.3) back into
(5.1)-(5.2).) However, it is legitimate to use the equation obtained by varying
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a particular field to eliminate that same field from the Lagrangian. To prove
this to yourself, consider the analogous problem of finding the points at which
the gradient of a multivariate function vanishes. Thus it is legal to use (5.20)
to eliminate ψ from (5.17).

Second, in (5.21)-(5.23) we have thrown away the interaction of point vor-
tices with themselves. This is an arbitrary modification required to eliminate
infinite terms. It has no fundamental justification. The frequently heard ar-
gument that the self-interaction vanishes by symmetry, because a lone vortex
cannot decide which way to move, is specious: A vortex patch in the pres-
ence of other vortices, however distant, would experience ‘tidal forces’ that
would contribute to its motion. The neglect of point-vortex self-interaction
is analogous to the neglect of the electron’s self-energy in electrodynamics.
It has no justification beyond the need to avoid infinities.

Third, point vortex dynamics exhibits action-at-a-distance, a feature seem-
ingly at odds with electrodynamics. This action-at-a-distance is solely the
result of our decision that the mean flow be incompressible. Some such re-
striction is always necessary to avoid the embarrassing circumstance that the
mean flow develops waves of its own. Action-at-a-distance disappears when
we develop the electrodynamic analogy more generally, without attempting
to combine it with wave-mean theory. See the next chapter for that.

Now we return to (5.16) and consider what happens when waves are
present (A 6= 0). Instead of (5.19) we obtain

δψ : ∇2ψ =
∑
i

Γiδ (x− xi(t)) + [A, φ] (5.24)

The solution is

ψ(x, t) =
1

2π

∑
i

Γi ln |(x− xi(t)|+ ψw(x, t) (5.25)

where (suppressing the time-dependence)

ψw(x, y) =

∫∫
dx′dy′ ρ(x′, y′)

1

2π
ln |x− x′| (5.26)

and
ρ = [A, φ] = ∇A× k (5.27)

In classical electrodynamics the electrons are particles, but the waves are
waves. In quantum electrodynamics the waves too become particles: photons.
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The fluid analogues of photons are wave packets, small regions of the flow
in which the action A is nonzero. We want to calculate the stream function
field generated by a single wave packet. It is given by (5.26) with

ρ = ∇A× kp(t) (5.28)

where kp(t) is the wave vector associated with the wave packet. We assume
that kp depends only on time; its variation within the wave packet is assumed
negligible. The integration in (5.26) is over the area of the wave packet, the
region of the flow in which A 6= 0. Since we are only considering a single
wave packet, we assume for convenience that it is located near x = 0. This is
still a messy problem. We make it easy by saying that we only want to know
the stream function very far from the wave packet. For r ≡ |x| >> |x′|,

ln |x− x′| ≈ ln r − x · x′

r2
(5.29)

and (5.26) becomes

ψw(x) ≈ ln r

2π

∫∫
dx′dy′ ρ(x′, y′)− 1

2π

x

r2
·
∫∫

dx′dy′ x′ρ(x′, y′) (5.30)

The first term in (5.30) vanishes, because A = 0 at the boundary of the wave
packet. In the second term,∫∫

dxdy xρ(x, y) =

∫∫
dxdy x (Axlp −Aykp) = Ap(−lp, kp) (5.31)

after integration by parts, where

Ap =

∫∫
dxdyA (5.32)

is the total action inside the wave packet. Thus the streamfunction response
to a single wave packet at xp(t) is

ψ(x) =
1

2π

(x− xp)× kp
|x− xp|2

Ap (5.33)

With a little fooling around, you can see that the stream function given by
(5.33) has the same pattern as the Bretherton dipole depicted in Chapter 2.
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The streamfunction response to many point vortices and many wave pack-
ets is clearly

ψ(x, t) =
∑
i

Γiψm(x,xi) +
∑
p

Apψd(x,xp,kp) (5.34)

where

ψm(x,xi) ≡
1

2π
ln |x− xi(t)| (5.35)

is the response to a monopole at xi, and

ψd(x,xp,kp) ≡
1

2π

(x− xp)× kp
|x− xp|2

(5.36)

is the response to a Bretherton dipole with wavevector kp at xp. The con-
stants Γi and Ap measure the strength of the monopole and the dipole,
respectively. Ap is always positive but Γi can have either sign. Unless dissi-
pation occurs Ap and Γi remain constant.

Our dipole calculation assumed that x is very far from the wave packet
at xp. Is that a serious restriction? Yes and no. First of all, it is not
fundamentally different from our treatment of the monopoles. A realistic
vortex patch looks like a point vortex only if you are very far away from it.
Close up, you see a monopole only if the patch really is a point, i.e. only if
point vortices actually exist. Likewise our dipole formula holds right up to the
wave packet only if ‘point dipoles’ actually exist. So we have a choice. Either
we assume the existence of these idealized entities—point vortices and point
dipoles—or we assume that the more realistic structures—vortex patches and
wave packets of finite size—are widely separated in space. From a distance
each vortex or wave packet sees the others as a dilute gas of monopoles and
dipoles (figure 5.1).

In the more realistic Bretherton dipole depicted in Chapter 2, the dipole
pattern covered the wave packet itself, but there we were careful to say that
the wave packet consisted of a single hump. If the wave packet had instead
consisted of two humps, then the stream function pattern would have been
a quadrupole. This corresponds to keeping more terms in (5.29).

One feature of our treatment remains an enormous restriction: We refuse
to allow each monopole or Bretherton dipole to interact with itself. More
precisely, self-interaction such as wave breaking can occur, but it must be
imposed by us. We decide if and when the wave packets collapse and release
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Figure 5.1: A dilute gas of Bretherton dipoles and point vortices.

their virtual vorticity. This is not a defect of our model. Rather, it is an
indication of how idealized it is. Models, to be useful, can never include
everything. For instance, people criticize Lagrangian methods for their ne-
glect of dissipation. Certainly dissipation is important, but it can always be
put in ‘by hand.’ The advantage of Lagrangian methods is that they do the
conservative part of the dynamics correctly. They conserve the right things.

Our next step is to substitute (5.34) back into the Lagrangian (5.16),
removing its dependence on ψ. However, since our aim is to produce a
Lagrangian that depends only the point vortex locations xi(t), the wave
packet locations xp(t), and their wave vectors kp(t), we must transform all
of the terms in (5.16). If we integrate the first term in (5.16) over the p-th
wave packet, we obtain

−
∫∫∫

dxdt φtA =

∫∫∫
dxdt φAt = −

∫∫∫
dxdt φ

dxp
dt
· ∇A

= −
∫
dt
dxp
dt
·
∫∫

dx φ∇A =

∫
dt
dxp
dt
·
∫∫

dx A∇φ =

∫
dt
dxp
dt
· kpAp
(5.37)

where we have used integrations by parts and the relation(
∂

∂t
+
dxp
dt
· ∇
)
A(x, t) = 0 (5.38)

which follows from the definition of xp(t): dxp(t)/dt is the velocity of the
wave envelope. The second term in (5.16) becomes

−
∫
dt ωr(kp)Ap (5.39)
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The three terms in (5.16) containing ψ combine as∫∫∫
dtdx

(
1

2
∇ψ · ∇ψ − [ψ, φ]A

)
+

∫
dt
∑
i

Γiψ(xi(t), t)

=

∫∫∫
dtdx

(
−1

2
ψ∇2ψ − [ψ, φ]A+

∑
i

Γiψδ(x− xi)

)

=

∫∫∫
dtdx

(
−1

2
ψ∇2ψ + [A, φ]ψ + ψ

(
∇2ψ − [A, φ]

))
=

1

2

∫∫∫
dtdx ψ∇2ψ (5.40)

where we have used (5.24). The last integral in (5.40) is∫∫
dx ψ∇2ψ =

∫∫
dx

[(∑
i

Γiψm(x,xi) +
∑
p

Apψd(x,xp,kp)

)
×

∇2

(∑
j

Γjψm(x,xj) +
∑
q

Aqψd(x,xq,kq)

)]
(5.41)

We simplify (5.41) by neglecting the dipole-dipole interactions, which are
expected to be weak: The velocity field associated with the monopoles falls
off like 1/r, whereas the velocity field associated with Bretherton dipoles falls
off like 1/r2. Dropping these terms from (5.41) gives us∫∫

dx ψ∇2ψ ≈
∫∫

dx
∑
i

Γi∇2ψm(x,xi)

(∑
j

Γjψm(x,xj) + 2
∑
p

Apψd(x,xp,kp)

)

=

∫∫
dx
∑
i

Γiδ(x− xi)

(∑
j

Γjψm(x,xj) + 2
∑
p

Apψd(x,xp,kp)

)

=
∑
i

Γi

(∑
j

Γjψm(xi,xj) + 2
∑
p

Apψd(xi,xp,kp)

)
(5.42)

Putting all this together, we obtain the Lagrangian

L[xi,xp,kp] =

∫
dt

(∑
p

Apkp · ẋp −
∑
i

Γixiẏi −H[xi,xp,kp]

)
(5.43)
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where

H[xi,xp,kp] =
∑
p

Ap ωr(kp)−
1

2π

∑
i

∑
j>i

ΓiΓj ln |xi − xj|

− 1

2π

∑
i

∑
p

ΓiAp
(xi − xp)× kp
|xi − xp|2

(5.44)

is the Hamiltonian. For every wave packet there are two canonical pairs,
(xp, kp) and (lp, yp), and for every point vortex there is one canonical pair,
(xi, yi). Again, Γi and Ap are constants. The Hamiltonian (5.44) contains ΓΓ
terms and ΓA terms. If we had not dropped the dipole/dipole interactions
it would also contain AA terms.

The equations corresponding to (5.43)-(5.44) are

δkp : ẋp =
1

Ap
∂H

∂kp
= cg(kp) + Um(xp) (5.45)

δxp : k̇p = − 1

Ap
∂H

∂xp
= −kp∇Um(xp)− lp∇Vm(xp) (5.46)

δxi : ẋi =
1

Γi

(
∂H

∂yi
,−∂H

∂xi

)
= Um(xi) + Ud(xi) (5.47)

where

Um(x) = (Um(x), Vm(x)) =
∑
i

Γi

(
−∂ψm

∂y
(x,xi),

∂ψm
∂x

(x,xi)

)
=

1

2π

∑
i

Γi
(yi − y, x− xi)
|xi − x|2

(5.48)

is the velocity field induced by the point vortices, and

Ud(x) =
∑
p

Ap
(
−∂ψd
∂y

(x,xp,kp),
∂ψd
∂x

(x,xp,kp)

)
(5.49)

is the velocity field induced by the wave packets. The total velocity is U(x) =
Um(x)+Ud(x). In our approximation, the wave packets talk to point vortices
but not to one another, while the point vortices talk to both point vortices
and wave packets. We can add the missing physics if necessary; it would, for
example, add the term Ud(xp) to (5.45).
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The dynamics (5.45)-(5.47) conserves the energy (5.44) and the momen-
tum

M =
∑
p

Apkp +
∑
i

Γi(yi,−xi) (5.50)

Conservation of M is proved by considering variations of the form

δxi = δxp = ε(t) (5.51)

where ε(t) is an arbitrary infinitesimal vector. If we think of the interactions
between the Bretherton dipoles and the point vortices as the sum of pair
interactions between each dipole/vortex pair, then pairwise conservation of
(5.50) tells us that the refraction of wave packet p (i.e. the change in kp)
caused by vortex i is accompanied by a change in the position of vortex i.
Bühler and McIntyre refer to this as ‘remote recoil.’

Conservation of (5.50) also governs wave breaking in the following sense.
If the p-th wave packet is completely destroyed by wave breaking, then Ap
is suddenly replaced by two counter-rotating vortices with a dipole moment
equal to ΓD where D is the separation between counter-rotating vortices of
strength ±Γ. See Bühler’s book, p. 282 (first edition).

The dispersion relation ωr(k) remains arbitrary. It can be anything you
want. If your interest is in surface gravity waves, you would choose

ωr(k) =
√
g|k| (5.52)

Whatever your choice, it is tempting to suppose that wave-vector stretching
is generic. Wave vectors tend to get longer for the same reason that fluid
particles tend to move apart. How does this affect the energy? It all de-
pends on your choice of ωr(k). If ωr(k) increases with |k|, then wave-vector
stretching increases the first term in (5.44), drawing energy out of the other
two terms. If, as in our approximate dynamics, the wave-vector stretching is
produced by the vortical flow, this energy is drawn directly from the vortical
flow. We have already made an argument like this for near-inertial waves
in three dimensions. Now we see how the argument applies more generally.
(We are not yet ready to discuss Rossby waves, for which ωr(k) decreases
with |k|.)

In a famous 1949 paper, Onsager considered the equilibrium statistical
mechanics of a system of point vortices. Our system reduces to Onsager’s
system when no waves are present (Ap ≡ 0). Our phase space is larger than
the one considered by Onsager because it contains dimensions corresponding
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to the wave packet locations xp and their wave vectors kp. However, the
difference is not merely a matter of extra dimensions. In Onsager’s problem
the volume of the phase space is finite, because the point vortices are confined
to a box. In our problem the phase space has infinite volume because −∞ <
kp < ∞. We expect an ultraviolet catastrophe in which energy spreads
to ever larger |kp| by the process of wave vector stretching. If the wave
vector stretching increases the first term in (5.44), as would be the case
for gravity waves, this increase must be compensated by a decrease in the
other two terms. Could this decrease be associated with pattern formation?
Remember: In our problem the momentum invariant (5.50) is nontrivial, and
must be treated on a par with the energy.

To illustrate the use of (5.43), we consider the system comprising a single
wave packet with action Ap and wavevector (kp, lp) located at (xp, yp); a point
vortex of strength −Γ located at x1, y1; and a second point vortex of strength
+Γ located at x2, y2, as shown in figure 5.2. Initially,

yp = lp = 0, x2 = x1, y2 = −y1 (5.53)

and, by symmetry, these conditions hold at all later times. (Warning: It
is illegal to substitute the symmetry conditions (5.53) into the Lagrangian
before taking the variations.) The Lagrangian is

L[xp, yp, kp, lp, x1, y1, x2, y2] =∫
dt
[
Ap (kpẋp + lpẏp − ωr(kp, lp)) + Γ (x1ẏ1 − x2ẏ2)−

Γ2

2π
ln |x1 − x2|

+
Ap
2π

(
−Γ

(x1 − xp)× kp
|x1 − xp|2

+ Γ
(x2 − xp)× kp
|x2 − xp|2

)]
(5.54)

and the equations are

δkp : ẋp = cg(kp, 0)− Γy1
πd2

(5.55)

δxp : k̇p =
2Γkp
π

(
(x1 − xp)y1

d4

)
(5.56)

δx1 : ẏ1 =
Apkp
π

(x1 − xp)y1
d4

(5.57)

δy1 : ẋ1 = − Γ

4πy1
+
Apkp
2π

(x1 − xp)2 − y21
d4

(5.58)
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Figure 5.2: A wave packet with wavevector (kp, lp) at (xp, yp) propagates
toward a pair of counter-rotating vortices at (x1, y1) and (x2, y2).

where cg is the x-component of the group velocity, and

d2 ≡ (x1 − xp)2 + y21 (5.59)

is the squared distance between the wave packet and either vortex. On
the left hand sides of (5.55)-(5.58), we have used the symmetry conditions
(5.53). Because of these symmetry conditions, we do not need the evolution
equations for yp, lp, x2, and y2.

The equations (5.55)-(5.58) conserve energy in the form

E = ωr(kp)Ap +
Γ2

2π
ln y1 −

ApΓ
π

y1kp
d2

(5.60)

and momentum in the form

M = Apkp − 2Γy1 (5.61)

If we define
X(t) ≡ xp(t)− x1(t) (5.62)

we can write (5.55)-(5.58) more simply as three equations

Ẋ = cg(kp) +
Γ

4πd2y1
(X2 − 3y21)− Apkp

2πd4
(X2 − y21) (5.63)

k̇p = −2Γkp
πd4

Xy1 (5.64)

ẏ1 = −Apkp
πd4

Xy1 (5.65)
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in the three unknowns kp, y1 and X, where now d2 = X2 + y21.
We have little need for these equations. The two conserved quantities,

(5.60) and (5.61), make this an integrable system. Eliminating y1 between
(5.60) and (5.61), we obtain an expression for the energy in terms of X and
kp. The motion is confined to curves of constant E(X, kp). We determine
the solution by plotting E(X, kp) or, even more conveniently, by plotting

E(kp, d
2) = ωr(kp)Ap +

Γ2

2π
ln(Apkp −M)− Apkp

2π

(Apkp −M)

d2
(5.66)

in which we have dropped additive constants. Only the last term in (5.66)
involves d2.

Consider a gravity wave packet, initially at X = −∞ with kp > 0, ap-
proaching the vortex pair from the left. While the wave packet is still far
away from the vortex pair (d2 very large) the last term in (5.66) is negligible.
According to (5.64), kp increases with time on X < 0. This increase in kp
occurs because the velocity field associated with the vortices is squeezing the
wave packet in the x-direction. Since cg(kp) > 0 the wave energy ωrAp and
the vortex-interaction energy—the middle term in (5.66)—both increase with
kp. The increase in the latter corresponds to the two vortices being pushed
apart by the velocity field associated with the dipole. The increase in these
two terms must be balanced by the last term in (5.66), which represents the
energy stored in the superposed velocity fields of the wave packets and vor-
tices. These superposed fields tend to cancel as the wave packet approaches
the vortex pair. kp reaches its maximum value at X = 0 where

d2 = y21 =

(
Apkp −M

2Γ

)2

(5.67)

Substituting (5.67) into (5.66), we obtain an equation for this maximum
value of kp. After passing X = 0, the solution ‘unwinds’, and kp returns to
its original value as X → ∞. Such solutions, easy because of the assumed
symmetry, build physical intuition, but they tell us little about the behavior
of a large number of wave packets and vortices.



Chapter 6

The analogy with
electrodynamics

Chapter 5 broached an analogy between fluid mechanics and classical elec-
trodynamics. Vorticity, or potential vorticity, is analogous to electric charge,
and electromagnetic waves are analogous to whatever waves are present in
the fluid: acoustic waves, surface waves, inertial waves, whatever. The wave-
mean theory pursued in Chapter 5 clouded this analogy. It introduced action-
at-a-distance, a decidedly non-electrodynamical characteristic, by assuming
that the mean flow was either quasigeostrophic or incompressible Euler. In
this chapter we pursue the electrodynamical analogy in its purer form, with-
out attempting to divide the flow into waves and a mean flow. This leads to
an important question, which we take up at the end of the chapter: Is the
concept of a mean flow really necessary, or even helpful? Vorticity, we will
suggest, is the true slow variable of fluid mechanics, and the averaging used
to define other slow variables might be an unnecessary complication.

The analogy is between electrodynamics in two space dimensions on the
one hand, and quasi-two-dimensional fluid dynamics on the other. What do
we mean by that? We mean that the fluid must be stratified, and its isopycnal
surfaces must not overturn. It is helpful if the fluid motion is also hydrostatic,
but we can relax that requirement perturbatively. We consider shallow-water
dynamics, which fulfills both of these restrictions. The generalization to
three-dimensional, stratified, Boussinesq dynamics has been given elsewhere.

We begin with a quick review of electrodynamics. First, there are the

64
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Maxwell equations:

∇ ·B = 0 (6.1)

∇ · E =
∑
i

qiδ(x− xi(t)) = q (6.2)

Bt +∇× E = 0 (6.3)

c2∇×B− Et =
∑
i

qiẋiδ(x− xi(t)) = j (6.4)

where B(x, y, z, t) is the magnetic field; E(x, y, z, t) is electric field; qi is the
charge on the particle located at xi(t); q is the charge density; j is the current
density; and c is the speed of light. The charged particles obey Lorentz’s
equations,

miẍi = qi [E(xi, t) + ẋi ×B(xi, t)] (6.5)

where mi is the mass of the charged particle. The acceleration term in (6.5) is
non-relativistic. This violates Lorentz invariance, but we could easily replace
it by the correct, relativistic expression. Shortly we will neglect it entirely.

The potential representation

E = −∇ψ −At (6.6)

B = ∇×A (6.7)

automatically satisfies the two homogeneous Maxwell equations, (6.1) and
(6.3). More importantly, it allows us to formulate a variational principle for
electrodynamics. The Lagrangian for classical electrodynamics is L = L1+L2

where

L1[ψ,A] =
1

2

∫∫∫∫
dtdx

(
E · E− c2B ·B

)
=

1

2

∫∫∫∫
dtdx

[
(∇ψ + At) · (∇ψ −+At)− c2(∇×A) · (∇×A)

]
(6.8)

is the Lagrangian for the fields by themselves, and

L2[ψ,A,xi] =
1

2

∑
i

miẋi · ẋi∫∫∫∫
dtdx

∑
i

qi [−ψ(x, t) + A(x, t) · ẋi] δ(x− xi(t)) (6.9)
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couples the fields and the charges. In (6.9) we have written the kinetic energy
of the particles in its non-relativistic form, but, again, this could easily be
generalized.

The potential representation (6.6)-(6.7) is not unique. The gauge trans-
formation

A→ A +∇λ (6.10)

ψ → ψ − λt (6.11)

where λ(x, y, z, t) is an arbitrary function, alters the potentials A and ψ, but
not the physical fields E and B. Similarly, the Lagrangian is invariant to
variations of the form δA = ∇(δλ) and δψ = −(δλ)t, where δλ(x, y, z, t) is
an arbitrary infinitesimal function. This symmetry property corresponds to
a conservation law, the conservation of electric charge.

We specialize to the two-dimensional case, in which

A(x, y, t) = (A,B, 0) (6.12)

E(x, y, t) = (E1, E2, 0) = (−ψx − At,−ψy −Bt, 0) (6.13)

B(x, y, t) = (0, 0, B3) = (0, 0, Bx − Ay) (6.14)

xi(t) = (xi(t), yi(t), 0) (6.15)

(The vertical component, B3, of B must not be confused with the y-component,
B, of A.) In two dimensions, (6.8) and (6.9) become

L1[ψ,A,B] =
1

2

∫∫∫
dtdxdy

[
(ψx + At)

2 + (ψy +Bt)
2 − c2(Bx − Ay)2

]
(6.16)

and

L2[ψ,A,B, xi, yi] =
1

2

∑
i

mi

(
ẋ2i + ẏ2i

)
+

∫∫∫
dtdxdy

∑
i

qi [−ψ(x, y, t) + A(x, y, t)ẋi +B(x, y, t)ẏi] δ(x− xi(t))

(6.17)

The last term in (6.17) may also be written∫
dt
∑
i

qi [−ψ(xi(t), yi(t), t) + A(xi(t), yi(t), t)ẋi +B(xi(t), yi(t), t)ẏi]

(6.18)
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The variational principle δ(L1 + L2) = 0 yields the following equations:

δA : (At + ψx)t + c2(Bx − Ay)y =
∑
i

qiẋiδ(x− xi(t))

⇐⇒ −E1,t + c2B3,y = j1(x, t) (6.19)

δB : (Bt + ψy)t − c2(Bx − Ay)x =
∑
i

qiẏiδ(x− xi(t))

⇐⇒ −E2,t − c2B3,x = j2(x, t) (6.20)

δψ : (−ψx − At)x + (−ψy −Bt)y =
∑
i

qiδ(x− xi(t))

⇐⇒ E1,x + E2,y = q(x, t) (6.21)

δxi : miẍi = qi[(−ψx − At)+(Bx − Ay)ẏi]
⇐⇒ miẍi = qi[E1+B3ẏi] (6.22)

δyi : miÿi = qi[(−ψy −Bt)−(Bx − Ay)ẋi]
⇐⇒ miÿi = qi[E2−B3ẋi] (6.23)

The first three of these can also be written in the forms

Att − c2∇2A+ (ψt + c2Ax + c2By)x = j1 (6.24)

Btt − c2∇2B + (ψt + c2Ax + c2By)y = j2 (6.25)

−∇2ψ − (Ax +By)t = q (6.26)

in which we have rearranged the terms on the left-hand sides. We simplify
(6.24)-(6.26) by adopting the Lorenz gauge, that is, by arbitrarily requiring
the potentials to satisfy

ψt + c2(Ax +By) = 0 (6.27)

Then (6.24)-(6.26) take the simpler forms

Att − c2∇2A = j1 (6.28)

Btt − c2∇2B = j2 (6.29)

ψtt − c2∇2ψ = c2q (6.30)

What permits us to impose (6.27)? Suppose that ψ, A, and B do not
satisfy (6.27); suppose

ψt + c2(Ax +By) = R(x, y, t) (6.31)
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where R 6= 0. The transformation (6.10)-(6.11) allows us to satisfy (6.27) if
we can find a λ(x, y, t) that satisfies

λtt − c2∇2λ = −R (6.32)

This, we know, is always possible.
The new form (6.28)-(6.30) of Maxwell’s equations is an improvement over

(6.24)-(6.26) in that only a single potential appears in each equation, and the
wave operator ∂tt−c2∇2 (the d’Alembertian) reminds us that all information
travels at the speed of light. There is no action-at-a-distance. To have any
hope of actually solving the equations, it is better to consider (6.28)-(6.30)
instead of (6.24)-(6.26). Thus the gauge freedom of the potentials makes the
equations easier to solve.

Despite the advantages of the Lorenz gauge, people sometimes prefer the
Coulomb gauge, which imposes the condition

Ax +By = 0 (6.33)

instead of (6.27). The gauge transformation (6.10)-(6.11) allows us to satisfy
(6.33) if we can find a λ that satisfies

∇2λ = R (6.34)

at every time. This equation—Poisson’s equation—always has a solution,
and therefore the restriction (6.33) is allowed. If (6.33) holds, then (6.26)
takes the simpler form

−∇2ψ = q (6.35)

but (6.24)-(6.25) remain complicated. Nevertheless, the Coulomb gauge is
sometimes advantageous.

The Coulomb gauge raises an interesting paradox that was not appar-
ently fully resolved until the paper of Brill and Goodman in 1967: Eqn
(6.35) looks like action-at-a-distance, even though the physics must be the
same as (6.28)-(6.30). For the resolution of this paradox, see any advanced
book on electrodynamics, especially Jackson. (Hint: (6.34) looks like action-
at-a-distance too.) The Coulomb gauge turns out to be a good choice for
wave/mean theory, but it does not by itself impose action-at-a-distance.

——————————————————————–
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Now we turn to the shallow water equations. We obtain shallow water
dynamics from the Lagrangian for electrodynamics in four steps. First, we
associate the potentials (ψ,A,B) with new physical variables:

ĥ ≡ h

h0
= Bx − Ay (6.36)

ĥu = −ψy −Bt (6.37)

ĥv = ψx + At (6.38)

where h(x, y, t) is the fluid depth; h0 is the constant mean depth; u(x, y, t) =
(u, v) is the fluid velocity in the (x, y) direction; and c =

√
gh0. Equations

(6.36)-(6.38) replace (6.13)-(6.14). We see that the fluid depth is analogous
to the vertical component of the magnetic field. The horizontal momenta are
analogous to the two horizontal components of the electric field, but note the
sign flip between (6.37) and (6.38).

Second, we replace qi with −Γi and regard xi(t) = (xi(t), yi(t)) as the
location of a point vortex with potential vorticity Γi. The sign flip between
charge and vorticity is inconsequential, and is merely a matter of convention.
(It is an accident of history that electrons were assigned a negative charge.)

Third, we drop the first term in (6.17). In other words, we assume that
mi = 0. This amounts to replacing (6.17) by

Lsw2 =

∫∫∫
dtdxdy

∑
i

Γi [ψ(x, y, t)− A(x, y, t)ẋi −B(x, y, t)ẏi] δ(x− xi(t))

(6.39)
where the superscript denotes ‘shallow water.’ This has the effect of replacing
the Lorentz force law by

0 = E(xi, t) + ẋi ×B(xi, t) (6.40)

By the new interpretations (6.36)-(6.38), (6.40) is equivalent to

0 = ĥ(−v, u) + ĥ(ẏi,−ẋi) (6.41)

from which it follows that ẋi = u(xi, t); the point vortices move at the fluid
velocity. Because Γi has divided out of (6.40), the attraction or repulsion
between charges—vortices—disappears.

Fourth, we replace (6.16) by

Lsw1 [ψ,A,B] =
1

2

∫∫∫
dtdxdy

(
(ψx + At)

2

(Bx − Ay)
+

(ψy +Bt)
2

(Bx − Ay)
− c2(Bx − Ay)2

)
(6.42)
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in which the first two terms acquire denominators. If these denominators
were absent, Lsw1 would, like L1, be quadratic in the potentials, and the
equations resulting from δLsw1 = 0 would be linear. The fact that L1 is
quadratic means that electromagnetic waves are linear waves that do not
interact. The presence of denominators in (6.42) means that the shallow
water gravity waves do interact, even in the absence of vorticity.

From the standpoint of electrodynamics, our assumption that mi = 0
seems reasonable. Charged particles of negligible or zero mass are conceiv-
able. On the other hand, the appearance of the denominators in (6.42) seems
to lie wholly outside the realm of electrodynamics. In a sense, it does not.
In quantum electrodynamics, electromagnetic waves do interact, even in the
absence of electric charge, by the creation of ‘virtual charge.’ The virtual
charge corresponds to Bretherton flow.

The variational principle δ(Lsw1 + Lsw2 ) = 0 implies:

δA :

(
ψx + At
Bx − Ay

)
t

+

(
c2(Bx − Ay) +

1

2

(ψx + At)
2

(Bx − Ay)2
+

1

2

(ψy +Bt)
2

(Bx − Ay)2

)
y

= −
∑
i

Γiẋiδ(x− xi(t)) (6.43)

δB : −
(
ψy +Bt

Bx − Ay

)
t

+

(
c2(Bx − Ay) +

1

2

(ψx + At)
2

(Bx − Ay)2
+

1

2

(ψy +Bt)
2

(Bx − Ay)2

)
x

=
∑
i

Γiẏiδ(x− xi(t)) (6.44)

δψ :

(
ψx + At
Bx − Ay

)
x

+

(
ψy +Bt

Bx − Ay

)
y

=
∑
i

Γiδ(x− xi(t)) ≡ Q (6.45)

δxi : (−ψx − At) + (Bx − Ay)ẏi = 0 (6.46)

δyi : (−ψy −Bt)− (Bx − Ay)ẋi = 0 (6.47)

When translated into the fluid variables (6.36)-(6.38), (6.43)-(6.47) become
the shallow water equations:

vt +

(
gh+

1

2
u2 +

1

2
v2
)
y

= −Qu (6.48)

ut +

(
gh+

1

2
u2 +

1

2
v2
)
x

= Qv (6.49)

vx − uy = Q (6.50)

ẋi = u(xi, t) (6.51)
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where Q is the vorticity density. The continuity equation

ĥt +∇ · (ĥu) = 0 (6.52)

is automatically satisfied by (6.36)-(6.38). That is, the potential representa-
tion (6.36)-(6.38) automatically satisfies (6.52) in the same way that (6.6)-
(6.7) automatically satisfies (6.3). (The other homogeneous Maxwell equa-
tion (6.1) is trivially satisfied in two dimensions.) This correspondence is the
means by which the analogy was discovered: If we rewrite (6.52) in the form
of a vanishing three-dimensional spacetime divergence,

(∂t, ∂x, ∂y) · (ĥ, ĥu, ĥv) = 0 (6.53)

then it is obvious that (6.53) implies

(ĥ, ĥu, ĥv) = (∂t, ∂x, ∂y)× (−ψ,A,B) (6.54)

for some ψ,A,B. Eqn (6.54) is equivalent to (6.36)-(6.38), and at this point
the analogy reveals itself.

The automatic satisfaction of mass conservation by the potential rep-
resentation (6.36)-(6.38) is analogous to the automatic satisfaction of mass
conservation by the labeling of fluid particles in earlier chapters. Neither
the potential representation nor the particle labeling is unique; both ad-
mit a gauge freedom that corresponds to potential vorticity conservation.
This gauge freedom helps us to solve the fluid equations. In other words,
a physically undetectable change in the description of the system—gauge
transformation of the potentials or relabeling of the fluid particles—can lead
to physically interesting solutions. The following chapter offers a stunning
example.

Shallow-water dynamics with point vortices is of limited interest. Fortu-
nately, this can all be extended to three-dimensional, rotating, stratified, hy-
drostatic Boussinesq dynamics with continuously distributed vorticity. These
generalizations cover territory of considerable interest to oceanographers and
meteorologists. But what about the most general case of a three-dimensional,
non-hydrostatic, perfect fluid, stratified or not? Is the general case analogous
to electrodynamics?

Beautiful variational principles cover the general three-dimensional case,
but none of them resemble electrodynamics, and it seems unlikely that the
analogy between electrodynamics and fluid dynamics could be extended to
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the unrestricted three-dimensional case. To see why, consider three-dimensional,
constant-density flow governed by

vt + v · ∇v = −∇p (6.55)

∇ · v = 0 (6.56)

For such flow the simplest vorticity structures are loops, vortex tubes of
infinitesimal thickness. On the other hand, charged particles like the electron
really are point particles. Apart perhaps from Hill’s vortex, there is nothing
resembling point vortices in three dimensional fluids.

In a sense, two-dimensional fluids and three-dimensional fluids live in
separate worlds. They obey similar momentum equations, but they behave
quite differently. In two dimensions vorticity looks like particles (although the
‘particles’ could be regarded as the projections of three-dimensional vortex
lines). In three dimensions vorticity looks like ‘strings’ that either form a
loop or terminate at boundaries. In three dimensional electrodynamics you
still have point particles; strings might exist, but only in spaces of much
higher dimension, such as, maybe, 26.

The limit Bx − Ay → 1, in which the denominators in (6.42) disappear,
corresponds to a flat fluid surface. Thus infinitesimal fluid waves behave like
electromagnetic waves; in the absence of vorticity they do not interact. For
small amplitude shallow water waves, we set A = A′ and B = x + B′, and
regard A′ and B′ as small. Then

h

h0
= 1 +B′x − A′y (6.57)

is nearly constant. Expanding

1

(Bx − Ay)
= 1− (B′x − A′y) + (B′x − A′y)2 + · · · (6.58)

we obtain the leading order nonlinear approximation to (6.42) in the form

Lsw1 =
1

2

∫∫∫
dtdxdy

([
(ψx + A′t)

2 + (ψy +B′t)
2
]

(1−B′x + A′y)− c2(B′x − A′y)2
)

(6.59)
The cubic terms in (6.59) give rise to wave-wave interactions.
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In 1936 Heisenberg and Euler computed the analogous, leading order,
quantum correction to the Lagrangian for classical electrodynamics. It is

L1 =
1

2

∫∫∫∫
dtdx

(
E · E− c2B ·B

)
+ ε
(
(E · E− c2B ·B)2 + 7(E · cB)2

)
(6.60)

where ε is a small parameter, inversely proportional to the fourth power of
the mass of the electron (the lightest charged particle). The Lagrangian
(6.60) is what physicists call an effective Lagrangian. Although you use it as
you would use the classical Lagrangian (6.8), it incorporates quantum effects
at lowest order. In two dimensions (6.60) takes the form

L1 =
1

2

∫∫∫
dtdxdy

[
(E2

1 + E2
2 − c2B2

3) + ε(E2
1 + E2

2 − c2B2
3)2
]

(6.61)

We compare the electrodynamic Lagrangian (6.61) to the shallow water
Lagrangian (6.59) by writing the latter in terms of E and B:

Lsw1 =
1

2

∫∫∫
dtdxdy

(
(E2

1 + E2
2)(1−B′3)− c2B′23

)
(6.62)

We see that the quantum correction to the Lagrangian for classical electro-
dynamics is quartic, whereas the nonlinear correction to the Lagrangian for
linear shallow water dynamics is cubic. The analogy between the two cor-
rections therefore appears to be weak. However, the analogy improves if we
carry things another step, comparing the shallow water correction to the field
quantization of (6.61), in which the electromagnetic fields themselves become
particles. In the particle realm, the quartic correction in (6.61) corresponds
to the interaction between 4 photons shown in figure 6.1. This diagram re-
sults from the combination of 4 simpler diagrams of the form shown in figure
6.2.

Figure 6.2 is the basic vertex of quantum electrodynamics. In figure
6.2 a photon temporarily converts itself into an electron and a positron.
The cubic correction in (6.59) corresponds to a basic vertex of this type.
The photon corresponds to a gravity wave packet, and the electron/positron
pair corresponds to the pair of counter-rotating vortices in Bretherton flow.
Compare figure 2.1.

Figure 6.2 cannot represent a complete, beginning-to-end, process in
quantum electrodynamics, because the permanent conversion of a photon
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Figure 6.1: The simplest beginning-to-end interaction between photons in a
vacuum. Two photons go in, and two photons go out.

Figure 6.2: The basic vertex of quantum electrodynamics. A photon pro-
duces a virtual electron/positron pair. Energy-momentum conservation pre-
vents the pair from separating from the photon. OR: A gravity wave packet
produces counter-rotating virtual vortices (Bretherton flow). Potential vor-
ticity conservation prevents the virtual vortices from separating from the
wave packet. However, if wave breaking occurs, the virtual vortices become
real, actual vorticity.
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into an electron/positron pair would badly violate energy-momentum con-
servation: Because electrons and positrons have mass, it would be possible
to find a reference frame in which the final momentum vanishes (particles
moving in opposite directions at the same speed). But in this same reference
frame the initial momentum could not vanish, because photons can never be
brought to rest.

Likewise, potential vorticity conservation forbids the virtual vorticity in
Bretherton flow from becoming real, actual vorticity unless dissipation (wave
breaking) acts. Dissipation is a real feature of fluid dynamics, but it has no
analogue in quantum electrodynamics. Thus the basic vertex of figure 6.2
describes the creation of vorticity by wave breaking in a Bretherton dipole.
In contrast, figure 6.1 is the simplest possible beginning-to-end interaction
between photons. Two photons go in, two photons go out, and the leptons
rattling around inside the diagram are mere aids to the computation.

Does this somewhat fanciful analogy add anything to geophysical fluid
dynamics? I think it does. Just as electrons and photons represent the
fundamental particles of quantum electrodynamics, wave packets and point
vortices constitute the fundamental particles of gfd. It is pointless to seek
anything more basic. The charged particles, the vortices, are slow in the
sense that they move at the typically slow speed of the fluid. The wave
packets move at the typically much larger group speed. Wave/mean theory
is meaningful when these two speeds are well separated. To be sure, the
vortices also experience a fast Zitterbewegung [trembling motion] caused by
passing waves, but this trembling motion does not add appreciably to their
displacement. Vorticity, it seems, is the true slow variable of fluid mechanics.
Instead of wave/mean theory, we should speak of wave/vorticity theory.

Vorticity is defined without reference to averaging, and this begs the ques-
tion: Does averaging play a useful role in fluid dynamics? The concept of
averaging entered our field in a big way with the work of Osborne Reynolds.
Not everyone embraced it initially. (See for example George Stokes’s un-
comprehending review of a Reynolds paper in the book A Voyage Through
Turbulence, p. 26.) Although the importance of averaging to turbulence
theory has now long been taken for granted, the mathematical framework
erected by Taylor, Batchelor, and Chandrasekhar has not fulfilled its high
initial promise. The closure problem of turbulence remains largely unsolved.

We end this chapter by showing how the Coulomb gauge facilitates the
calculation of Bretherton flow. If the potentials satisfy Ax + By = 0, then
A = γy and B = −γx for some γ(x, y, t). The representation (6.36)-(6.38)
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becomes

ĥ = −∇2γ (6.63)

ĥu = −ψy + γtx (6.64)

ĥv = ψx + γty (6.65)

Thus ψ is the stream function and γt is the velocity potential for the mo-
mentum ĥ(u, v). In the limit of weak nonlinearity, the waves-only part of the
Lagrangian becomes

Lsw1 [ψ, γ] =
1

2

∫∫∫
dtdxdy

(
∇ψ · ∇ψ +∇γt · ∇γt − c2(∇2γ)2

)
+

1

2

∫∫∫
dtdxdy (∇ψ · ∇ψ + 2[ψ, γt] +∇γt · ∇γt)∇2γ (6.66)

where the first line contains all the quadratic terms and the second line
contains all the cubic terms. (6.66) is the Lagrangian for shallow water
dynamics in which the vorticity vanishes (fluid initially at rest) and the
gravity waves are assumed to be small in amplitude. Linear waves, which
are governed by the first line of (6.66), obey

δψ : ∇2ψ = 0 (6.67)

and
δγ : ∇2γtt = c2∇2∇2γ (6.68)

and are thus confined to the variable γ. Setting γ = γ̄ + γ′ and ψ = ψ̄ + 0,
we rewrite (6.66) as

L1[ψ, γ] =
1

2

∫∫∫
dtdxdy

(
∇γ′t · ∇γ′t − c2(∇2γ′)2

)
1

2

∫∫∫
dtdxdy

(
∇ψ̄ · ∇ψ̄ +∇γ̄t · ∇γ̄t − c2(∇2γ̄)2

)
+

1

2

∫∫∫
dtdxdy

(
∇ψ̄ · ∇ψ̄ + 2[ψ̄, γt] +∇γt · ∇γt

)
∇2γ (6.69)

Under the usual scaling assumptions that γ′ = O(a), ψ̄ = O(a2), and γ̄ =
O(a2), the first line in (6.69) is O(a2), the second line is O(a4), and we should
keep only O(a4) terms in the third line. To prevent the wave from exciting
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other waves (i.e. from generating a wake), we set γ̄ = 0. As emphasized in
earlier chapters, this is a separate assumption that holds only if the envelope
of γ′ is very smooth. Under these assumptions (6.69) simplifies to

L1[ψ, γ] =
1

2

∫∫∫
dtdxdy

(
∇γ′t · ∇γ′t − c2(∇2γ′)2

)
1

2

∫∫∫
dtdxdy

(
∇ψ̄ · ∇ψ̄ + 2[ψ̄, γ′t]∇2γ′

)
(6.70)

The rest of the calculation is standard: We set γ′ = A cosφ and apply
Whitham’s method to get the equation for ψ̄, the Bretherton flow.



Chapter 7

The gauge freedom of fluid
mechanics

Lagrangian coordinates have a bad reputation. The case against them goes
like this: In seeking solutions to the Lagrangian equations, one sets oneself
the task of solving for the trajectory of every fluid particle. However, Eule-
rian solutions are known in which the velocity field is a simple one, but the
particle trajectories are chaotic and therefore impossible to determine ana-
lytically. Since the Lagrangian method requires you to find the fluid particle
trajectories, it would have failed to find these solutions. Ergo, the Eulerian
method succeeds in cases for which the Lagrangian method would have failed.
Lagrangian fluid mechanics is a step too far.

This is a bad rap, and it is easy to rebut. A simple argument shows that
there are solutions to the Lagrangian equations that the Eulerian method
would fail to find. You probably know one already. It is the Gerstner wave,
which is among the earliest solutions to the fluid equations (1802). Fluid
mechanicists view the Gerstner solution as parametric, but it is unabashedly
Lagrangian.

This chapter focuses on two-dimensional incompressible flow governed by

78
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the Eulerian equations in the form(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
u = −∂p

∂x
(7.1)(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
v = −∂p

∂y
− g (7.2)

∂u

∂x
+
∂v

∂y
= 0 (7.3)

and by the Lagrangian equations in the form

∂2x

∂τ 2
= −∂(p, y)

∂(a, b)
(7.4)

∂2y

∂τ 2
= −∂(x, p)

∂(a, b)
− g (7.5)

∂(x, y)

∂(a, b)
= 1 (7.6)

You first saw (7.4)-(7.6) in Chapter 1. We hold two interpretations in mind.
Either x and y are horizontal coordinates and g = 0, or y is vertical and g
is the gravity constant. In the latter case we assume that a free surface is
present.

In the Eulerian approach we solve (7.1)-(7.3) for u(x, t) and p(x, t). In
the Lagrangian approach we solve (7.4)-(7.6) for x(a, τ) and p(a, τ). Suppose
we have done the latter. If we know x(a, τ), then we know u(a, τ) = ∂x/∂τ .
To express our Lagrangian solution in the Eulerian form u(x, t), we must
invert x(a, τ) to get a(x, t) and substitute the latter into u(a, τ).

In principle it is always possible to find the inverse of x(a, τ), because
the mapping from particle labels to locations is one-to-one. But what is
possible in principle can be impossible in practice. If the mapping a → x
involves transcendental functions, as in the case of the Gerstner wave, then
it may be practically impossible to obtain a ← x as needed to obtain an
analytical expression for x → u. If there is no analytical expression for
x → u, then it would have been impossible to obtain u(x, t) by solving the
Eulerian equations. In summary, just as there are Eulerian solutions that
cannot be written in Lagrangian form, so too there are Lagrangian solutions
that cannot be written in Eulerian form.

But there is more. The Lagrangian mass-conservation equation (7.6)
requires that the ratio of area in physical space to area in label space be
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unity. This requirement is unnecessarily strong. Fluid incompressibility is
ensured if the fluid particles corresponding to a particular area in label space
always occupy the same amount of area in physical space, but the ratio can
depend on location in label space. In fact, although we shall not consider
such, it could even depend on time. The Lagrangian formulation only requires
that you have a method for keeping track of fluid particles and that every
fluid particle has one, and only one, location at any particular time.

To illustrate what we mean, suppose that we define a new set of fluid
particle labels, α and β, by the equations

α = F (a, b), β = G(a, b) (7.7)

where F (a, b) and G(a, b) are arbitrary, time-independent functions. The
only rigid requirement is that

J ≡ ∂(a, b)

∂(α, β)
6= 0 (7.8)

By prohibiting J from changing sign, we ensure that the particle relabeling
is one-to-one. The function J , which is determined by F and G, can be
considered an arbitrary sign-definite function of either (a, b) or (α, β).

Next we transform the independent variables in (7.4)-(7.6) from (a, b, τ)
coordinates to (α, β, τ) coordinates. The result is

J(α, β)
∂2x

∂τ 2
= − ∂(p, y)

∂(α, β)
(7.9)

J(α, β)
∂2y

∂τ 2
= − ∂(x, p)

∂(α, β)
− g J(α, β) (7.10)

∂(x, y)

∂(α, β)
= J(α, β) (7.11)

These are three equations in the three independent variables x(α, β, τ), y(α, β, τ),
and p(α, β, τ). Although (7.9)-(7.11) appear more complicated than (7.4)-
(7.6), they are actually easier to solve, because the arbitrary function J(α, β)
can be chosen to facilitate the solution. Again, the only rigid requirement is
that J(α, β) not change sign.

Our first example is the Gerstner wave. To get the Gerstner wave, suppose
that J(α, β) depends only on β; suppose

J = f ′(β) (7.12)
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where f(β) is a function to be determined. The labels α and β can always
be re-defined to satisfy (7.12). We are merely adopting J as one of our two
labels. If (7.12) holds then (7.9)-(7.11) become

δx : f ′(β)
∂2x

∂τ 2
= − ∂(p, y)

∂(α, β)
(7.13)

δy : f ′(β)
∂2y

∂τ 2
= − ∂(x, p)

∂(α, β)
− f ′(β)g (7.14)

δp :
∂(x, y)

∂(α, β)
= f ′(β) (7.15)

We find that

x = α + A(β) sin(kα− ωτ) (7.16)

y = β − A(β) cos(kα− ωτ) (7.17)

p = −gf(β) (7.18)

satisfy (7.13)-(7.14) for any A(β), provided that ω2 = gk. The free surface
corresponds to f(β) = 0. Eqn (7.18) looks like hydrostatic balance, but
remember that β can be considered a function of (x, y, t).

Substituting (7.16) and (7.17) into (7.15) we obtain

∂(x, y)

∂(α, β)
= 1 + [kA(β)− A′(β)] cos(kα− ωτ)− kA(β)A′(β) = f ′(β) (7.19)

To eliminate the α, τ -dependence on the left hand side, we require kA(β)−
A′(β) = 0, which in turn implies

A(β) = A0e
kβ (7.20)

where A0 is a constant. Then (7.19) becomes

∂(x, y)

∂(α, β)
= 1− k2A2

0e
2kβ = f ′(β) (7.21)

To keep (7.21) positive we set A0 = k−1 and confine the fluid to the region
of negative β. Then (7.21) implies

f(β) = B + β − 1

2k
e2kβ (7.22)
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where B is an arbitrary constant. Putting all this together, we obtain the
fluid motion in the form

x = α +
ekβ

k
sin(kα− ωτ) (7.23)

y = β − ekβ

k
cos(kα− ωτ) (7.24)

p = −g
(
B + β − 1

2k
e2kβ

)
(7.25)

This is the Gerstner wave. It is a separate solution for every value of B.
To obtain the equation for the free surface, we set p = 0 to obtain the
corresponding value of β. However, since B is arbitrary, this amounts to
choosing an arbitrary negative value, βs, for β. The fluid then occupies
−∞ < α < +∞ and β < βs.

The parametric equations for the free surface are (7.23) and (7.24) with
α the parameter, and β = βs. To get the waveform we set τ = 0 and θ = kα
to obtain

x = θ/k +
ekβs

k
sin(θ) (7.26)

y = βs −
ekβs

k
cos(θ) (7.27)

where now θ is the parameter, and the constant βs can take any negative
value. The cycloid corresponds to βs = 0 and represents the Gerstner wave
of maximum amplitude.

In 1984 Anatoly A. Abrashkin and Evsei I. Yakubovich showed that the
Gerstner wave is but the tip of a very large iceberg; it belongs to an infinite
family of Lagrangian solutions. To obtain their result, we first rewrite (7.9)
and (7.10) in the form

J(α, β) xττ = −pαyβ + pβyα (7.28)

J(α, β) yττ = pαxβ − pβxα − g J(α, β) (7.29)

Next we guess a form for x(α, β, τ) and y(α, β, τ) that contains adjustable
functions and parameters. Eqns (7.9)-(7.11) are solved if we can adjust those
functions and parameters so that:

1. The Jacobian in (7.11) is time-independent and does not change sign.
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2. A pressure field p(α, β, τ) can be found that satisfies (7.28) and (7.29).

For the given x(α, β, τ) and y(α, β, τ), we solve (7.28) and (7.29) for the
derivatives of the pressure field. We find that

pα = −xαxττ − yα(yττ + g) (7.30)

pβ = −xβxττ − yβ(yττ + g) (7.31)

If these derivatives obey the consistency condition

(pα)β = (pβ)α (7.32)

then the pressure field is determined to within an irrelevant constant. Sub-
stituting (7.30) and (7.31) into (7.32) we obtain the consistency requirement

∂

∂τ

(
∂(xτ , x)

∂(α, β)
+
∂(yτ , y)

∂(α, β)

)
= 0 (7.33)

which integrates to

∂(xτ , x)

∂(α, β)
+
∂(yτ , y)

∂(α, β)
= J(α, β)ζ(α, β) (7.34)

where ζ(α, β) is an arbitrary τ -independent function that may take either
sign. Dividing (7.34) by

∂(x, y)

∂(α, β)
= J(α, β) (7.35)

we see that ζ(α, β) is the vorticity. Thus (7.33) is the vorticity equation in
Lagrangian coordinates.

The Lagrangian equations are solved if the adjustable functions and pa-
rameters in x(α, β, τ) and y(α, β, τ) can be made to satisfy (7.34) and (7.35),
where J(α, β) is an arbitrary, τ -independent, sign-definite function; and
ζ(α, β) is arbitrary and τ -independent, but not necessarily sign-definite. If
these criteria are met, the pressure field exists and may be determined from
(7.30)-(7.31), but it is not actually necessary to know the pressure field unless
it is needed to satisfy a boundary condition. This would be the case if a free
surface were present.

The challenge is to choose the adjustable functions and parameters in
x(α, β, τ) and y(α, β, τ) in such a way that the left-hand sides of (7.34) and
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(7.35) can be made τ -independent. Adopting complex notation, Abrashkin
and Yakubovich postulated that

z = s+ A(α, β)eiωτ (7.36)

where
z = x+ iy and s = α + iβ, (7.37)

A(α, β) is complex valued function to be determined, and ω is a real constant
to be determined.1 By direct substitution, they found that the left hand sides
of (7.34) and (7.35) are τ -independent if A(α, β) satisfies

∂A

∂α
= i

∂A

∂β
(7.38)

Eqn (7.38) is satisfied if A(α, β) = f(α − iβ), where f(·) is an arbitrary
analytic function. Thus

z = s+ f(s∗)eiωτ (7.39)

satisfies the Lagrangian fluid equations, where f(w) is an arbitrary analytic
function, and s∗ denotes the complex conjugate of s. The fluid particle
labeled by s moves in a circle of radius |f(s∗)| centered at the point z = s.
Thus fluid particles are labeled by the centers of their circular trajectories.
From (7.34) and (7.35) we obtain

J(α, β) = 1− |f ′(s∗)|2 (7.40)

and

ζ(α, β) =
−2ω|f ′(s∗)|2

1− |f ′(s∗)|2
(7.41)

The Gerstner wave corresponds to f(w) = eCw, where C is a complex con-
stant whose real and imaginary parts determine the amplitude and wave-
length of the wave.

We shall investigate the monomials,

f(w) =
C

n
wn (7.42)

1The form considered by A&Y is actually more general than (7.36). It involves two
frequencies.
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where C is a real constant and n is an integer. The fluid motion is given by
(7.39) in the form

z = s+
C

n
(s∗)neiωτ (7.43)

The state of rest corresponds to C = 0. The vorticity is

ζ(α, β) =
−2ωC2(α2 + β2)n−1

1− C2(α2 + β2)n−1
(7.44)

and
J(α, β) = 1− C2(α2 + β2)n−1 (7.45)

We assume that the fluid covers the entire z-plane. However, unless n = 1,
the domain of the labels cannot be the entire s-plane, because that would
violate J > 0. To avoid this we assume that the labels are confined to the
interior of the unit circle in the s-plane if n ≥ 1, and to the exterior of the
s-plane unit circle if n < 1. In either case the range of the labels does not
cover the entire z-plane, and we must take care that the fluid equations are
also satisfied in the excluded region.

Suppose n > 1. The label domain is

α2 + β2 = |s|2 < 1 (7.46)

To keep J > 0, we must choose C < 1. Eqn (7.43) maps the label domain
(7.46) to a region of physical space whose boundary is the image of

|s| = 1 (7.47)

To get an equation for this boundary in z-space, we set z = reiθ and s = eiµ

in (7.43). Each value of µ corresponds to a fluid particle on the boundary
(7.47) of the region (7.46). The result,

reiθ = eiµ +
C

n
e−iµn+iωτ (7.48)

is a parametric expression, r(µ) and θ(µ), for the bounding curve (7.47). It
follows from (7.48) that

r2 = 1 +
C2

n2
+ 2

C

n
cos ((n+ 1)µ− ωτ) , 0 < µ < 2π (7.49)
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Figure 7.1: Vorticity contours in (x, y)-space for the solution (7.43) with
n = 5 and C = 0.9.

Thus the bounding curve has n+ 1 ‘arms’. This bounding curve, and indeed
the entire vorticity field (7.44), rotates at angular speed ω/(n+1) in z-space.
The velocity field rotates at this same angular speed, but each fluid particle
moves in a perfect circle at angular speed ω around a point that is fixed
in z-space and unique to that particle. Figure 7.1 shows the vorticity in
z-space—physical space—for the case n = 5 and C = 0.9. The contours are
lines of constant vorticity. The vorticity is zero at the center of the figure,
and achieves its greatest magnitude on the outermost (dashed) contour. The
sign of the vorticity is the same throughout the domain (7.46), and depends
on the sign of ω.

It remains to determine the fluid motion in the region outside the bound-
ing curve (7.47). The easiest recourse is to assume that the flow in this
exterior region is irrotational. Then the exterior flow satisfies ∇2ψ = 0,
where ψ is the stream function. Although the vorticity is discontinuous at
the boundary curve (7.47), the velocity is not. Thus the appropriate bound-
ary condition on ψ is the Neumann boundary condition that the normal
derivative ψn at the boundary curve be equal to the tangential velocity of
the solution (7.43). This determines ψ at every time, and completes the
solution on the infinite z-plane.

The case n = 1 is exceptional in that the vorticity within the bounding
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curve is uniform. This is the solution discovered by Kirchoff in 1876.
The case n < 1 proceeds in a similar manner. The solution (7.43) applies

in the region exterior to the unit circle (7.47). In the finite region interior to
this boundary, it is convenient to assume that the vorticity takes a constant
value Γ, which is determined by the consistency condition∮

dl
∂ψ

∂n
=

∫∫
dxdy Γ (7.50)

on the normal derivative of ψ. The integrals in (7.50) are around and over
the region of the xy-plane corresponding to α2 + β2 < 1.

In the next most complicated case beyond the two we have considered,
the labels could be constrained to occupy the annulus

1/2 < α2 + β2 < 1 (7.51)

so that there is both an exterior region of irrotational flow and an interior
region of uniform vorticity. This would be necessary if the arbitrary analytic
function f(w) had singularities at both w = 0 and w = ∞, but it could
be done in any case. Note that the precise limits in (7.51) are irrelevant
because the values taken by α and β can always be adjusted. Topology is
what matters. And the topology could be further generalized to include an
arbitrary number of ‘holes’ in addition to the one at the origin. The result
would be a vast Swiss cheese, with holes filled with fluid of uniform vorticity.
Could such solutions resemble two-dimensional turbulence, with its isolated
coherent vortices?

What are the strange waves that propagate, as in (7.49), around the
boundaries of the vortical regions? They are Rossby waves, of course. More-
over, they are Rossby waves living free and wild in their native habitat. These
waves are only distantly related to the tame, zoo-animal Rossby waves that
depend for their existence on the external parameter named β (which is un-
related to our particle label of the same name). Meteorologists recognized
them long ago when they replaced β with β − ūyy, where ū(y) is the ‘zonal
mean flow’. But it is not only the longitude-averaged latitudinal velocity
that posesses a vorticity gradient. Two-dimensional turbulence is full of lo-
cal vorticity gradients that point in every direction. Disturbances—particle
displacements—propagate at right angles to these gradients at speeds that
sometimes exceed the speed of fluid particles—and sometimes do not. In
two-dimensional turbulence there is no clear separation between such ‘Rossby
waves’ and the ‘mean flows’ that transport vorticity.
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The example of two-dimensional turbulence demonstrates the severe lim-
itations of wave/mean theory as developed in earlier chapters, and urges us
to focus on a dynamics that contains the more essential difficulties of fluid
dynamics—the dynamics of two-dimensional turbulence. Understand pure
two-dimensional turbulence and you will understand the behaviors of many
supposedly ‘more complicated’ systems. The ‘complications’ are mere dis-
tractions from what should be the main event.

And so, the long good-bye. We are finished with the gravity waves. We
wish them well as they and their many admirers leave our stage. Beguiling
to some, they hold no fascination for us.

Ours is the harder path. We focus on two-dimensional turbulence, with
physics stated most succinctly by the vorticity equation

∂ζ

∂t
+
∂(ψ, ζ)

∂(x, y)
= 0 (7.52)

where
∇2ψ = ζ (7.53)

Viscosity is missing, and we must account for it eventually. But (7.52) is a
challenge by itself. Without the viscosity, there is no such thing as a small-
amplitude solution to (7.52). Small compared to what? By re-scaling the
time, small amplitudes are made large. Perturbation theory seems useless.
What other tricks do we have?

The present chapter contains a flicker of hope. Eqns (7.52) and (7.53)
are physically, but not mathematically, equivalent to (7.34) and (7.35). To
solve the former we seek ψ(x, y, t). To solve the latter we seek x(α, β, τ)
and y(α, β, τ). The advantage of (7.34)-(7.35) is that J(α, β) can be any
sign-definite function that makes our job easier. This is a consequence of
our ability to label the fluid particles in almost any way we want. In other
words, it is a consequence of the gauge freedom of fluid mechanics.

Local gauge invariance is the underlying principle of modern physics.
Fluid particle relabeling is a local gauge invariance. It is a gauge invariance
because re-naming the fluid particles makes no difference to how they will
behave. It is local because the re-naming varies from one fluid particle to the
next.

The Eulerian solution ψ(x, y, t) is a three-dimensional manifold in the
four-dimensional space spanned by {x, y, t, ψ}. The Lagrangian solution
x(α, β, τ) and y(α, β, τ) is a three-dimensional manifold in the five-dimensional
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space spanned by {α, β, τ, x, y}. The extra dimension seems to make a lot
of difference. But if a little bit of gauge freedom is this good, what would a
lot of it be like? Could fluid dynamics, even turbulence, appear simple when
viewed in a space of (say) 26 dimensions?


