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4 
Vorticity and Turbulence 
 
  Turbulence is an immense and controversial subject.  The next three chapters 
present some ideas from turbulence theory that seem relevant to flow in the oceans and 
atmosphere.  In this chapter, we examine the connections between vorticity and 
turbulence. 
 
1.  The vorticity equation 
 
 From ocean models that omit inertia, we turn to flows in which the inertia is a 
dominating factor.  Vorticity is of central importance, and, in the case of three-
dimensional motion, we must take its vector character fully into account.  We begin with 
the equations 
 

  ∂v
∂t

+ v ⋅ ∇( )v + 2Ω × v = −
1
ρ
∇p − ∇Φ x( )  

  

p = p ρ,η( )
∂ρ
∂t

+∇ ⋅ ρv( ) = 0

∂η
∂t

+ v ⋅∇( )η = 0

 (1.1) 

 
for a perfect fluid in rotating coordinates.  Here, Φ(x) is the potential for external forces, 
η is the specific entropy, and the other symbols have their usual meanings.  By the 
general vector identity, 
 
  ∇ A ⋅B( ) = A ⋅∇( )B + B ⋅∇( )A +A × ∇ × B( ) + B × ∇ ×A( ) , (1.2) 
 
we have 
 
  ∇ v ⋅ v( ) = 2 v ⋅ ∇( )v + 2v ×ω , (1.3) 
 
where 
 
  ω≡ ∇ × v  (1.4) 
 
is the vorticity.  Thus, we can rewrite the momentum equation (1.1a) in the form 
 

  ∂v
∂t

+ (ω  + 2 Ω)×v = −∇P+ p∇ 1
ρ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (1.5) 
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where 
 
  P ≡

p
ρ
+ 1

2 v ⋅ v +Φ . (1.6) 

 
Introducing the absolute velocity and vorticity, 
 
  va ≡ v + Ω  × r     and       ωa ≡ ∇ × va = ω  + 2Ω  (1.7) 
 
(respectively) in the nonrotating coordinate system, we can write (1.5) more compactly 
as 
 

  ∂v
∂t

+ ωa × v = −∇P + p∇ 1
ρ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . (1.8) 

 
 We form the vorticity equation by taking the curl of (1.8).  By another general vector 
identity, 
 
  ∇ × A × B( ) = A ∇ ⋅B( ) − B ∇⋅A( ) + B ⋅∇( )A − A ⋅ ∇( )B , (1.9) 
 
we have 
   
  ∇ × (ωa × v) = ωa (∇⋅ v) + 0 + (v⋅ ∇)ωa - (ωa ⋅∇)v, (1.10) 
 
(since the divergence of a curl always vanishes).  Thus the curl of (1.8) is 
 

  ∂
∂t

+ v ⋅∇⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ωa + ωa (∇⋅v) = (ωa⋅∇)v+∇p × ∇

1
ρ

 (1.11) 

 
Then, eliminating ∇⋅v between (1.11) and the continuity equation (1.1c), we finally 
obtain 
 

  D
Dt

 (ωa/ρ) = [(ωa/ρ)⋅∇] v+ 1
ρ
∇p × ∇ 1

ρ
 (1.12) 

 
 Eqn. (1.12) is the general vorticity equation for a perfect fluid.  In the special case of 
homentropic flow, in which the pressure depends only on the density, p=p(ρ), the last 
term in (1.12) vanishes, and (1.12) reduces to 
 
  Dw

Dt
= w ⋅∇( )v, (p = p ρ( )) , (1.13) 

 
where 
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  w ≡ ωa/ρ (1.14) 
 
is the ratio of the absolute vorticity to the density.1  In the very special case of a constant-
density fluid, (1.13) reduces to 
 
  Dωa/Dt = (ωa⋅∇) v,        (ρ=const.) (1.15) 
 
2.  Ertel’s theorem 
 
  According to the general vorticity equation (1.12), namely, 
 

  Dw
Dt

= w ⋅∇( )v + ∇ρ × ∇p
ρ3

, (2.1) 

 
the quotient w=ωa/ρ  is conserved on fluid particles except for the terms on the right-
hand side of (2.1).  We shall see that the first of these terms, (w⋅∇)v, represents the tilting 
and stretching of w.  The last term in (2.1) represents pressure-torque.  The pressure-
torque vanishes if the fluid is homentropic.  We consider that case first. 
 If the fluid is homentropic, then (2.1) reduces to (1.13).  To understand (1.13), let 
 
  δr t( ) = r2 t( ) − r1 t( )  (2.2) 
 
be the infinitesimal displacement between two moving fluid particles with position 
vectors r1(t) and r2(t).   Then 
 
  d

dt
δr t( ) = d

dt
r2 t( ) −

d
dt
r1 t( ). (2.3) 

 
If δr is small, a Taylor-expansion of (2.3) yields 
 

  d
dt

δri t( ) = vi r1 + δr( ) − vi r1( ) = ∂vi
∂xj

δrj , (2.4) 

 
where the subscripts denote components, and repeated subscripts denote summation from 
1 to 3.  By comparing (2.4) to (1.13) in the form 
 

  Dwi

Dt
=
∂vi
∂xj

wj , (2.5) 

 
we see that the vector field w=ωa/ρ  obeys the same equation as a field of infinitesimal 
displacement vectors between fluid particles.  We say that ωa/ρ  is frozen into the fluid.  
However, since the velocity field is continuous, the distortion experienced by ωa/ρ  is 
continuous.  ωa/ρ  can never be torn apart.  Its topology is preserved despite distortion.  
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These properties, so evident from the analogy between ωa/ρ and δr, lie at the heart of the 
many vorticity theorems in fluid mechanics. 
 The most important of these is Ertel’s theorem.  Still considering the case of 
homentropic flow, let θ(x,t) be any scalar conserved on fluid particles, 
 
  Dθ

Dt
= 0 . (2.6) 

 
The scalar θ  need not have physical significance;  it could be an arbitrarily defined 
passive tracer.  Let r1(t)  and r2(t)  be defined as before.  Then (2.6) implies that 
 
  d

dt
θ r1 t( ),t( ) − d

dt
θ r2 t( ),t( ) = 0 . (2.7) 

 
If the distance between the two fluid particles is infinitesimal, then (2.7) becomes 
 

  d
dt

∂θ
∂xj

δrj
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0 . (2.8) 

 
Now let 
 
  δri 0( ) = γ wi r1 0( ),0( )  (2.9) 
 
where w(r1,0) is the initial w at the location r1, and γ  is an infinitesimal constant with 
appropriate dimensions.  In other words, choose the two fluid particles to lie 
infinitesimally far apart along a line parallel to the vorticity.  Then, since w and δr obey 
the same equation, 
 
  δri t( ) = γ wi r1,t( )  (2.10) 
 
at later times t.  Since γ  is a constant, it follows from (2.8) and (2.10) that 
 

  D
Dt

∂θ
∂x j

wj

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

D
Dt

∇θ ⋅w[ ] = 0 (homentropic flow) . (2.11) 

 
 Eqn. (2.11) is Ertel’s theorem for homentropic fluid.  According to (2.11), 
homentropic flow conserves ∇θ⋅ωa/ρ  on fluid particles, where θ  is any conserved scalar 
satisfying (2.6).  This derivation shows that (2.11) rests on nothing besides the frozen-in 
nature of the field ωa/ρ. 
 In the general case of non-homentropic flow,  (2.11) generalizes easily to 
 

  D
Dt

∇θ ⋅w[ ] = ∇θ ⋅ ∇ρ × ∇p( )
ρ 3  (2.12) 
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and ∇θ⋅w is not conserved on fluid particles.  The right-hand side of (2.12) arises from 
the pressure-torque in (2.1).  However, if we choose the scalar θ to be (any function of) 
the entropy η  (which satisfies (2.6)), then the right-hand side of (2.12) vanishes (because 
p=p(ρ,η)), and (2.12) reduces to 
 

  DQ
Dt

= 0 , (2.13) 

 
where 
 
  Q ≡ (ωa ⋅ ∇η) / ρ (2.14) 
 
is the potential vorticity.  Eqn. (2.13), also called Ertel’s theorem, is the most general 
statement of potential vorticity conservation.  The potential vorticity laws obtained in 
previous chapters (from various approximations to (2.1)) can all be be viewed as 
approximations to (2.13-14). 
 Of course, we can prove all these results directly from (1.1) by pedestrian 
mathematical manipulations, but that makes it harder to appreciate their physical 
significance. 
 
3.  A deeper look at potential vorticity 
 
 Again assume that the fluid is homentropic.  Let θ1(x,t), θ2(x,t), and θ3(x,t) be any 
three independent (but otherwise arbitrary) scalars satisfying 
 
  Dθ1

Dt
= 0, Dθ2

Dt
= 0, Dθ3

Dt
= 0 . (3.1) 

 
By independent we mean that ∇θ1, ∇θ2, and ∇θ3 everywhere point in different 
directions.  It is easy to see that if the θi are initially independent, then they remain so by 
(3.1).  (One possible choice for the θi would be the initial Cartesian components of the 
fluid particles.)  Since the fluid is homentropic, Ertel’s theorem (2.11) tells us that 
 

  DQ1
Dt

= 0, DQ2

Dt
= 0, DQ3

Dt
= 0 , (3.2) 

 
where 
 
  Q1 =w ⋅ ∇θ1, Q2 = w ⋅ ∇θ2 , Q3 = w ⋅ ∇θ3  (3.3) 
 
are the potential vorticities corresponding to the θi.   
 Since the θi are independent, we can regard them as curvilinear coordinates in xyz-
space.  By (3.1), these curvilinear coordinates are also Lagrangian coordinates, because 
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the surfaces of constant θi move with the fluid.  We regard the vectors ∇θ1, ∇θ2, and ∇θ3 
as basis vectors attached to the Lagrangian coordinates.  As the fluid moves, these basis 
vectors tilt and stretch with the flow.  By (3.3), the conserved Qi are just the dot-products 
(3.3) of w with these moving basis vectors.  The dot-products are conserved because the 
tilting and stretching terms on the right-hand side of (1.13), which destroy the 
conservation of w, are taken into account by the motion of the basis vectors ∇θi.2  
 Now let A=(A1, A2,A3) be the components of the (absolute) velocity va with respect to 
these same basis vectors.  That is, let 
 
  va = A1∇θ1 + A2∇θ2 + A3∇θ3 . (3.4) 
 
We shall show that, with a very weak further restriction on the choice of θi, 
 
  Q ≡ Q1,Q2,Q3( ) = ∇θ ×A , (3.5) 
 
where 
 

  ∇θ ≡
∂
∂θ1

, ∂
∂θ2

, ∂
∂θ3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (3.6) 

 
is the gradient operator in the Lagrangian coordinates.  That is, the conserved potential 
vorticity Q is the curl of the absolute velocity va in Lagrangian coordinates.  Then Ertel’s 
theorem (3.2) can be written in the suggestive form 
 

  D
Dt

∇θ × A( ) = 0 . (3.7) 

 
Hence, the potential vorticity (3.5) is just ordinary vorticity measured in Lagrangian 
coordinates.  If the fluid is homentropic, then (3.7) implies that the potential vorticity is 
simply a static vector field, 
 
  ∇θ ×A = F θ1,θ2,θ3( ) , (3.8) 
 
in θ1,θ2,θ3-space, where F is determined by the initial conditions.  A translation of (3.8) 
into conventional notation yields what some writers call Cauchy’s solution of the vorticity 
equation. 
 To show that (3.5) agrees with (3.3), we suppress the subscript a on ωa and va, and 
compute 
 

Qr = (ω⋅∇θr)/ρ =
1
ρ
ε ijk

∂vk
∂xj

∂θr

∂xi
=
1
ρ
ε ijk

∂
∂xj

As
∂θ s

∂xk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂θ r

∂xi
=
1
ρ
ε ijk

∂θ r

∂xi
∂As
∂x j

∂θs

∂xk
. (3.9) 

 
Thus 
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Qr =
1
ρ
∂ θr ,As ,θs( )
∂ x, y,z( )

= 1
ρ
∂ θ1,θ2 ,θ3( )
∂ x,y, z( )

∂ θr ,As,θs( )
∂ θ1,θ2 ,θ3( )

=
1
ρ
∂ θ1,θ2,θ3( )
∂ x, y,z( ) εijk

∂θ r

∂θ i

∂As
∂θ j

∂θ s

∂θk
=
1
ρ
∂ θ1,θ2 ,θ3( )
∂ x,y, z( ) εrjs

∂As
∂θ j

 (3.10) 

 
That is, 
 

  Qr =
1
ρ
∂ θ1,θ2 ,θ3( )
∂ x,y, z( ) ∇θ ×A[ ]r . (3.11) 

 
If the Lagrangian coordinates are mass-labeling coordinates in the sense of Chapter 1, 
that is, if 
 
  dθ1 dθ2 dθ3 = d mass( ), (3.12) 
 
then (3.11) reduces to (3.5).  (In Chapter 1 we used the symbols a,b,c to denote mass-
labelling coordinates, and ∂/∂τ to denote D/Dt.) 
 In general non-homentropic flow, the pressure-torque on the right-hand side of (2.1) 
destroys two of the three components of the conservation law (3.7).  In that case, it is 
convenient to take the entropy η as one of the Lagrangian coordinates.  Then, since the 
pressure-torque in (2.1) has no component in the direction of ∇η, the η-component of 
(3.7) survives, 
 
  D

Dt
(∇θ ×A) ⋅∇θη[ ] = 0 . (3.13) 

 
By steps similar to those in (3.9) and (3.10), we can show that the conserved quantity in 
(3.13) is the general potential vorticity (2.14). 
 Although (3.13) contains only one-third of the dynamical information in (3.7), it is — 
in strongly stratified flow — a much more useful equation.   In unstratified (∇η=0) flow, 
the θi-surfaces typically become very convoluted, and the simplicity of the Lagrangian 
equation (3.7) is offset by the complexity of transforming this result back into xyz-
coordinates.  However, in strongly stratified flow, the gravitational restoring forces resist 
the folding of isentropic surfaces, rendering the single equation (3.13) much more useful.  
Moreover, if the fluid is rapidly rotating, then (3.13) controls the nearly geostrophic part 
of the motion (as we have seen in Chapter 2). 
 
4.  Alternative statements of the vorticity law 
 
 As we have seen, the quotient ωa/ρ is conserved on fluid particles except for the 
effects of tilting, stretching and pressure-torque.  However, the effects of tilting and 
stretching can be absorbed into a Lagrangian description of the motion.  Then only 
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pressure-torque stands in the way of conservation.  In this section, we examine alternative 
(and more conventional) ways of saying these same things. 
 First, consider the circulation  
 
  C ≡ v ⋅ dr∫ , (4.1) 
 
where the integration is around a closed material loop of fluid particles, that is, around a 
loop that always contains the same fluid particles.  By Stokes’s theorem 
 
  C = ∫∫ ω ⋅n dA , (4.2) 
 
where n is the normal to an arbitrary surface containing the loop.  If the fluid is rotating, 
we also define the circulation relative to the inertial reference frame, 
 
  Ca ≡ va ⋅ dr = ∫∫∫ (ω  + 2Ω)⋅n dA . (4.3) 
 
Now, by the momentum equation (1.1a) for a rotating fluid, 
 

  

dCa

dt
= D

Dt
v + Ω × r( ) ⋅ dr[ ]∫

= Dv
Dt

+ Ω× v⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⋅ dr + v + Ω× r( ) ⋅ dv⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ ∫

=
Dv
Dt

+ 2Ω × v⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⋅ dr∫

= − 1
ρ
∇p − ∇Φ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ⋅ dr∫

= − dp
ρ∫

 (4.4) 

 
If the fluid is homentropic, then p=p(ρ) and the right-hand side of (4.4) vanishes;  the 
circulation (4.3) is conserved.   
 We see that the effects of vortex tilting and stretching are built in to the definition of 
circulation.  The material loop of fluid particles tilts and stretches with the motion of the 
fluid.  Only the pressure-torque, represented by the last term in (4.4), causes the 
circulation to change.  And, as anticipated by our discussion of Ertel’s theorem, even the 
pressure-torque does not entirely destroy the conservation of circulation;  the circulation 
is conserved if we choose the material loop of fluid particles to lie entirely within a 
surface of constant entropy. 
 The concept of vortex tubes offers another way to describe the frozen-in evolution of 
the vorticity field.  Suppose that the fluid is nonrotating.  (The extension to rotating 
coordinates is easy.)  At a fixed time t, choose an arbitrary closed loop within the fluid, 
and consider the tube formed by its indefinite extension in the direction of the vorticity 
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ω .  Refer to Figure 4.1.  At the same fixed time, consider two loops, L1 and L2, around 
the vortex tube.  Since ω  is everywhere tangent to the sides of the vortex tube, and 
 
  ∇⋅ω=0, (4.5) 
 
the divergence theorem tells us that 
 
  ∫∫ ω  ⋅ n1 dA1 = ∫∫ ω  ⋅ n2 dA2 , (4.6) 
 
where ni are the unit normals to surfaces containing the loops Li, and dAi are the 
corresponding area elements.  Thus, the strength of the vortex tube is the same at every 
cross-section. 
 Now suppose that the fluid is homentropic.  Then the vortex tube is a material 
volume that moves with the fluid particles composing it;  by the analogy between ω /ρ 
and the infinitesimal displacement vector between fluid particles on the surface of the 
vortex tube, ω  remains tangent to the moving surface of the vortex tube.  Hence the 
strength of the vortex tube remains uniform along the tube.  Moreover, the circulation 
theorem tells us that 
 
  d

dt ∫∫ ω  ⋅ n dA = 0, (4.7) 

 
so that the strength of the vortex tube is also constant in time.  The vortex tube can 
stretch, increasing its vorticity, but the cross-sectional area then experiences a 
compensating decrease.  Once again, the effects of tilting and stretching have been built 
into a definition in order to produce a conservation law. 
 We can think of any homentropic flow as a (generally complicated) tangle of vortex 
tubes.   (Think of a big pile of spaghetti, with each noodle a closed loop.)  As the flow 
evolves, these vortex tubes experience a continuous distortion, but (in the absence of 
friction) their strength and their topology are obviously preserved. 
 Helicity is a vorticity invariant that reflects the topology.  Let V  be a closed material 
volume of homentropic fluid whose surface is (and remains) everywhere tangent to the 
vorticity ω .  That is, let V  be a collection of closed vortex tubes.  Then the helicity,  
 
  H t( ) ≡ v ⋅

V
∫∫∫ ω  dV (4.8) 

 
is conserved, 
 

  dH
dt

= 0 . (4.9) 

 
This follows from 
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  DH
Dt

=
D
Dt V
∫∫∫ v ⋅ (ω /ρ) ρ dV  

  = D
DtV

∫∫∫ [ v ⋅ (ω /ρ) ] ρ dV 

  =
V
∫∫∫ [ D

Dt
v ⋅ (ω /ρ) + v ⋅ D

Dt
(ω /ρ)] ρ dV (4.10) 

  =
V
∫∫∫ [ - ∇P⋅ ω  + v ⋅ (ω  ⋅ ∇) v ] dV 

  =
V
∫∫∫ [ - ∇⋅ (Pω) + 12 ∇⋅ ( ω  v⋅v) ] dV = 0, 

 
where dP=dp/ρ +dΦ.  The last line vanishes because ω  is tangent to the surface of V. 
 The helicity H turns out to be a measure of the knotted-ness of the material volume of 
vortex tubes.3  Consider, for example, two thin vortex tubes (represented abstractly as 
lines) with volumes V1 and V2, that are linked together as shown in Figure 4.2.  The 
vortex lines within each tube are simple, parallel (i.e. untwisted) closed curves.  The 
arrows point along the tubes in the direction of the vorticity, ni are unit normals to 
surfaces Si containing the axes of the tubes, and the vorticity outside the tubes is assumed 
to vanish.  By definition, 
    
 H = ∫∫∫ v ⋅ ω  dV1+ ∫∫∫ v ⋅ ω  dV2. (4.11) 
 
But 
 
  ∫∫∫ v ⋅ ω  dV1 = dr1 dA1∫∫∫ v ⋅ ω   

  = dr1 v ⋅ dA1∫∫∫ ω= dr1 ⋅ v dA1∫∫∫ ω = κ1 dr1 ⋅ v∫  (4.12) 
 
where ω=|ω | and 
 
  κ 1 ≡ ω dA1∫∫  (4.13) 
 
is the (constant) strength of vortex tube 1.  On the other hand, 
 
  dr1 ⋅ v =∫ ∫∫ ω  ⋅ n1 dS1 = κ2 , (4.14) 
 
where κ2 is the strength of vortex tube 2.  Thus, (4.12) becomes 
 
  ∫∫∫ v ⋅ω  dV1 = κ1 κ2. (4.15) 
 
By similar steps, 
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  ∫∫∫ v ⋅ω  dV2 = κ2 κ1. (4.16) 
 
Hence the helicity (4.11) is  
 
  H = 2κ1 κ 2 . (4.17) 
 
If the vortex tubes were not linked, we would find that H=0.  If the vorticity in one of the 
tubes were reversed, then H would change sign.  If both tubes were reversed, then H 
would be unchanged, but the resulting configuration is simply a rotated version of the 
sketch in Figure 4.2.   
 Again we emphasize that all these vorticity laws are direct consequences of the 
frozen-in nature of vorticity in the case of homentropic flow.  Ertel’s theorem, which 
amounts to a transformation of the vorticity equation into Lagrangian coordinates, is the 
most illuminating of these vorticity laws, but helicity conservation is perhaps the most 
exotic.  However, helicity conservation applies only to material volumes of closed vortex 
tubes, and thus excludes those portions of the fluid whose vortex tubes terminate at 
boundaries.  Moreover, although there is a helicity invariant corresponding to every 
subvolume of closed vortex tubes, it is easy to imagine a very complicated vorticity 
distribution in which a single vortex line passes arbitrarily close to every point in the 
fluid.  Then the only subdomain of closed vortex tubes is the whole fluid, and (because 
vortex tube linkages with opposite signs produce cancelling contributions to the helicity) 
the single helicity invariant cannot tell us very much about the topology of the vorticity 
field. 
 
5.  Turbulence 
 
 Every aspect of turbulence is controversial.  Even the definition of fluid turbulence is 
a subject of disagreement.  However, nearly everyone would agree with some elements of 
the following description: 
 (1.)  Turbulence is associated with vorticity.  In any case, the existence of vorticity is 
surely a prerequisite for turbulence in the sense that irrotational flow is smooth and 
steady to the extent that the boundary conditions permit.4 
 (2.) Turbulent flow has a very complex structure, involving a broad range of space- 
and time-scales.   
 (3.) Turbulent flow fields exhibit a high degree of apparent randomness and disorder.  
However, close inspection often reveals the presence of orderly embedded flow structures 
(sometimes called coherent structures).   
 (4.) Turbulent flows are three-dimensional (unless constrained to be two-dimensional 
by strong rotation or stratification), and have a high rate of viscous energy dissipation.  
 (5.)  Advected tracers are rapidly mixed by turbulent flow. 
 (6.) Turbulent flow fields often exhibit high levels of intermittency. (Roughly 
speaking, a flow is intermittent if its variability is dominated by infrequent large events.) 
However, one further property of turbulence seems to be more fundamental than all of 
these others, because it largely explains why turbulence demands a statistical treatment.  
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This property has been variously called instability, unpredictability, or lack of bounded 
sensitivity.  In more fashionable terms, turbulence is chaotic. 
 To understand what this means, consider two turbulent flows, both obeying the 
Navier-Stokes equations (say), but beginning from slightly different initial conditions.  
Experience shows that no matter how small the initial difference, the two flows will 
rapidly diverge, and will soon be as different from each other as if the initial difference 
had been 100%. 
 This instability property has practical consequences.  Imagine a laboratory 
experiment with a turbulent fluid, in which the experimenter measures some arbitrary 
flow quantity V(t) as a function of time.  For example, V(t) could be the temperature or 
velocity at a fixed point in the flow.  Refer to Figure 4.3.  The experimenter is interested 
in V(t1), the value at time t1.  To be sure of his result, he repeats the experiment, 
arranging the apparatus and initial conditions to be as nearly the same as possible.  But no 
matter how hard he tries, the new value of V(t1) is always discouragingly different from 
the original measurement.  The experimenter is finally satisfied to repeat the experiment a 
great many times, and to compute the probability distribution of V(t1).  He becomes a 
statistician.  Because of the instability property, he reasons, only statistics are of value in 
predicting the outcome of future experiments. 
 The question arises:  Can the statistics be found without actually performing all of the 
experiments?  That is, can the statistical averages of turbulent flow be calculated from 
physical law, without first solving the equations (either experimentally or with a big 
computer) and then averaging the results of many solutions?  Many people regard this 
unanswered question as the central problem of turbulence.   
 The most direct approach to the prediction of statistics is to average the equations of 
motion, thereby obtaining evolution equations for the averages.  Unfortunately, as 
explained in Chapter 1, direct averaging leads to an unclosed hierarchy of statistical 
moment equations, in which the equation for the time derivative of the n-th moment 
always involves the (n+1)-th moment.  These moment equations cannot be solved 
without making additional hypotheses to close them.  We set aside this closure problem 
until Chapter 5, and thus temporarily abandon any hope of obtaining a complete 
statistical description of turbulent flow.  However, we find that many of the important 
qualitative properties of turbulence can perhaps be understood on the basis of relatively 
simple ideas, many of which involve vorticity. 
 
6.  Kolmogorov’s Theory 
 
 Now we consider constant-density flow governed by the Navier-Stokes equations, 
 

  

∂vi
∂t

+ vj
∂vi
∂x j

= − ∂p
∂xi

+ν ∂ 2vi
∂xj∂xj

∂vi
∂xi

= 0
 (6.1) 
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Once again, the summation convention applies to repeated subscripts.  First we review 
elementary properties of (6.1).  Then we examine the most famous (but still very 
controversial!) theory of three-dimensional turbulence. 
 In principle, it is always possible to rewrite (6.1) as a single, prognostic equation in 
the velocity v=(v1,v2,v3).  This converts the pressure term in (6.1a) into a nonlinear term 
like the advection term.  To see this, we take the divergence of (6.1a) to obtain an elliptic 
equation, 
 

  
∂vj
∂xi

∂vi
∂x j

= −
∂ 2p
∂xi∂xi

= −∇2p , (6.2) 

 
for the pressure p.  Given the velocity field v(x) and the appropriate boundary condition, 
we can solve (6.2) for  p(x).  For fluid inside a rigid container, the appropriate boundary 
condition is v=0.  The boundary condition v=0 implies that 
 

  0 = −
∂p
∂xn

+ ν
∂ 2vn
∂xn

2 (no summation on n) (6.3) 

 
on the boundary, where n denotes the direction normal to the boundary.  Eqn. (6.2) and 
the Neumann boundary condition (6.3) determine the pressure throughout the flow.  Only 
in simple geometry (like that considered below) is it possible to solve (6.2-3) explicitly, 
but (at least in principle) it is clearly always possible to replace the pressure term in 
(6.1a) by a quadratic expression in the velocity. 
 Next we consider the energy equation obtained by contracting the momentum 
equation (6.1a) with vi, namely 
 

  ∂
∂t

1
2 vivi( ) + ∂

∂xj
1
2 vivivj( ) = −

∂
∂xi

vi p( ) + νvi
∂ 2vi
∂xj∂xj

. (6.4) 

 
Integrating (6.4) over the whole domain inside the rigid boundary, and using the 
boundary condition v=0, we obtain 
 

 d
dt

dx 1
2 vivi = ν dx ∂

∂xj
vi

∂vi
∂xj

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

∂vi
∂x j

∂vi
∂xj

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ ∫∫∫∫∫∫ = −ν dx ∂vi

∂x j
∂vi
∂x j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫∫∫ . (6.5) 

 
Thus, neither the advection term nor the pressure term affects the total energy, but the 
viscous term always causes energy to decrease. 
 If the flow is spatially unbounded, then it is illuminating to examine the Fourier 
transforms of these equations.  Let 
 
  vi x,t( ) = dk ui k,t( )eik⋅x∫∫∫ . (6.6) 
 
Since v(x,t) is real, its Fourier transform u(k,t) is conjugate symmetric, 
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  ui k( ) = ui −k( ) * . (6.7) 
 
By Fourier’s theorem, 
 

  ui k,t( ) = 1
2π( )3 dx vi x,t( )e−ik⋅x∫∫∫ . (6.8) 

 
Similarly, let 
 
  p x,t( ) = dk∫∫∫ p k, t( )eik⋅x . (6.9) 
 
Then the elliptic equation (6.2) for the pressure becomes 
 
 − dm dn miuj m( )njui n( ) ei m⋅x +n⋅x( )∫∫∫∫∫∫ = − dm −m2( )p m( )eim ⋅x∫∫∫  (6.10) 
 
where m=|m|, etc.  Multiplying (6.10) by e-i k⋅x and integrating over all x, we obtain the 
Fourier tranform of (6.2) in the form 
 
  − dm dn minj uj m( )ui n( )δ m + n − k( ) = k2p k( )∫∫∫∫∫∫ . (6.11) 
 
Then, using (6.11), and proceeding in a similar manner, we obtain the Fourier transform 
of the momentum equation (6.1a) in the form 
 

 

∂
∂t
ui k,t( ) + i dm dn nj uj m( )ui n( )δ m + n − k( )∫∫∫∫∫∫

= i dm dn
kimrnj
k2

uj m( )ur n( )δ m + n − k( ) − νk2ui k( )∫∫∫∫∫∫
 (6.12) 

 
More concisely, 
 

 ∂
∂t
ui k,t( ) = dm dn Aijr m,n,k( ) uj m( )ur n( )δ m + n − k( ) −νk2ui k( )∫∫∫∫∫∫ , (6.13) 

 
where Aijr(m,n,k) is the coupling coefficient between ui(k), uj(m), and ur(n).  The 
nonlinear term on the left-hand side of (6.12) represents the advection of momentum.  
The nonlinear term on the right-hand side of (6.12) represents the effect of pressure.  
Thus the Aijr-term in (6.13) represents both pressure and advection.   
 If pressure and advection were absent, (6.13) would be a linear equation, 
 

  ∂
∂t
ui k,t( ) = −νk2ui k( ), (6.14) 

 



 

IV-15 

in which the various wavenumbers are uncoupled.  The solution of (6.14) is 
 
  ui k,t( ) = ui k,0( ) exp −νk2t( ) . (6.15) 
 
According to (6.15), the velocity in wavenumber k decays exponentially, at a rate that 
increases with increasing wavenumber magnitude k.  Thus, viscosity damps the smallest 
spatial scales fastest. 
 The nonlinear terms in (6.13) are much more complicated than the viscous-decay 
term and take the form of triad interactions that couple together wavenumbers satisfying 
the selection rule m+n=k.  As we already know, these triad interactions do not change 
the total energy, 
 

 dx∫∫∫ 1
2 vivi = 4π

3 dk ui k( )ui k( )* ≡ dk E k( )
0

∞

∫ ⋅ dx∫∫∫∫∫∫ , (6.16) 

 
but they do transfer energy between wavenumbers satisfying the selection rule.5  The last 
equality in (6.16) defines the energy spectrum E(k). 
 Now consider the following situation:  an initially quiescent fluid, in a container of 
size L, is stirred by some external agency at lengthscales comparable to L.  Suppose that 
this stirring force is nonzero only for L-1<k<KF.  Then after a very short time the 
spectrum is strongly excited only on k<KF  (Figure 4.4a).  At these small wavenumbers, 
the viscous dissipation is negligible, but the nonlinear terms can transfer energy to higher 
wavenumbers via the triad interactions.  For example, two wavenumbers m and n with 
magnitudes m,n<KF can transfer energy into k with k<2KF.  After this has occurred, the 
energy spectrum is excited on k<2KF.  Applying this idea again and again, we form the 
picture in Figure 4.4b.  When the energy reaches very high wavenumbers, the viscosity 
finally becomes important, and an equilibrium is established in which E(k)  (or, more 
precisely, its statistical average) reaches a steady state. 
 As this equilibrium develops, there is no fundamental reason why very nonlocal triad 
interactions, linking wavenumbers of very different sizes, could not become important, as 
shown in Figure 4.4c.  Suppose, however, that they don’t.  This is reasonable if the 
individual wavenumbers represent eddies, and if only eddies of comparable size 
exchange energy efficiently.  Then the equilibrium resembles Figure 4.4b, and is called a 
turbulent cascade of energy.  (A cascade is a waterfall consisting of many small steps.)  
Actually, eddies with very different sizes do interact strongly, but their interaction takes 
the form of large eddies sweeping small eddies from one place to another without 
significantly distorting them.  Without distortion, there is no real energy transfer between 
the eddies. 
 There are many reasons why the assumption of a turbulent cascade might not be 
correct.  However, Kolmogorov (1941) proposed a bold theory (now often called K41) 
based squarely upon it.6  He reasoned that the shape of the energy spectrum E(k) at a 
wavenumber k many cascade-steps above KF  should be insensitive to the precise nature 
of the stirring.  On these large k, the energy spectrum ought to depend only on the 
wavenumber magnitude k, the molecular viscosity ν, and the rate at which energy moves 
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rightward (that is, toward higher k) through the spectrum.  The latter rate is equal to ε, the 
rate of energy dissipation per unit volume.  Refer to Figure 4.5.  On the inertial range 
between KF and KD, the wavenumber at which viscous dissipation first becomes 
important, the spectrum E(k) should depend only on ε  and k.  The dimensions of these 
quantities are 
 
  E k( )[ ] = L3T −2, ε[ ] = L2T −3, k[ ] = L−1, ν[ ] = L2T −1. (6.17) 
 
Hence, dimensional analysis tells us that 
 
  E k( ) = Cε2 / 3k −5/ 3 and KD = O ε1/ 4ν −3/ 4( ) , (6.18) 
 
where C is Kolmogorov’s universal constant.   
 Observed spectra often agree with (6.18a) and suggest that C≈1.5. Nevertheless, 
considerable uncertainty surrounds this whole subject.  It is now generally agreed that 
Kolmogorov’s theory cannot in principle be exactly right, and experimental 
measurements of higher statistical moments, which are also predicted by the complete 
Kolmogorov theory, do not support the theory.  We consider these points in the next 
section. 
 
7.  Intermittency and the beta-model 
 
 In a famous footnote to his book on fluid mechanics, L. D. Landau noted an important 
inconsistency in K41.  This led to a revision of the theory, but most people feel that it 
also destroyed any hope that the theory can be exactly right.7  Landau’s objection is 
neither the only, nor perhaps even the most serious objection to K41.  However, it has 
helped theorists to better appreciate the enormous assumptions underlying Kolmogorov’s 
theory. 
 The essence of Landau’s objection is that K41 cannot apply to a collection of flows 
with different dissipation rates ε.  First consider two completely separate flows, denoted 
by the subscripts 1 and 2.  The first flow is vigorously stirred, so that ε1 is large.  The 
second flow is only moderately stirred, so that ε2 is small.  If both flows are turbulent, 
then according to K41, 
 
  E1 k( ) = Cε12 / 3k−5 / 3 and E2 k( ) = Cε22 / 3k −5/ 3. (7.1) 
 
 Next, consider the composite system consisting of these two separate flows.  If the 
two flows have equal volumes, then the dissipation rate and the energy spectrum of the 
composite system are given by 
 
  ε = 1

2 ε1 + ε2( ) and E k( ) = 1
2 E1 k( ) + E2 k( )( ) . (7.2) 

 
But then 
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  E k( ) ≠ Cε2 / 3k −5/ 3 . (7.3) 
 
That is, the composite system cannot obey K41, essentially because the average of a two-
thirds power is not the power of the average.   
 So far there is no problem, because the composite flow is not a single flow, and hence 
there is no reason why K41 should apply to it.  But suppose that the subscripts 1 and 2 
refer not to separate flows, but to large regions of the same flow with locally different 
dissipation rates. We conclude uncomfortably that K41 cannot apply to the whole flow if 
it is also locally correct.  In particular, K41 should fail in cases where the dissipation rate 
ε  averaged over length-scales characteristic of the inertial range fluctuates. 
 The beta-model is a schematic model that clarifies this argument and suggests the 
nature of the correction to K41.8  Consider a turbulent flow in a container of size L0.  The 
fluid is stirred on scales comparable to L0, and the energy is subsequently transferred to 
smaller spatial scales via the nonlinear terms in the momentum equations.  Again we 
suppose this transfer to be a series of cascade steps from scale L0  to L1=L0/2 to L2=L1/2, 
and so on.  (The factor of 1/2 is inessential; any other fraction will work.)  The n-th 
cascade step corresponds to eddy-size 
 
  Ln =

L0
2n

≡ kn
−1 . (7.4) 

 
We also define: 
 
  Vn,    the characteristic velocity change across eddies of size Ln 
  εn,     the rate at which energy passes through the n-th cascade step; and 

  En = E k( )dk
kn

kn+ 1

∫ . 

 
En is the energy (per unit volume of the whole flow) contained in eddies of size Ln. 
 Now, the cascade can proceed in two ways, as shown in Figure 4.6.  At each cascade 
step, the eddies created can fill the whole space uniformly, or they can fill only a fraction 
β  of the available space and be correspondingly stronger.  We shall see that the K41 
theory corresponds to the first alternative (β =1). 
 For general β,  the total energy in eddies of size Ln is the energy within the eddies 
themselves, Vn2, times the fraction βn of the total volume occupied by these eddies.  That 
is, 
 
  En ~ β nVn

2 , (7.5) 
 
where the symbol ~ denotes very rough equality.  This energy moves through the n-th 
cascade step in a turn-over time 
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  Tn ~
Ln
Vn

=
1
knVn

, (7.6) 

 
so that 
 
  εn ~

En
Tn
~ β nVn

3kn . (7.7) 

 
If the turbulence is stationary, then εn must be independent of n;  otherwise the energy 
would pile up at some intermediate wavenumber.  But if 
 
  εn = ε , (7.8) 
 
then (7.5) and (7.7) imply that 
 
  En ~ ε

2 / 3 kn
−2 / 3β n / 3 . (7.9) 

 
Since 
 

  En = E k( )dk
kn

kn+ 1

∫ = kE k( )d ln k( )
ln kn

ln kn+1

∫ ∝ knE kn( ) , (7.10) 

 
(7.9) corresponds to the spectrum 
 
  E kn( ) ~ ε 2 / 3 kn

−5 / 3β n / 3 . (7.11) 
 
 According to (7.11), the energy spectrum at wavenumber kn is smaller than that 
predicted in K41 by the factor β n/3 (where β<1 if the cascade is not space-filling).  Let 
 
  β =

1
2 s

s ≥ 0( )  (7.12) 

 
be the definition of s.  The intermittency of the turbulence increases with s.  Then since 
 

  β n =
1
2n( )s

=
Ln
L0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
s

=
k0
kn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
s

. (7.13) 

 
(7.11) becomes 
 
  E k( ) ~ k0s / 3ε 2 / 3k− 5+s( ) / 3 . (7.14) 
 
Again, (7.14) reduces to K41 in the case of a space-filling cascade (β=1, s=0).  However, 
for intermittent (s>0) turbulence, the spectrum falls off more steeply.  Physically, the 
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steeper fall-off occurs because spatial concentration of the eddies makes them more 
intense, and thus shortens the residence time (7.6) for energy at each cascade step. 
 Observations support the prediction of K41 (with s =0) for the spectrum,9 but suggest 
increasing disagreement with K41 as higher-order moments are considered.10  Recall that 
the spectrum is the Fourier transform (with respect to r) of 
 
  F r( ) ≡ vi x + r( )vi x( ) , (7.15) 
 
where we assume that the flow is statistically homogeneous and isotropic.  As an 
example of a higher-order statistic, consider the structure function 
 
  Fp r( ) ≡ v x + r( ) − v x( ) p . (7.16) 
 
If r -1 lies within the inertial range, then, by dimensional analysis, K41 predicts that 
 
  v x + r( ) − v x( ) p = Cp ε r( )p/ 3 , (7.17) 
 
where Cp is a universal constant.  On the other hand, 
 
  Gp r( ) ≡ v x + r( ) − v x( ) 2

p / 2
= Dp ε r( )p / 3 , (7.18) 

 
where Dp is another universal constant.  Thus, because (7.17) and (7.18) have the same 
dimensions, their ratio 
 

  Rp ≡
Fp r( )
Gp r( )

=
v x + r( ) − v x( ) p

v x + r( ) − v x( ) 2
p / 2 =

Cp

Dp

 (7.19) 

 
must be a universal constant, independent of ε  and r.  When p=4, the quantity (7.19) is 
called kurtosis. 
 Observations suggest that (7.19) increases with  p and with r -1.  Since Rp  measures 
spatial intermittency (more sensitively for larger p), these observations suggest a spatial 
intermittency that increases with decreasing eddy size. This contradicts K41, and it 
suggests that the eddies of decreasing size are indeed confined to a decreasing fraction of 
the fluid volume, as in the beta-model.   
 The beta-model predicts that 
 

  Fp
1
kn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ~ β n Vn( )p  (7.20) 

 
and 
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  Gp
1
kn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ~ β nVn

2( )p / 2 . (7.21) 

 
Hence the beta-model prediction for (7.19) is 
 

  Rp ~ β
n(1− p / 2 ) ~ kn

k0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
− s+ sp / 2

. (7.22) 

 
That is, 
 

  Rp r( ) ~ r
L0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
s− sp / 2

. (7.23) 

 
If the cascade is space-filling (s=0), then (7.23) is independent of r, in agreement with 
K41.  However, for s>0 and p >2, Rp(r) increases with decreasing r.   
 
8.  Two-dimensional turbulence 
 
 Again we consider constant-density flow governed by the Navier-Stokes equations.  
Now, however, we suppose that the flow is two-dimensional, 
 
  v = u x, y( ),v x,y( ), 0( ) , (8.1) 
 
so that the vorticity equation, 
 

  D
Dt

ω  = (ω  ⋅ ∇) v + ν ∇2ω , (8.2) 

 
reduces to 
 
  Dω

Dt
= ν∇2ω . (8.3) 

 
Here, 
 

  ω  = ω k =
∂v
∂x

−
∂u
∂y

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ k , (8.4) 

 
and k is the unit vector in the z-direction.  Thus, apart from the effects of viscosity, the 
(vertical component of) vorticity is conserved on fluid particles.  In particular, the effects 
of vortex stretching and tilting are absent in two dimensional flow.  As we shall see, this 
causes two-dimensional turbulence to behave completely differently from three-
dimensional turbulence.   
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 Since the flow is nondivergent, 
 

  u = −
∂ψ
∂y
, v = +

∂ψ
∂x

, (8.5) 

 
for some ψ(x,y,t).  Then 
 
  ω =∇2ψ  (8.6) 
 
and (8.3) can be written as an equation in a single dependent variable, 
 

  ∂
∂t

∇2ψ + J ψ ,∇2ψ( ) = ν∇4ψ , J A,B( ) ≡ ∂ A,B( )
∂ x,y( ) . (8.7) 

 
 One often hears that two-dimensional turbulence does not really exist, because two-
dimensional Navier-Stokes turbulence is always unstable with respect to three-
dimensional motions.  While this is probably true, we recognize (8.7) as the simplest case 
of the quasigeostrophic equation (for a single layer with constant Coriolis parameter f and 
no bottom topography), and we recall (from Chapter 2) that, although  f does not even 
appear in (8.7), it is responsible for the validity of (8.7):  Low-frequency motions of a 
rotating, constant-density fluid can remain two-dimensional.  However, the real 
importance of two-dimensional turbulence theory to geophysical fluid dynamics lies in 
the fact that the theory covers the quasigeostrophic generalizations of (8.7).  These are the 
subject of Chapter 6.  
 In this section, we concentrate on properties of the solutions to (8.7) with vanishing 
viscosity.  Our conclusions illuminate the role of the nonlinear terms in (8.7).  In the 
following section, we re-admit the viscosity and address the statistical equilibrium of 
two-dimensional flows with forcing and dissipation.   
 If ν =0, motion governed by (8.7) conserves (twice) the energy, 
 
  E ≡ dx ∇ψ ⋅∫∫ ∇ψ , (8.8) 
 
and every quantity of the form 
 
  dx F ∇2ψ( )∫∫ , (8.9) 
 
where F is an arbitrary function.  The quantity (8.9) is conserved because the vorticity 
∇2ψ  is conserved on fluid particles, and because the velocity field is nondivergent.  The 
conservation law (8.9) has no analogue in three-dimensional turbulence, where stretching 
and tilting can change the vorticity on fluid particles.   The enstrophy, 
 
  Z ≡ dx ∇2ψ( )2∫∫ , (8.10) 
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is an important case of (8.9). 
 To investigate the consequences of the conservation of E and Z in inviscid two-
dimensional turbulence, we first consider spatially unbounded flow with Fourier 
transform 
 
  ψ x, y,t( ) = dxψ k, t( )eik⋅x∫∫ , ψ k,t( ) =ψ −k, t( )*. (8.11) 
 
However, our most important results also apply to infinitely-periodic flow and to 
bounded flow.  Substituting (8.11) into (8.8) and (8.10), we see that the energy, 
 

  E = 2π( )2 dk k2 ψ k,t( ) 2∫∫ ≡ dkE k( )
0

∞

∫ , (8.12) 

 
and enstrophy, 
 

  Z = dk k2 E k( )
0

∞

∫ , (8.13) 

 
are the zeroth and second moments of the energy spectrum E(k).   
 Now suppose that ν =0 and that the energy is initially concentrated at some 
wavenumber k1.  If the energy subsequently spreads to both higher and lower 
wavenumbers, then more energy must move toward the lower wavenumbers than toward 
higher wavenumbers, in order to conserve both (8.12) and (8.13).  The transfer of energy 
from small to large scales of motion is the opposite of the transfer usually observed in 
three-dimensional turbulence, and has sometimes been called negative eddy viscosity.11 
 Suppose that the energy originally at k1 subsequently flows into the two 
wavenumbers k0=k1/2 and k2=2k1.  By conservation of energy, 
 
  E0 + E2 = E1 , (8.14) 
 
and by conservation of enstrophy, 
 

  k1
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

E0 + 2k1( )2 E2 = k1
2E1 . (8.15) 

 
It follows that 
 
  E0 = 4

5 E1 and E2 = 1
5 E1 , (8.16) 

 
so that 80% of the energy ends up in the lower wavenumber.  However, since the 
enstrophy in this wavenumber is 
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  Z0 =
k1
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

E0 =
k1
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2
4
5 E1 = 1

5 k1
2E1( ) = 1

5 Z1 , (8.17) 

 
it contains only 20% of the enstrophy.  The other 80% of the enstrophy ends up in the 
higher wavenumber k2.   
 A more convincing proof that energy and enstrophy move in opposite directions 
through the spectrum proceeds as follows.  Still assuming ν =0, we consider the 
expression 
 

  d
dt

k − k1( )2 E k( )dk∫ , (8.18) 

 
which is positive if the energy initially concentrated at wavenumber k1 subsequently 
spreads out.  But 
 
d
dt

k − k1( )2 E k( )dk∫ =
d
dt

k 2Edk − 2k1∫ kE dk∫ + k1
2 E dk∫[ ] = −2k1

d
dt

kE dk∫ , (8.19) 

 
because the energy (8.12) and enstrophy (8.13) are conserved.  It follows that 
 

  d
dt

kE k( )dk∫
E k( )dk∫

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

< 0 . (8.20) 

 
The quotient in (8.20) is a logical definition of the wavenumber characterizing the 
energy-containing scales of the motion.  Thus energy moves toward lower wavenumbers. 
 By similar reasoning, 
 
d
dt

k2 − k1
2( )2E k( )dk∫ =

d
dt

k4E dk − 2k1
2∫ k2Edk∫ + k1

4 E dk∫[ ] = d
dt

k 4Edk∫  (8.21) 

 
should be positive.  If we let 
 
  Z k( ) ≡ k2E k( )  (8.22) 
 
be the enstrophy spectrum, then positive (8.21) implies that 
 

  d
dt

k2 Z k( )dk∫
Z k( )dk∫

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

> 0 . (8.23) 

 
The quotient in (8.23) is a logical definition of the (squared) wavenumber characterizing 
the enstrophy-containing scales of the motion.  Thus enstrophy moves toward higher 
wavenumbers. 
 Since 
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  k2 Z k( )dk = dx ∇ω ⋅∇ω( )∫∫∫ , (8.24) 
 
the increase (8.23) in the enstrophy-weighted wavenumber is associated with an increase 
in the mean squared-gradient of vorticity, sometimes called palinstrophy. This leads to a 
physical-space picture of the process by which enstrophy moves to higher wavenumbers.  
Consider two nearby (i.e. nearly parallel) lines of constant vorticity in inviscid two-
dimensional flow, as shown in Figure 4.7.  If ν =0, so that the vorticity is conserved on 
fluid particles, then these lines are also material lines.  That is, they always contain the 
same fluid particles.  It is plausible that, on average, these material lines of constant 
vorticity get longer as time increases.  That is, their constituent fluid particles move 
further apart.  But if these material lines get longer, they must also get closer together, 
because the area between the lines is constant in incompressible flow.  However, the 
vorticity gradient is inversely proportional to the distance between constant-vorticity 
lines.  Therefore, if the constant-vorticity lines get longer, then the magnitude of the 
vorticity gradient, and hence (8.24), must increase.12 
 What makes us think that the constant-vorticity lines get longer?  We can show that 
the average length of material lines increases if the velocity field is statistically 
isotropic.13  Consider two neighboring fluid particles with position vectors r1(t) and r2(t), 
and let ri(t)=ri(0)+Δri(t).  The initial particle locations ri(0) are given and nonrandom 
(i.e. statistically sharp), but the particle locations subsequently acquire a statistical 
distribution that depends on the statistics of the velocity field.  The mean square 
separation between the fluid particles at time t is 
 
r1 t( ) − r2 t( )

2 =

r1 0( ) − r2 0( ) 2 + 2 r1 0( ) − r2 0( )[ ] ⋅ Δr1 t( ) − Δr2 t( ) + Δr1 t( ) − Δr2 t( )
2

 (8.25) 

 
But since 
 
  < Δri t( ) >= 0  (8.26) 
 
in isotropic flow, (8.25) implies that 
 
  r1 t( ) − r2 t( )

2
≥ r1 0( ) − r2 0( ) 2 . (8.27) 

 
 Unfortunately, this proof does not, strictly speaking, apply to the case of particles on 
a line of constant vorticity, because we have assumed that the initial locations of the fluid 
particles are uncorrelated with the fluid velocity.  Hence (8.27) contributes plausibility, 
but no rigor, to the picture of palinstrophy increase sketched above. 
 Now we pause to make a very important point.  Although the arguments of this 
section utilize exact conservation laws, our final conclusions are essentially statistical, 
because they also depend on assumptions about the average behavior of the flow.  
Without such assumptions, it would be impossible to prove that (for example) the 
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enstrophy moves to higher wavenumbers in the flow.  The reason for this is that inviscid 
mechanics is time-reversible:  For every inviscid flow in which enstrophy moves to 
smaller scales of motion, there is an inviscid flow in which exactly the opposite occurs 
(namely, the first flow running backwards in time).  Thus, every example provides its 
own counter-example!  Our statistical hypotheses amount to statements that the example 
is more likely than the counter-example.  These hypotheses frequently enter as innocent, 
often tacit, assumptions, whose statistical nature is hidden.  For example, our “proofs” 
that enstrophy moves toward higher wavenumbers rest on the essentially statistical 
assumptions that a spectral peak will spread out (rather than sharpen), and that material 
lines get longer (rather than shorter).  We cannot escape such assumptions, but we can 
hope to find the simplest and most compelling ones possible.  Turbulence theory largely 
consists of linking plausible statistical hypotheses to interesting, even unexpected, 
consequences. 
 
9.  More two-dimensional turbulence 
 
 Now suppose that ν ≠0 and consider the statistically steady two-dimensional 
turbulence that arises from a stirring force acting at wavenumber k1 (Figure 4.8).  The 
energy and enstrophy put in by the stirring force spread to other wavenumbers by the 
nonlinear terms in the equations of the motion.  At some high wavenumber, kD, viscosity 
becomes effective, and energy and enstrophy are removed.  If the container has size L, 
then the lowest wavenumber, k0, has size 1/L.   If the flow is unbounded, then k0=0. 
 First, consider the inertial range between k1 and kD.  If kD/k1 is large, then there are 
many cascade steps between the stirring at k1 and the dissipation near kD.  Within this 
inertial range the energy spectrum E(k) then plausibly depends only on the wavenumber 
k;  on ε, the rate of energy transfer past k to higher wavenumbers; and on η, the rate of 
enstrophy transfer past k.  If all of the energy and enstrophy passing through the inertial 
range on [k1,kD] is removed at wavenumbers greater than kD,  then 
 
  η > kD

2ε . (9.1) 
 
Now let k1 be fixed, and let kD→∞.  This corresponds to the limit ν→0 of a very wide 
inertial range, with many cascade steps between k1 and kD.  In this limit ε must vanish, or, 
by (9.1), η  would blow up (which is impossible, because the stirring force supplies a 
finite enstrophy to the fluid, and the nonlinear interactions conserve enstrophy).  We thus 
conclude that, in the inertial range on [k1,kD], the rightward energy transfer is 
asymptotically zero, and the spectrum E(k) therefore depends only on k and η.  It then 
follows from dimensional analysis that 
 

  E k( ) = C1 η
2 / 3k−3, kD ~

η
ν3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
1/ 6

 (9.2) 

 
where C1 is a universal constant.14 
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 The spectrum at low wavenumbers is more problematic.   Since the energy dissipated 
by the viscosity ν  is asymptotically zero, the total energy of the flow must increase with 
time, and no statistically steady state is possible.  If k0=0, this energy moves toward ever-
lower wavenumbers, perhaps following the similarity theory proposed by Batchelor 
(1969).  In the more realistic case k0≠0 of bounded flow, the energy piles up near k0. But 
suppose that something (another type of dissipation, an Ekman drag perhaps) removes 
this energy near k0, so that an equilibrium state becomes possible.  What then is the 
nature of the turbulence in the inertial range on [k0,k1]?  By the same reasoning as above, 
we conclude that, in the asymptotic limit k0/k1→0, the enstrophy transfer across [k0,k1] 
vanishes, and the spectrum therefore depends only on k and ε, the rate of energy 
dissipation near k0.  Dimensional analysis then yields 
 
  E k( ) = C2ε 2 / 3k−5 / 3 , (9.3) 
 
where C2 is a universal constant.  The spectrum (9.3) in the energy-cascading inertial 
range has the same form as in three-dimensional turbulence.  Of course, in three-
dimensional turbulence, the energy tranfer is from large to small scales of motion. 
 Meteorologists and oceanographers often use these results by imagining that 
atmosphere and ocean obey the equations for two-dimensional turbulence, and that the 
stirring force at wavenumber k1 represents baroclinic instability injecting energy at scales 
of motion comparable to the deformation radius.  (In Chapter 6 we pursue the much 
better strategy of generalizing the theory to equations that better apply to the atmosphere 
and ocean.)  Then the above theory predicts a k -3 spectrum on wavenumbers between 
k1 and kD, the wavenumber at which the Rossby number UkD/f exceeds unity.  At higher 
wavenumbers, rotation cannot keep the flow two-dimensional, and the enstrophy passes 
into smaller-scale three-dimensional turbulence. 
 Although observations support a k -3 spectrum in the ocean and atmosphere, there are 
at least three reasons to question this explanation: 
 (1)  The dynamics (8.7) of pure two-dimensional turbulence omit too much of the 
physics.  In particular, the beta-effect and density stratification are very important in the 
atmosphere and ocean. 
 (2)  Even if we ignore objection (1), the hypotheses about two-dimensional 
turbulence required to establish (9.2) and (9.3) are not satisfied by the atmosphere and 
ocean.  In neither fluid are the separations between k0, k1, and kD large enough to justify 
the picture of a turbulent cascade.  Furthermore, on scales larger than the deformation 
radius, the atmosphere and ocean show very large departures from statistical 
homogeneity and isotropy. 
 (3)  Even if we ignore objections (1) and (2), the inertial range theory of two-
dimensional turbulence is not strictly self-consistent. 
 In Chapter 6, we shall consider generalizations of (8.7) that partly answer objection 
(1), and we shall avoid the strong hypotheses criticized in objection (2).  In the remainder 
of this section we look more closely at objection (3), arriving at a picture of enstrophy 
transfer to small spatial scales that is, in some respects, the antithesis of a cascade.   
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 The argument leading to (9.2) supposes that the transfer of enstrophy past k in the k -3  
inertial range on [k1,kD] is local in wavenumber, that is, that interactions between very 
distant wavenumbers (eddies of very different sizes) do not strongly contribute.  This 
justifies the picture of a turbulent cascade whose many cascade-steps erase the memory 
of the precise nature of the stirring force and lead to universal behavior.  Now, in the 
picture of enstrophy transfer to smaller scales developed in Section 8, eddies of size k -1 
are stretched out by the straining motion of the fluid, and the palinstrophy (8.24) 
increases as the result of the stretching.  The mean-square strain-rate has the same 
spectrum, 
 
  Z k( ) = k2E k( ) ~ k2 k−3 = k−1 . (9.4) 
 
as the enstrophy, and all spatial scales larger than k -1 contribute to the velocity 
difference between one side of this eddy and the other.  It follows that 
 

  Z k( )dk
k1

k

∫ ~ k −1dk
k1

k

∫ = ln k
k1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (9.5) 

 
is that part of the mean-square strain-rate that is effective in stretching out an eddy of size  
k -1.  According to (9.5), every wavenumber octave in the range [k1,k] contributes equally  
to the mean-square strain on the eddy of size k -1.   This violates (if only just) the 
localness-in-wavenumber hypothesis used to derive (9.2). 
 The inertial-range theory can be saved by an extension of the reasoning we used in 
the beta-model.15  In the enstrophy-cascading inertial range, the enstrophy in the cascade 
step centered on k  is 
 
  k Z k( ) , (9.6) 
 
(cf. (7.10)), and this amount of enstrophy is transferred to the next cascade step in a time 
T(k), now nonlocally determined as the inverse of the average strain rate acting on the 
eddy of size k -1, namely 
 

  T k( )~ Z k '( )dk'
k1

k

∫⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1/ 2

. (9.7) 

 
(We assume that the cascade is space-filling, that is, that β =1.)  Since the enstrophy 
transfer past every wavenumber is a constant at equilibrium, we must have16 
 

  kZ k( ) ⋅ Z k '( )dk'
k1

k

∫⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
1 / 2

~ η (constant) . (9.8) 

 
To solve (9.8) for Z(k), let 
 
  f ≡ k Z and x ≡ ln k . (9.9) 
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Then (9.8) is 
 

  f x( ) f x'( )dx'
x1

x

∫⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
1/ 2

~ η , (9.10) 

 
with solution, 
 

  f x( ) ~ η2 / 3

x − x1( )1/ 3 , x >> x1. (9.11) 

 
Thus 
 

  Z k( ) ~ η2/ 3k−1 ln k
k1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
−1/ 3

. (9.12) 

 
That is, 
 

  E k( ) ~ η2 / 3k−3 ln k
k1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
−1 / 3

. (9.13) 

 
 Eqn. (9.13) represents a correction to (9.2) that is almost undetectably small for 
inertial ranges of reasonable width.  But more interesting than the precise form of this 
correction is the picture of the enstrophy range that it implies, in which the nonlinear 
transfer of enstrophy toward higher wavenumbers is very nonlocal in wavenumber.  
Eddies well inside the inertial range are stretched out by straining motions dominated by 
much larger and stronger eddies, on which the stretched eddies themselves have almost 
no effect.   This suggests that the vorticity in inertial-range eddies behaves almost like a 
passive scalar in a velocity field with a uniform strain.  The strain appears uniform 
because it is concentrated in spatial scales that are much larger than the eddies being 
strained. 
 Batchelor (1959) showed that the spectrum of a passive conserved scalar in a uniform 
straining field is exactly proportional to k -1.  We can obtain this result from the 
calculation in Section 14 of Chapter 1.  There we considered a single sinusoidal 
component of the passive tracer θ(x,t) in a field of uniform shear ∂u/∂y=α.  We found 
that, on scales at which θ-diffusion is not yet important, the amplitude of the sinusoid was 
conserved, but that the wavenumber magnitude at time t is kγ(t), where k is the initial 
wavenumber, and γ(t)=(1+α2t2)1/2 in the special case considered in Chapter 1 (see 
eqn.(14.20) in Chapter 1).  Batchelor considered the case of uniform strain, in which 
γ(t)=eσt and σ is the strain rate.  In either case, the θ-variance initially between k1 and 
k2=k1+dk (say) must equal the variance between γ(t)k1 and γ(t)k2 at later time t.  Thus, if 
Θ(k) is the spectrum of θ, then 
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  Θ k1( )dk = Θ γ k1( )d γ k( )  (9.14) 
 
at equilibrium.  But since (9.14) must hold for every t and γ,  Θ(k)~k -1.  (To see this, take 
the derivative of (9.14) with respect to γ, and set γ=1.  Then use (9.14) with γ=1 as an 
“initial condition” on the resulting ordinary differential equation.)  Therefore, if the 
small-scale vorticity behaves like a passive scalar, then Z(k)~k -1 and hence E(k)~k -3, in 
agreement with (9.2), but without the hypothesis of a local cascade.17 
 There have been numerous numerical studies of two-dimensional turbulence.18  The 
numerical solutions usually show a spectral slope that is significantly steeper than k -3 
and sometimes as steep as k -5.  The steeper slope is caused by the appearance of long-
lived, isolated, axisymmetric vortices.19  In the frequently studied case of unforced two-
dimensional turbulence beginning from random initial conditions (often simply called 
freely decaying turbulence), a strong enstrophy cascade is initially present, but, as the 
cascade subsides, significant enstrophy remains trapped in the isolated vortices.  These 
vortices interact conservatively (that is, without losing energy or enstrophy) except for 
infrequent close encounters that lead to the merger of like-signed vortices.  In a typical 
merger, the two interacting vortices strip long filaments of vorticity from one another.  
The dissipation of these thin filaments represents a loss of enstrophy, but energy is 
approximately conserved.  The final state consists of a few large vortices that have 
consumed all the others.  Interestingly, the isolated vortices can often be traced all the 
way back to local vorticity extrema in the initial conditions.   
 In continually forced two-dimensional turbulence, the enstrophy cascade and the 
vortices coexist.  In fact, it seems best to regard forced two-dimensional turbulence as 
two fluids — one fluid consisting of the isolated coherent vortices, and the other fluid 
consisting of the more randomly distributed vorticity field between the vortices.  The 
overall spectrum (including the vortices) is much steeper than k -3, but if a spectral 
analysis is performed only on the regions between the vortices, then the result is very 
close to k -3.  The regions of the coherent vortices contribute a k -6 component to the 
spectrum, and the total spectrum (which seems always to lie between these two extremes) 
depends upon the relative strengths of the two components, as determined by the details 
of the forcing.20 
 Figure 4.9 shows the vorticity (bottom) and streamfunction (top) in a numerical 
simulation of freely-decaying two-dimensional turbulence governed by (8.7).21  The 
boundary condition is ψ=0 at the (rigid) boundaries of the box.  The 2562 gridpoints 
correspond to a maximum wavenumber of 128 in each horizontal direction.  The initial 
conditions (Figure 4.9a) are random, with the energy peaked at wavenumber k=8.  Let 
time be measured in units of the time required for a fluid particle to move a distance 
equal to the side of the box at the (initial) rms speed of the flow.  By t=0.5 (Figure 4.9b), 
straining motions have produced elongated features in the vorticity field, corresponding 
to enstrophy transfer to smaller spatial scales.  The energy-containing scales (as 
represented by the streamfunction field) have, on the other hand, increased.  By t=1.0 
(Figure 4.9c), isolated axisymmetric vortices become prominent.  As time further 
increases, these vortices decrease in number and increase in strength, as the flow evolves 
toward an expected final state of two large vortices with opposite signs. 
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10.  Energy transfer in two and three dimensions 
 
 In freely decaying (i.e. unforced) Navier-Stokes turbulence, the total energy evolves 
according to 
 
  d

dt
1
2 v ⋅v dx = ν∫∫∫ v ⋅ ∇2v dx∫∫∫ . (10.1) 

 
But 
 
  ∇2v = ∇ ∇ ⋅v( ) − ∇ × ∇ × v( ) = −∇ ×ω  , (10.2) 
 
and thus 
 
  d

dt
1
2 v ⋅v dx∫∫∫ = −ν∫∫∫ v ⋅ (∇ × ω) dx (10.3) 

            = - ν∫∫∫ [ω  ⋅ (∇ × v) + ∇ ⋅ (ω  × v)] dx =  - ν∫∫∫ ω  ⋅ ω  dx 
 
According to (10.3) the energy-dissipation rate 
 
  ε =

ν
V ∫∫∫ ω  ⋅ ω   dx (10.4) 

 
is proportional to the enstrophy 
 
  Z ≡ ∫∫∫ ω  ⋅ ω   dx . (10.5) 
 
Here, V is the volume of the fluid.   
 Eqns. (10.1-4) apply to flow in two or three dimensions.  However, in two-
dimensional flow, the enstrophy (10.5) can never exceed its initial value, because the 
nonlinear terms in the equations of motion conserve enstrophy, and dissipation always 
decreases the enstrophy.  Thus, in two dimensions, the energy dissipation rate (10.4) 
vanishes with the viscosity coefficient ν.   That is, 
 
  lim

ν→0
ε = 0 (in two dimensions) . (10.6) 

 
 Experiments suggest that three-dimensional turbulence behaves quite differently.  If 
an impulsive stirring creates eddies with velocity scale U and lengthscale L, then the 
resulting three-dimensional turbulence is observed to decay on the turn-over time-scale, 
L/U, of the eddies.  Thus 
 

  ε ~ U
3

L
(in three dimensions) , (10.7) 
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and is independent of ν.    
 The relation (10.7) underlies nearly every phenomenological theory of three-
dimensional turbulence.  But since (10.4) holds exactly, we must conclude that, if (10.7) 
is correct, then the enstrophy in three-dimensional turbulence becomes infinite as ν→0.  
In other words, if (10.7) holds for arbitrarily small viscosity, then three-dimensional 
turbulence must be able to transfer energy to arbitrarily small scales in a finite time.  The 
energy transfer in three-dimensional turbulence must be explosive.22 
 Is such a transfer consistent with Kolmogorov’s theory?  Consider the cascade step 
centered on wavenumber k, and let the next cascade step be centered on nk,  where n is 
some fixed integer.  (In the beta-model, we assumed that n=2, but now we shall be more 
general.)  If the cascade is space-filling, then, according to K41, the time T(k) required to 
transfer the energy from cascade step k to the next step is (cf. (9.7)) 
 
  T k( )~ 1

k3E k( )
∝ k−2 / 3  (10.8) 

 
for E(k)∝k -5/3.   If the energy is initially at k1 =1/L, then the time required to reach 
infinite wavenumber is 
 

  T k1( ) + T nk1( ) + T n2k1( ) + ⋅ ⋅ ⋅ ∝ T k1( ) n−2r / 3
r =0

∞

∑ , (10.9) 

 
which converges for all n >1.  Thus K41 is not obviously inconsistent with the 
requirement that the energy reach infinite wavenumber in a finite time. 
 In contrast, the inertial ranges of two-dimensional turbulence both require an infinite 
amount of time to transfer the energy or enstrophy across an infinite wavenumber 
interval.  The time for energy in the two-dimensional energy-cascading inertial range to 
reach k=0 is given by (10.9) with n replaced by 1/n.  This obviously diverges — the 
terms in the series get bigger!  In the k -3 enstrophy-cascading inertial range, the transfer 
time T(k) between cascade steps depends only on η  and k.  Hence, by dimensional 
analysis, 
 
  T k( ) ~η−1 / 3 constant( ) , (10.10) 
 
and each step requires the same amount of time.  Nonlocal corrections of the type 
considered in the previous section alter this result only logarithmically. 
 These results hint that the mechanism of transfer is very different in two- and three-
dimensional turbulence.  Now we offer a mechanistic picture of the energy transfer in 
two and three dimensions that seems to tie things together.  This picture attempts to 
explain, in physical terms, why the energy transfer is oppositely directed in the two cases, 
and why the transfer of energy to high wavenumbers is so much more efficient in three 
dimensions. 
 First, recall that the average of the Navier-Stokes momentum equation is 
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  ∂ < vi >
∂t

+ < vj >
∂ < vi >
∂xj

−
∂ < p >
∂xi

−ν
∂ 2 < vi >
∂x j∂xj

= −
∂
∂xj

< vi ' vj ' > , (10.11) 

 
where, as usual, the primes denote departures from the average, and the right-hand side of 
(10.11) is the divergence of the Reynolds stress.  We associate the average flow with the 
large scales of the motion and the primed flow with the smaller scales.  (This constitutes 
our definition of the averaging, if you like.)  To form an equation for the energy in the 
large-scale motion, we multiply (10.11) by <vi>, and integrate over the whole fluid.  
After integrations by parts, 
 

  d
dt

1
2 vi vi + ν

∂ vi
∂x j

∂ vi
∂xj

= −C∫∫∫∫∫∫ , (10.12) 

 
where 
 

  C ≡ − vivj
∂ vi
∂xj

dx∫∫∫  (10.13) 

 
is the rate at which the nonlinear terms in the momentum equation convert large-scale 
energy to small-scale energy.  (To show this beyond any doubt, we could form an 
equation for the rate of change of the energy <vi'vi'> in small spatial scales.  We would 
find that the term (10.13) occurs with the opposite sign.)   
 Now, from the previous lectures, we expect that C is typically positive in three-
dimensional turbulence, and typically negative in two-dimensional turbulence.  (The 
word typically is a reminder that all such statements are statements about statistical 
averages, and rest on assumptions about average behavior.)  Consider the situation 
sketched in Figure 4.10, in which the large-scale velocity 
 
  v = (u y( ),0,0)  (10.14) 
 
points everywhere in the x-direction, and varies only in y.  Then C is given by 
 

  C = − u' v' ∂ u
∂y

dx∫∫∫ . (10.15) 

 
 In two dimensions (Figure 4.10, middle), the mean flow strains initially isotropic 
small-scale eddies (left) into the shape at the right.  Thus, for ∂<u>/∂y positive as 
depicted, <u'v'>  becomes positive, and C is indeed negative.  The Reynolds flux of x-
momentum is directed toward positive y (that is, up-gradient), and there is a negative 
transfer of energy from the mean flow to the smaller scales of motion. 
 In three dimensions, vortex stretching is possible, and it becomes the primary 
mechanism for energy transfer between scales.  We regard the small-scale motion as an 
initially isotropic collection of vortex tubes (Figure 4.10, bottom left).  Tube A is 
stretched by the mean shear, and the magnitude of its vorticity therefore increases.  On 
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the other hand, vortex tube C is squashed, and its vorticity magnitude therefore decreases.  
Tube B is instantaneously unstretched.  At a later time (Figure 4.10, bottom right) vortex 
tube A makes the dominant contribution to the Reynolds stress, and it contributes 
negatively to <u'v'>.  Thus, the Reynolds momentum flux is down-gradient, and C is 
positive. 
 
Notes for Chapter 4. 
1.  Some writers call fluids in which p=p(ρ) barotropic, but the term homentropic is 
preferable because in real fluids the pressure depends on density and entropy.  Moreover, 
oceanographers use the term barotropic in a slightly different sense — to describe flows 
in which the horizontal velocity does not depend on depth. 
2.  In the language of tensor analysis, the contravariant vector w and the covariant vectors 
∇θi are Lie-dragged by the fluid motion.  The Lie derivative of their product (a scalar) 
therefore vanishes;  this is just (3.2). 
3.  See Moffatt (1969) and Moffatt and Tsinober (1992). 
4.  For a discussion of this point see Batchelor (1967), pp. 99-104. 
5.  However, one can show that the pressure term would, by itself, conserve the energy 
ui(k)ui(k)* in each wavenumber k.  Thus pressure transfers energy between the different 
directional components of the velocity field, but not between the different wavenumbers. 
6.  Kolmogorov formulated his theory in x-space, but we follow most elementary 
treatments by explaining the theory in k-space.  For an introduction to homogeneous 
turbulence, including Kolmogrov’s theory, see Saffman (1968).  For a retrospective on 
K41, including English translations of Kolmogorov’s original papers and recent related 
work, see Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50 Years On (full 
reference in the bibliography under Kolmogorov (1941)) and the book by Frisch (1995). 
7.  See Landau and Lifshitz (1959, p.126).  Kolmogorov (1962) revised the K41 theory, 
taking account of intermittency. 
8.  See Frisch et al. (1978) and Frisch (1995, pp.135-140). 
9.  The classic paper is Grant et al. (1962). 
10.  See Frisch (1995, pp. 127-133) and references therein. 
11.  The classic paper is Fjortoft (1953). 
12.  For a more detailed description of this process, see Weiss (1991). 
13.  See Dhar (1976). 
14.  See Kraichnan (1967).  For reviews of two-dimensional turbulence, see Kraichnan 
and Montgomery (1980) and Vallis (1992). 
15.  See Kraichnan (1971b). 
16.  Of course (9.8) applies only to k>>k1.  For wavenumbers near k1, one must take 
account of the straining contributed by wavenumbers less than k1, even though the 
spectrum at these low wavenumbers is flatter than in the enstrophy inertial range. 
17.  C. E. Leith (personal communication) has proposed still another explanation of the 
observed atmospheric k -3 range.  Using an argument analogous to that proposed by O. M. 
Phillips for ocean wind waves, Leith suggests that the atmospheric energy spectrum 
represents the saturation spectrum for breaking Rossby waves. 
18.  See, for example, Lilly (1971), Herring et al. (1974), Herring and McWilliams 
(1985), Brachet et al. (1988), and Borue (1994). 
19.  See McWilliams (1984, 1990) and Carnevale et al. (1991). 
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20.  See Benzi et al. (1986, 1987) and Farge et al. (1996). 
21.  Figure 4.9 shows a solution of (8.7) with vanishing viscosity (ν=0).  However, I 
computed the vorticity-advection term in (8.7) using the third-order-upwind scheme 
proposed by Leonard (1984).  This scheme has a truncation error corresponding to the 
presence of a term -νe ∇6ψ  on the right-hand side of (8.7), where νe is of the order of 
 U Δx3, U is the local fluid speed, and Δx is the grid-spacing.  This implicit numerical 
viscosity is evidently sufficient to wipe out rapid oscillations on the scale of the grid.  In 
contrast to the more conventional method of including an explicit eddy viscosity of the 
same form, the upwind scheme does not demand another boundary condition (besides 
ψ=0) at the solid walls. 
22.  This has led to a longstanding but as yet unproved conjecture that solutions of the 
three-dimensional Euler equations — the Navier-Stokes equations with ν=0 — develop 
singularities in a finite time.  For a brief summary of the status of this problem, see Frisch 
(1995, pp.115-119). 


