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Abstract

This paper explores an idealized model of the ocean surface in which widely separated
surface-wave packets and point vortices interact in two horizontal dimensions. We start
with a Lagrangian which, in its general form, depends on the fields of wave action,
wave phase, stream function, and two additional fields that label and track the vertical
component of vorticity. By assuming that the wave action and vorticity are confined to
infinitesimally small, widely separated regions of the flow, we obtain model equations
that are analogous to, but significantly more general than, the familiar system consisting
solely of point vortices. We analyze stable and unstable harmonic solutions, solutions in
which wave packets eventually coincide with point vortices (violating our assumptions),
and solutions in which the wave vector eventually blows up. Additionally, we show that a
wave packet induces a net drift on a passive vortex in the direction of wave propagation
which is equivalent to Darwin drift. Generalizing our analysis to many wave packets and
vortices, we examine the influence of wave packets on an otherwise unstable vortex street
and show analytically, according to linear stability analysis, that the wave packet induced
drift can stabilize the vortex street. The system is then numerically integrated for long
times and an example is shown in which the configuration remains stable, which may be
particularly relevant for the upper ocean.

1. Introduction

This paper explores an idealized model of the ocean surface in which widely separated
surface-wave packets and point vortices interact in two horizontal dimensions. Each
wave packet p is defined by its location xp(t), its wave action Ap, and its wave vector
kp(t). Each point vortex i is defined by its location xi(t) and its strength Γi. In reality,
wave-breaking converts wave action into vorticity, and vorticity is destroyed by viscosity.
However, in this initial study we consider only the ideal case, in which Ap and Γi are
conserved.
The velocity field attached to the wave packets is dipolar; it is sometimes called

‘Bretherton flow’. Wave packets advect the point vortices by their Bretherton flow. Point
vortices advect wave packets and other point vortices, and change the wave vector of
the wave packets by refraction. For simplicity, we omit the interactions between wave
packets, which are expected to be weak.
In §2 we derive the equations governing xp(t), kp(t), and xi(t) from a Lagrangian

which, in its general form, depends on the fields of wave action, wave phase, stream
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function, and two additional fields that label and track the vertical component of vorticity.
In our application, the Lagrangian couples Whitham’s Lagrangian for surface waves
to the Langrangian for two-dimensional, incompressible flow. Coupling is achieved by
replacing the ‘mean velocity’ in the Doppler term of the dispersion relationship with the
velocity field corresponding to the stream function of the vortical flow. We obtain our final
equations by assuming that the wave action and vorticity are confined to infinitesimally
small, widely separated regions of the flow. To leading order, each wave packet induces
a dipolar horizontal flow, and each vortex patch induces a monopolar flow. In its general
formulation (Salmon 2020), the method applies to any type of wave and any type of
mean flow in two or three dimensions. It seems easier to apply than other, apparently
equivalent methods that do not employ a Lagrangian.
In §3 we consider the system consisting of a single wave packet and a single point

vortex. We analyze harmonic solutions in which the two particles move in circular orbits.
For these configurations, we show that solutions in which the vortex orbit lies outside
the orbit of the wave packet are stable, whereas solutions in which the vortex orbit lies
inside that of the wave packet are unstable. We also investigate solutions in which the
vortex and wave packet eventually coincide, violating the assumption of our model, and
solutions in which the wave vector grows without bound.
In §4 we consider the case of a wave packet encountering a pair of counter-rotating

point vortices. The highly symmetrical arrangement permits thorough analysis, which is
confirmed by numerical solutions. This solution is very similar to the one discussed by
Bühler & McIntyre (2005) and invites a comparison with their method of analysis. We
also show that, in the limit that the circulation of the vortices is much weaker than the
wave action, the equations are equivalent to those diagnosing the motion of a particle
in the presence of a uniformly translating cylinder. Following classical analysis (Maxwell
1870; Darwin 1953) it is shown that the wave packet induces a net displacement on the
vortices.
In §5 we study a solution in which N > 1 wave packets are equidistant from, and

symmetrically arranged about, a single vortex. The wave packets circle the vortex at a
uniform angular velocity, while the vortex remains stationary at the center of the pattern.
In §6 we generalize our system to be periodic in one dimension, and investigate the

motion of a periodic array of weak point vortices in the presence of a periodic array of
wave packets. We find asymptotic solutions in which the wave packets induce a net drift
on the vortices.
In §7, we use the analysis in §6 to investigate the linear stability of a vortex street in

the presence of a wave packet. We find that the wave packet can change the stability of
the vortex street. Numerical analysis demonstrates that vortex streets can be stable for
long times in the presence of a wave packet.

§8 concludes with an assessment of our results and their oceanographic implications.

2. The equations of motion

In this section we derive the equations governing a mixture of widely separated
vortex patches and surface-wave packets. In the wide-separation limit, the vortex patches
correspond to point vortices and the wave packets correspond to ‘point dipoles.’ We
obtain our equations by coupling the Lagrangian for the wave field in the form proposed
by Whitham (1965, 1974) to the Lagrangian for two-dimensional incompressible flow
representing the surface current. We use the Doppler term in the dispersion relation to
couple the two Lagrangians together. This appears to be a simple and powerful method
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for deriving equations governing the interactions between waves and mean flows. Further
details of the method are given by Salmon (2020).
For the waves by themselves the Lagrangian proposed by Whitham is

Lw[θ,A] =

∫∫∫

dtdx (ω − ωr(k) −U · k)A, (2.1)

where the integral is over time and the ocean surface; the frequency ω = −θt and wave
vector k = ∇θ are abbreviations for the derivatives of the wave phase θ(x, t);

A =
E

ωr
(2.2)

is the wave action; E is the wave energy per unit area; and ωr(k) is the prescribed relative
frequency of the waves—the frequency measured in a reference frame moving at the mean
flow velocity U(x, t). Our notation is k = (k, l), x = (x, y), and ∇ = (∂x, ∂y). For surface
waves,

ωr(k) =
√

g|k|. (2.3)

At this stage, we consider the mean flow to be prescribed. For sake of completeness,
Appendix A provides a systematic derivation of (2.1) following Whitham’s averaged-
Lagrangian method. Variations of A yield the dispersion relation,

ω =
√

g|k|+U · k. (2.4)

From variations of θ we obtain

δLw[θ,A] =

∫∫∫

dtdx

(

−(δθ)t −
∂ωr

∂k
·∇(δθ) −U ·∇(δθ)

)

A

=

∫∫∫

dtdx (At +∇ · [(cg +U) A]) δθ, (2.5)

where cg(k) = ∂ωr/∂k is the relative group velocity. Thus we obtain the action conser-
vation equation,

At +∇ · [(cg +U) A] = 0. (2.6)

The Lagrangian for two-dimensional incompressible flow is

Lm[α,β,ψ] =

∫∫∫

dtdx H0

(

−αβt + ψ
∂(α,β)

∂(x, y)
+

1

2
∇ψ ·∇ψ

)

, (2.7)

where the subscript m stands for ‘mean flow’, and

∂(A,B)

∂(x, y)
≡ [A,B] = AxBy −BxAy (2.8)

is the Jacobian, defined for any two functions A(x, y) and B(x, y). The variables α(x, t),
β(x, t) and ψ(x, t) represent averages over the constant depth H0 to which wave-mean
interactions occur. We identify H0 with the decay depth of the surface waves. We assume
that the mean flow is depth-independent in this range. Stationarity of Lm implies

δα : βt + [ψ,β] = 0, (2.9)

δβ : αt + [ψ,α] = 0, (2.10)

δψ : [α,β] = ∇2ψ, (2.11)

We see that α and β are vorticity labels in the following sense: First, by (2.9) and (2.10),
they are conserved following the fluid motion, hence each fluid particle is identified by
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its two labels (α,β). Second, by (2.11), the vorticity in an arbitrary area of the flow is
given by

∫∫

dxdy∇2ψ =

∫∫

dxdy
∂(α,β)

∂(x, y)
=

∫∫

dαdβ, (2.12)

where the integration is over the arbitrary area in physical space and the corresponding
area in label space. Taking the time-derivative of (2.11) and using the Jacobi identity,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (2.13)

we obtain the vorticity equation,

∇2ψt + [ψ,∇2ψ] = 0, (2.14)

for the mean flow by itself.
We couple Lw to Lm by replacing the mean velocity U in (2.1) with uψ ≡ (−ψy,ψx),

and by assuming that the Lagrangian for the entire system is the sum,

L[θ,A,α,β,ψ] = Lw + Lm =

∫∫∫

dtdx (−θtA−H0αβt)−
∫

dt H, (2.15)

of (2.1) and (2.7), where

H [θ,A,α,β,ψ] =

∫∫

dx

(

ωrA−H0 ψ
∂(α,β)

∂(x, y)
−

H0

2
∇ψ ·∇ψ +∇ψ × kA

)

(2.16)

is the Hamiltonian, and (θ,A) and (α,β) are canonical pairs. Using (2.2), (2.11) and
integrations by parts to evaluate (2.16) we find that

H =

∫∫

dx

(

E +
H0

2
∇ψ ·∇ψ

)

. (2.17)

Thus, as expected, our dynamics conserves the sum of the wave energy and the kinetic
energy of the mean flow. The equations corresponding to δL = 0 are

δA : ω ≡ −θt = ωr(k, l,m) + uψ · k, (2.18)

δθ : At +∇ · [(cg + uψ) A] = 0, (2.19)

δψ : H0[α,β] = H0∇2ψ −∇× (kA), (2.20)

δα : βt + [ψ,β] = 0, (2.21)

δβ : αt + [ψ,α] = 0, (2.22)

where ∇× (A,B) ≡ Bx −Ay will be our notation for the vertical component of the curl
of a horizontal vector. By the Jacobian identity, (2.20)-(2.22) imply

qt + [ψ, q] = 0, (2.23)

where

q = H0∇2ψ −∇× p, (2.24)

and

p = kA (2.25)

is the pseudomomentum. The wave action equation (2.5) is unchanged, but now U = uψ.
That is, the previously arbitrary mean flow is now specifically identified with the velocity
field (−ψy,ψx) induced by the point vortices and wave packets.
The most interesting effect of the coupling and summation of Lagrangians is the

generalization of (2.14) to (2.23)-(2.24). By these equations, the quantity H0∇2ψ−∇×p
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is conserved following the mean motion of fluid particles. Consider waves propagating
into a region of fluid that is initially at rest. Before the arrival of the waves,∇2ψ = p = 0,
and hence

H0∇2ψ = ∇× p. (2.26)

By (2.23), (2.26) applies at all times, including when waves are present. Equation (2.26) is
a concise definition of Bretherton flow, the flow generated by a wave packet in a formerly
quiescent fluid. If wave breaking destroys the pseudomomentum p before the broad mean
flow represented by ψ has time to react, then real, actual, vorticity is created and remains
behind after the remaining wave energy propagates away.

Taking the gradient of the dispersion relation (2.4) and using ∇ω = −∇θt = −kt, we
obtain the refraction equation

∂k

∂t
+ ((cg +U) ·∇)k = −k∇U − l∇V. (2.27)

The refractive change in k predicted by (2.27) causes a change in ωr(k) that can be
determined from (2.3). If the waves do not break, then the action A = E/ωr(k) is
conserved. If ωr(k) increases, then the wave energy E must also increase to keep their
ratio constant. We anticipate that wave-vector stretching, which increases |k| and hence
ωr, is typical for the same reason that fluid particles typically move apart, and hence
wave-mean interactions typically transfer energy from surface currents to waves. On the
other hand, wave breaking always transfers energy from waves to currents.

Now we specialize the dynamics (2.15)-(2.16) to the case in which the vorticity and
wave action are concentrated at widely separated points. This specialization is motivated
by a desire to produce equations amenable to analytical and numerical solution. We
assume that the mean flow vorticity consists solely of point vortices. Then

[α,β] =
∑

i

Γiδ (x− xi(t)) , (2.28)

where xi(t) is the location at time t of a point vortex with strength Γi. The subscripts i
replace the continuous vorticity labels α and β. The Hamiltonian (2.16) becomes

H [θ, A,xi,ψ] = −
∑

i

H0Γiψ(xi(t)) +

∫∫

dx

(

ωr(θx, θy)A−
H0

2
∇ψ ·∇ψ + [ψ, θ]A

)

.

(2.29)
To fully convert from (α,β) to xi we must transform the term

∫∫∫

dxdt αβt (2.30)

in (2.15). It becomes

∫∫∫

dxdydt α
∂(x, y,β)

∂(x, y, t)
=

∫∫∫

dαdβdτ α
∂(x, y,β)

∂(α,β, τ)

=

∫∫∫

dαdβdτ − x
∂(α, y,β)

∂(α,β, τ)
=

∫∫∫

dαdβdτ x
∂y

∂τ
=

∫

dt
∑

i

Γixi
dyi
dt

. (2.31)
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Thus, when point vortices replace continuous vorticity, the Lagrangian (2.15) becomes

L[θ, A,xi,ψ] =

∫∫∫

dxdt

(

−θtA− ωr(θx, θy)A+
H0

2
∇ψ ·∇ψ − [ψ, θ]A

)

+

∫

dt

(

−
∑

i

H0Γixi
dyi
dt

+
∑

i

H0Γiψ(xi(t))

)

. (2.32)

Instead of (2.20) we now have

δψ : H0∇2ψ =
∑

i

H0Γiδ (x− xi(t)) + [A, θ], (2.33)

with solution

ψ(x, t) =
1

2π

∑

i

Γi ln |x− xi(t)|+ ψw(x, t), (2.34)

where (suppressing the time-dependence)

ψw(x) =
1

H0

∫∫

dx′ ρ(x′)
1

2π
ln |x− x′| (2.35)

and

ρ = [A, θ] = ∇A× k. (2.36)

We now assume that the wave field consists solely of isolated wave packets. The stream
function field generated by a single wave packet at xp is given by (2.35) and (2.36) with
k = kp, where kp(t) is the wave vector associated with the wave packet. We assume that
kp depends only on time; its variation within the wave packet is assumed negligible. The
integration in (2.35) is over the area of the wave packet, the region of the flow in which
A %= 0. In Appendix B we show that, far from xp, the streamfunction generated by a
wavepacket at xp takes the form of a dipole,

ψ(x) =
1

2πH0

(x− xp)× kp

|x− xp|2
Ap, (2.37)

where Ap =
∫∫

dxA is the total action of the wave packet.
The streamfunction response to many point vortices and many wave packets is clearly

ψ(x, t) =
∑

i

Γiψm(x,xi) +
∑

p

Apψd(x,xp,kp), (2.38)

where

ψm(x,xi) ≡
1

2π
ln |x− xi(t)| (2.39)

is the response to a monopole at xi, and

ψd(x,xp,kp) ≡
1

2πH0

(x− xp)× kp

|x− xp|2
(2.40)

is the response to a dipole with wavevector kp at xp. The constants Γi and Ap measure
the strength of the monopole and the dipole, respectively. Ap is always positive but Γi

can have either sign. Until dissipation occurs Ap and Γi remain constant.
Since our aim is to produce a Lagrangian that depends only on the point vortex

locations xi(t), the wave packet locations xp(t), and their wave vectors kp(t), we must
transform all of the terms in (2.32). If we integrate the first term in (2.32) over the p-th
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wave packet, we obtain

−
∫∫∫

dxdt θtA =

∫∫∫

dxdt θAt = −
∫∫∫

dxdt θ
dxp

dt
·∇A

= −
∫

dt
dxp

dt
·
∫∫

dx θ∇A =

∫

dt
dxp

dt
·
∫∫

dx A∇θ =
∫

dt
dxp

dt
· kpAp, (2.41)

where we have used integrations by parts and the relation

(

∂

∂t
+

dxp

dt
·∇
)

A(x, t) = 0, (2.42)

which follows from the definition of xp(t): dxp(t)/dt is the velocity of the wave envelope.
The second term in (2.32) becomes

−
∫

dt ωr(kp)Ap. (2.43)

The three terms in (2.32) containing ψ combine as

∫∫∫

dtdx

(

H0

2
∇ψ ·∇ψ − [ψ, θ]A

)

+

∫

dt
∑

i

H0Γiψ(xi(t), t)

=

∫∫∫

dtdx

(

−
H0

2
ψ∇2ψ − [ψ, θ]A+

∑

i

H0Γiψδ(x− xi)

)

=

∫∫∫

dtdx

(

−
H0

2
ψ∇2ψ + [A, θ]ψ + ψ

(

H0∇2ψ − [A, θ]
)

)

=
H0

2

∫∫∫

dtdx ψ∇2ψ, (2.44)

where we have used (2.33).

Our final step is to substitute (2.38) back into the Lagrangian, removing its dependence
on ψ. The last integral in (2.44) becomes

∫∫

dx ψ∇2ψ =

∫∫

dx

[

(

∑

i

Γiψm(x,xi) +
∑

p

Apψd(x,xp,kp)

)

×

∇2





∑

j

Γjψm(x,xj) +
∑

q

Aqψd(x,xq,kq)





]

. (2.45)

We simplify (2.45) by neglecting the dipole-dipole interactions, which are expected to
be weak: The velocity field associated with the monopoles falls off like 1/r, whereas the
velocity field associated with Bretherton dipoles falls off like 1/r2. Dropping these terms
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from (2.45) gives us

∫∫

dx ψ∇2ψ ≈
∫∫

dx
∑

i

Γi∇2ψm(x,xi)





∑

j

Γjψm(x,xj) + 2
∑

p

Apψd(x,xp,kp)





=

∫∫

dx
∑

i

Γiδ(x− xi)





∑

j

Γjψm(x,xj) + 2
∑

p

Apψd(x,xp,kp)





=
∑

i

Γi





∑

j

Γjψm(xi,xj) + 2
∑

p

Apψd(xi,xp,kp)



 . (2.46)

Putting all this together, we obtain the Lagrangian

L[xi,xp,kp] =

∫

dt

(

∑

p

Apkp · ẋp −
∑

i

H0Γixiẏi −H [xi,xp,kp]

)

, (2.47)

where

H [xi,xp,kp] =
∑

p

Ap ωr(kp)−
H0

2π

∑

i

∑

j>i

ΓiΓj ln |xi − xj |

−
1

2π

∑

i

∑

p

ΓiAp
(xi − xp)× kp

|xi − xp|2
(2.48)

is the Hamiltonian. For every wave packet there are two canonical pairs, (xp, kp) and
(lp, yp), and for every point vortex there is one canonical pair, (xi, yi). Again, Γi and Ap

are constants. The Hamiltonian (2.48) contains ΓΓ terms and ΓA terms. If we had not
dropped the dipole/dipole interactions it would also contain AA terms.
We remark that it is generally quite wrong to substitute an equation resulting from

the variational principle back into the Lagrangian. If, for example, we substitute the
dispersion relation back into (2.1), the Lagrangian vanishes. However, it is legitimate to
use the equation obtained by varying a particular field to eliminate that same field from
the Lagrangian; see Appendix C. Thus it is legal to use (2.33) to eliminate ψ from (2.32).
The equations corresponding to (2.47)-(2.48) are

δkp : ẋp =
1

Ap

∂H

∂kp
= cg(kp) +Um(xp), (2.49)

δxp : k̇p = −
1

Ap

∂H

∂xp
= −kp∇Um(xp)− lp∇Vm(xp), (2.50)

δxi : ẋi =
1

Γi

(

∂H

∂yi
,−

∂H

∂xi

)

= Um(xi) +Ud(xi), (2.51)

where

Um(x) = (Um(x), Vm(x)) =
∑

i

Γi

(

−
∂ψm

∂y
(x,xi),

∂ψm

∂x
(x,xi)

)

=
1

2π

∑

i

Γi
(yi − y, x− xi)

|xi − x|2
(2.52)



Wave packets and point vortices 9

is the velocity field induced by the point vortices, and

Ud(x) =
∑

p

Ap

(

−
∂ψd

∂y
(x,xp,kp),

∂ψd

∂x
(x,xp,kp)

)

(2.53)

is the velocity field induced by the wave packets. The total velocity is U(x) = Um(x) +
Ud(x). In our approximation, the wave packets talk to point vortices but not to one
another, while the point vortices talk to both point vortices and wave packets. We can
add the missing physics if necessary; it would, for example, add the term Ud(xp) to
(2.49).
Equations (2.49-2.51) are the fundamental equations of our model. If we were to

regard Um as a prescribed mean flow, then (2.49) and (2.50) would be the standard
equations of ray theory (e.g. Bühler 2014). Similarly, if we omit Ud, then (2.51) is the
standard equation of point vortex dynamics (Kirchhoff 1883). The new feature of our
derivation is that Um is not prescribed, but rather is determined by the locations of the
point vortices. Similarly, the dipolar velocity field of the wave packets is not dropped,
but rather contributes to the advection of the point vortices. Again, if the relatively
weak interactions between the wave packets had not been dropped, then Ud would also
appear in (2.49) and (2.50). Tchieu et al. (2012) consider a system consisting solely of
interacting point dipoles. In our context, their system corresponds to adding dipole-dipole
interactions but completely omitting the point vortices.
The derivation of (2.49-2.51) from a Lagrangian guarantees that our dynamics main-

tains important conservation laws. The conservation of energy (2.48) corresponds to the
time-translation symmetry of (2.47-2.48). The conservation of momentum,

M =
∑

p

Apkp +H0

∑

i

Γi(yi,−xi). (2.54)

corresponds to space-translation symmetry and is proved by considering variations of the
form

δxi = δxp = ε(t), (2.55)

where ε(t) is an arbitrary infinitesimal vector. If we think of the interactions between
the dipoles and point vortices as the sum of pair interactions between each dipole/vortex
pair, then pairwise conservation of (2.54) shows that the refraction of wave packet p
(i.e. the change in kp) caused by vortex i is accompanied by a change in the position of
vortex i. Bühler & McIntyre (2003) refer to this as ‘remote recoil.’ Conservation of (2.54)
also governs wave breaking in the following sense. If the p-th wave packet is completely
destroyed by wave breaking, then Ap is suddenly replaced by two counter-rotating
vortices with a dipole moment equal to ΓD where D is the separation between counter-
rotating vortices of strength ±Γ . See also Bühler & McIntyre (2005); Bühler & Jacobson
(2001), and Bühler (2014). Our dynamics also conserves the angular momentum,

L =
∑

p

Ap(kp × xp) +
H0

2

∑

i

Γi(x
2
i + y2i ), (2.56)

which can be proved by considering variations of the form (xi + iyi) → (xi + iyi)eiδθ(t),
(xp + iyp) → (xp + iyp)eiδθ(t), and (kp + ilp) → (kp + ilp)eiδθ(t), where δθ(t) is an
infinitesimal angle.
Our primary motivation in deriving (2.49-2.51) is to obtain relatively simple equa-

tions, amenable to analytic and numerical solution, governing the interactions between
ocean surface waves and the vorticity created by breaking waves. One could avoid the
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assumption of widely spaced wave packets and vortex patches by solving the more general
equations (2.18-2.27) as coupled equations for the fields of A(x, t), k(x, t), and ψ(x, t).
However, even these more general equations are idealized in the sense that they embody
our treatment of the vertical dimension. In reality, the vorticity associated with a surface
wave packet resides in a horseshoe-shaped vortex tube whose surface manifestation is
the vortex pair represented by our dipole. The three-dimensional structure of this vortex
tube is locally important, but only the nearly vertical portions of the vortex tube induce
a significant surface flow far from the tube. The arbitrary constant depth H0 to which
the tube’s contribution extends is an artificial component of our model and could easily
be absorbed into other parameters. We prefer to retain it as a constant reminder of the
very idealized nature of our model. Models, to be useful, must be much simpler than
reality.

Onsager (1949) considered the equilibrium statistical mechanics of a system of point
vortices. Our system reduces to Onsager’s system when no waves are present (Ap ≡
0). Our phase space is larger than the one considered by Onsager because it contains
dimensions corresponding to the wave packet locations xp and their wave vectors kp.
However, the difference is not merely a matter of extra dimensions. In Onsager’s problem
the volume of the phase space is finite, because the point vortices are confined to a box. In
our problem the phase space has infinite volume because −∞ < kp < ∞. We therefore
expect an ultraviolet catastrophe in which energy spreads to ever larger |kp| by the
process of wave vector stretching. If wave vector stretching increases the first term in
(2.48), as would be the case for surface waves, this increase must be compensated by a
decrease in the other two terms.

Our method is easily adapted to other types of waves and mean flows. For example,
to investigate internal waves interacting with a quasigeostrophic mean flow, we need
only replace (2.4) with the dispersion relation for internal waves, and (2.7) with the
Lagrangian for quasigeostrophic flow. This approach offers advantages of simplicity and
transparency over the more formal approaches followed by Bühler & McIntyre (2005),
Wagner & Young (2015), and Salmon (2016). For many further details, see Salmon
(2020). In the remainder of this paper we investigate the dynamics (2.49)-(2.51).

3. 1 vortex, 1 wave packet

We begin by considering the system consisting of a single vortex of strength Γ located
at x(t), and a single wavepacket with action A and wave vector k(t) located at x(t)+ξ(t).
This system exhibits a much more complicated range of behavior than the more familiar
system consisting of two point vortices. The Langrangian (2.47) takes the form

L[x, ξ,k] =

∫

dt
(

A k · (ξ̇ + ẋ)−H0Γxẏ −H(ξ,k)
)

, (3.1)

with Hamiltonian

H(ξ,k) = A
√

g|k|−
1

2π
ΓA

k× ξ

|ξ|2
. (3.2)



Wave packets and point vortices 11

The equations of motion become

δx :
d

dt
(Ak +H0Γy) = 0, (3.3)

δy :
d

dt
(Al −H0Γx) = 0, (3.4)

δk :
d

dt
(ξ + x) = cg(k) +

Γ

2π|ξ|2
(−η, ξ), (3.5)

δξ :
dk

dt
=

Γ

2π|ξ|4
(

l(ξ2 − η2)− 2kξη
)

, (3.6)

δη :
dl

dt
=

Γ

2π|ξ|4
(

k(ξ2 − η2) + 2lξη
)

, (3.7)

where ξ = (ξ, η). We simplify notation by taking g = 1 and choosing a characteristic
wavenumber k0 = 1 so that ω2

0 = gk0 = 1. We also assume H0 = k−1
0 = 1, while we take

Γ = 2πω0k
−2
0 = 2π and A = 2πω0k

−5
0 = 2π. Then the Hamiltonian (3.2) becomes

H = 2π

(

(k2 + l2)1/4 −
kη − lξ

ξ2 + η2

)

. (3.8)

The system (3.3)-(3.7) conserves the energy (3.8), the angular momentum

L = 2π(k× (x+ ξ)) +
2π

2
(x2 + y2), (3.9)

(cf. 2.56), and the momentum M ≡ (Mx,My) (cf. 2.54), where

Mx = 2π(k + y); My = 2π(l − x). (3.10)

We use the conserved momenta (3.10) to eliminate the variables (x, y) in favor of
(k, l, ξ, η). The resulting system conserves the energy (3.8) and the quantity

R0 ≡
1

2

(

(

Mx

2π

)2

+

(

My

2π

)2
)

−
L
2π

=
1

2
(k2 + l2)− (kη − lξ) (3.11)

obtained by eliminating (x, y) between (3.9) and (3.10). We also define

H0 =
H
2π

. (3.12)

The reduced dynamics takes the form of four coupled ordinary differential equations,

ξ̇ = −
k(ξ2 − η2) + 2lξη

(ξ2 + η2)2
+

k

2(k2 + l2)3/4
−

η

ξ2 + η2
, (3.13)

η̇ =
l(ξ2 − η2)− 2kξη

(ξ2 + η2)2
+

l

2(k2 + l2)3/4
+

ξ

ξ2 + η2
, (3.14)

k̇ =
l(ξ2 − η2)− 2kξη

(ξ2 + η2)2
, (3.15)

l̇ =
k(ξ2 − η2) + 2lξη

(ξ2 + η2)2
. (3.16)

with the two conserved quantities, (3.11) and (3.12).
Define

k + il = κeiφ, ξ + iη = aeiθ. (3.17)
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We shall obtain a single, closed equation for the wavenumber magnitude κ(t). First, using
(3.8) and (3.12), we obtain an expression for a2 in terms of κ,

a2 =
R0 − 1

2κ
2

H0 −
√
κ
. (3.18)

Then using (3.8) we obtain the constraint

sin(φ− θ) =
a

κ

(

H0 −
√
κ
)

(3.19)

on the phases. From (3.15) and (3.16), we find an evolution equation for φ, namely

φ̇ =
−lk̇ + kl̇

k2 + l2
=

1

a2
cos 2(φ− θ). (3.20)

Equations (3.15) and (3.16) also imply

κ̇ =
k̇k + l̇l√
k2 + l2

=
κ

a2
sin 2(φ− θ). (3.21)

Combining (3.20) and (3.21), we obtain

κ̇2 + κ2φ̇2 =
κ2

a4
= κ2

(

H0 −
√
κ

R0 − 1
2κ

2

)2

. (3.22)

Our final step is to eliminate φ̇ to arrive at equation involving only κ̇ and κ. We use the
identity

cos 2(φ− θ) = 1− 2 sin2(φ− θ) = 1−
2a2

κ2
(H0 −

√
κ)2, (3.23)

where the last substitution is via (3.18) and (3.19). Then by (3.18) and (3.23) we have

φ̇ =
H0 −

√
κ

R0 − 1
2κ

2
−

2

κ2
(H0 −

√
κ)2. (3.24)

Substituting (3.24) back into (3.22) we obtain the closed evolution equation

1

2
κ̇2 +Π(κ) = 0 (3.25)

for κ(t), where

Π(κ) =
1

2

(

κ(H0 −
√
κ)

(R0 − 1
2κ

2)

)2
(

−1 +

(

1−
2

κ2
(R0 −

1

2
κ2)(H0 −

√
κ)

)2
)

. (3.26)

Equation (3.25) takes the form of a particle moving in a potential Π(κ). This permits
a qualitative analysis of system behavior based on the form of (3.26). Solutions may be
written out in implicit form, as in Tur & Yanovsky (2017), but a qualitative analysis
offers better physical insight.

3.1. Circular motion

We begin by seeking solutions that exhibit simple harmonic motion. Thus we take
κ̇ = 0 and look for the κi that satisfy

Π(κi) = 0. (3.27)
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Figure 1: Left: The potentials Π(κ) for the two cases (R±
0 ) in which a critical point is

present at κ = 1. The inset enlarges the potentials near κ = 1. In one case (dashed) the
critical point coincides with a maximum of Π(κ) (implying unstable motion) while in the
other case (solid) the critical point is a minimum. Right: Numerical solutions showing
the locations of the wave packet (black line) and vortex (red line) in the two cases. The
initial wave vector is indicated by the black arrow.

Let κi ≡ 1. This implies a simple relation between H0 and R0. Its solutions are H0 = 1
and R0 a free parameter; or

H0 =
1 + 2R0

−1 + 2R0
. (3.28)

If we take κi = 1 to be a critical point, then Π ′(1) = 0. It may be shown that when
H0 = 1, Π ′′(1) = 0. Therefore, in order to exhibit unstable and stable solutions, we
consider the set of solutions described by (3.28). This leads to the two possibilities

R±
0 ≡

1

2
(−3± 2

√
2). (3.29)

The solutions take the form

k = cosφ, l = sinφ, ξ = a sinφ, η = a cosφ, (3.30)

where a is given by (3.18). From (3.20) we have φ = φ0+φ1t for φ0 and φ1 constants. An
example of this behavior is shown in figure 1, where the two potentials and corresponding
solutions are shown. In one of these solutions the wave packet orbit lies inside the orbit
of the vortex. In the other solution, the opposite occurs.

3.2. Stability of orbits

The Π(κ) graphed in figure 1a suggest that the circular orbits shown there may not
be locally stable (in a spectral sense) to perturbations. Therefore we study solutions in
the neighborhood of κ0 = 1. We take κ = 1 + εκ1 and expand Π(κ) about the critical
point κ = 1, to find

Π(κ) ≈ Π(1) + εκ1Π
′(1) + ε2κ21Π

′′(1) + · · · (3.31)

By construction Π(1) = Π ′(1) = 0. Taking κ1 = κ01e
λt, we find that the spectral stability

of the system will be set by the sign of ε2(κ01)
2Π ′′(1). From figure 1 we see that R+

0

corresponds to stable orbits, andR−
0 corresponds to unstable orbits. This is demonstrated

in figure 2, which shows that the stable orbits are confined to the neighborhood of their
initial trajectories, whereas the unstable orbits deviate considerably.
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Figure 2: Left: Orbit of wave packet and vortex with R0 = R+
0 as defined in (3.30).

For this case perturbations are stable, and the orbits remain close to the unperturbed
solution. Right: Orbit of wave packet and vortex with R0 = R−

0 . This orbit is unstable,
and the solutions deviate considerably from circles.

3.3. Collapse

The above analysis addresses local spectral stability at a critical point. There are other
solutions in which a → 0 so that the wave packet and the vortex overlap. We call this
phenomenon collapse. Collapsed solutions violate the assumption of our model that the
wave packets and vortices remain far apart. Nonetheless, collapse is a real property of
our equations that demands investigation. Vortex collapse for three point vortices has
been extensively studied (see Aref 1983, and references therein). The case of overlapping
vorticity and wave action has been analyzed by McIntyre (2019).
The conditions for collapse are clear from equation (3.18). Collapse occurs at the time

t∗ at which

κ2 → 2R0. (3.32)

As an example we suppose that H0 = R0 = 0. Then the system collapses as κ → 0.
Under these assumptions, the governing equation for κ reduces to

κ̇ = ±2

√

2−
√
κ√

κ
. (3.33)

Define ϑ by

tanϑ = ±
κ1/4

√

2−
√
κ
. (3.34)

Then

cosϑ = ±
1√
2

√

2−
√
κ, sinϑ =

1√
2
κ1/4, (3.35)

and, solving for κ, we obtain

κ =
1

2
(3− 4 cos 2ϑ+ cos 4ϑ). (3.36)

To find t = t(ϑ), we note that

dt

dϑ
=

dt

dκ

dκ

dϑ
= ±

1

4
tanϑ

(

sin 2ϑ+
1

2
sin 4ϑ

)

. (3.37)
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Figure 3: An example of “collapse”, in which the wave packet and the vortex converge,
violating model assumptions. Left: The potential Π(κ) with R0 = 0 and H0 = 0. Note
the singularity at κ = 0. The top right panel shows the converging particle paths. The
bottom right panel shows the evolution of κ(t), which vanishes in a cusp. The analytic
solution is shown by the red dashed line and is indistinguishable from the numerical
result.

This can be integrated, and we arrive at

t = t0 ±
1

4
(12ϑ− 8 sin 2ϑ+ sin 4ϑ) . (3.38)

Collapse occurs when

dκ

dϑ
=

dt

dϑ
= 0. (3.39)

Thus the collapse corresponds to the formation of a cusp in κ.
Figure 3 confirms these results. The top right panel shows the convergence of the wave

packet and the vortex. The bottom right panel compares the theoretical prediction of
κ(t) (where we have taken the negative branch of the solution corresponding to κ̇ < 0)
to the numerical result. The two curves are indistinguishable.
In our model the wave action A is fixed. Therefore, the wave energy A ω(κ) vanishes

as κ → 0 since ω(κ) ∝
√
κ for surface gravity waves. The energy lost by the wave

packet appears as an increase in the ‘interaction energy’ between the wave packet and
the vortex—an increase in the last term in (3.2)—but, again, the whole theory breaks
down when the two particles finally converge.

3.4. Blow-up

There are also solutions in which κ, the wave number modulus, grows without bound.
We call these blow-up solutions. They correspond to wave packets that steepen. In reality,
wave breaking limits the steepness of waves, and could be added to our model to extend
its validity. For example, wave packets that exceed a prescribed steepness could be
replaced by counter-rotating vortices with a dipole moment determined by momentum
conservation (2.54) as in Bühler & Jacobson (2001). In this paper we consider only ideal
solutions, and we do not include wave breaking.
A necessary condition for κ(t) to grow without bound is that

Π ′ < 0 (3.40)
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Figure 4: An example of a solution that “blows up”, meaning κ→ ∞. The trajectories of
the wave packet and vortex are shown in the top panel. In the bottom panel, we display
κ. The asymptotic form of the growth is predicted to go like t, which is shown by the
dashed red line and is seen to agree well with the numerical integration.

for large κ. For large κ,

Π ∼ 2−
4√
κ
(1 + 2H0), (3.41)

hence blow-up requires

H0 < −
1

2
. (3.42)

As an example, we take H0 = −1. Then

Π ∼ 2 +O(1/
√
κ), (3.43)

which implies that the blow-up solution takes the form

κ = κ0 + κ1t. (3.44)

We examine this numerically in figure 4, and find agreement with the theoretical predic-
tion.

4. Two vortices and one wave packet

We now examine the system comprising a single wave packet with action Ap and
wavevector (kp, lp) located at (xp, yp); a point vortex of strength −Γ located at x1, y1;
and a second point vortex of strength +Γ located at x2, y2. Refer to figure 5. Initially,

yp = lp = 0, x2 = x1, y2 = −y1 (4.1)
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and, by symmetry, these conditions hold at all later times. The Lagrangian is (with
H0 = 1)

L[xp, yp, kp, lp, x1, y1, x2, y2] =
∫

dt
[

Ap (kpẋp + lpẏp − ωr(kp, lp)) + Γ (x1ẏ1 − x2ẏ2)−
Γ 2

2π
ln |x1 − x2|

+
Ap

2π

(

−Γ
(x1 − xp)× kp

|x1 − xp|2
+ Γ

(x2 − xp)× kp

|x2 − xp|2

)

]

. (4.2)

We vary all the dependent variables, and then apply the symmetry conditions (4.1) to
obtain a closed set of four equations. (It is illegal to apply the symmetry condition before
taking the variations.) The reduced set of equations is

δkp : ẋp = cg(kp, 0)−
Γy1
πd2

, (4.3)

δxp : k̇p =
2Γkp
π

(

(x1 − xp)y1
d4

)

, (4.4)

δx1 : ẏ1 =
Apkp
π

(x1 − xp)y1
d4

, (4.5)

δy1 : ẋ1 = −
Γ

4πy1
+

Apkp
2π

(x1 − xp)2 − y21
d4

, (4.6)

where cg is the x-component of the group velocity, and

d2 ≡ (x1 − xp)
2 + y21 (4.7)

is the squared distance between the wave packet and either vortex. Because of the
symmetry conditions (4.1), we do not need the evolution equations for yp, lp, x2, and
y2.
The equations (4.3)-(4.6) conserve energy in the form

E = ωr(kp)Ap +
Γ 2

2π
ln y1 −

ApΓ

π

y1kp
d2

(4.8)

and momentum in the form

M = Apkp − 2Γy1. (4.9)

The angular momentum vanishes. Defining

X(t) ≡ xp(t)− x1(t), (4.10)

we rewrite (4.3)-(4.6) as three equations

Ẋ = cg(kp) +
Γ

4πd2y1
(X2 − 3y21)−

Apkp
2πd4

(X2 − y21), (4.11)

k̇p = −
2Γkp
πd4

Xy1, (4.12)

ẏ1 = −
Apkp
πd4

Xy1, (4.13)

in the three unknowns kp, y1 and X , where now d2 = X2 + y21 . The two conserved
quantities, (4.8) and (4.9), make this an integrable system. Eliminating y1 between (4.8)
and (4.9), we obtain an expression for the energy in terms of X and kp. The motion is
confined to curves of constant E(X, kp). We can determine the solution by considering
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E(X, kp) or, even more conveniently, by considering

E(kp, d
2) = ωr(kp)Ap +

Γ 2

2π
ln(Apkp −M)−

Apkp
2π

(Apkp −M)

d2
, (4.14)

in which we have dropped additive constants. Only the last term in (4.14) involves d2.
Consider a gravity wave packet, initially at X = −∞ with kp > 0, approaching the

vortex pair from the left, as shown in the top panel of figure 5. While the wave packet
is still far from the vortex pair (d2 very large) the last term in (4.14) is negligible.
According to (4.13), kp increases with time on X < 0. This increase in kp occurs because
the velocity field associated with the vortices squeezes the wave packet in the x-direction.
Since cg(kp) > 0 the wave energy ωrAp and the vortex-interaction energy—the middle
term in (4.14)—both increase with kp. The increase in the latter corresponds to the two
vortices being pushed apart by the velocity field associated with the dipole. The increase
in these two terms must be balanced by the last term in (4.14), which represents the
energy stored in the superposed velocity fields of the wave packets and vortices. These
superposed fields tend to cancel as the wave packet approaches the vortex pair. kp reaches
its maximum value at X = 0, where

d2 = y21 =

(

Apkp −M

2Γ

)2

. (4.15)

Substituting (4.15) into (4.14), we obtain an equation for this maximum value of kp. After
passing X = 0, the solution ‘unwinds’, and kp returns to its original value as X → ∞.
The numerical solution shown in figure 5 confirms this analysis.

4.1. Wave-packet induced drift

If Γ , A, (4.9-4.13) imply

Ẋ = cg(kp)−
Apkp
2πd4

(X2 − y21), (4.16)

k̇p = 0, (4.17)

ẏ1 = −
Apkp
πd4

Xy1. (4.18)

Hence kp and cg are constants. The governing equations (with Ap = 2πa2 and kp = g = 1)
reduce to

Ẋ = cg0 −
a2

d4
(X2 − y21), (4.19)

ẏ1 = −
2a2

d4
Xy1. (4.20)

In this limit, the point vortices are passive; their motion is the same as that of fluid
particles in the presence of a uniformly translating cylinder. This problem was examined
by Maxwell (1870, see also Morton 1913; Darwin 1953). In the reference frame moving
with the wave packet, the stream function is an integral of motion. Hence

Y0 = y1

(

1−
a2

d2

)

(4.21)

is constant. Define Ẋ = Ẋ − cg0 and θ = tan−1(y1/X). Using (4.21) and following
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Figure 5: Top panel: A right-moving wavepacket (in black), with its wave vector denoted
by the straight arrow, and its associated dipolar flow indicated by circles, collides with
a left-moving pair of counter-rotating vortices (in red). As the wave packet approaches
the vortices, the flow induced by the vortex pair squeezes the wave packet in the x-
direction, stretching its wave vector. The dipolar flow induced by the wave packet pushes
the vortices apart (second panel). After passage of the wave packet (third panel) the
solution ‘unwinds’, and all three particles return to their original configurations. The
bottom panel partitions the energy (4.15) into wave energy Hw (the first term on the left
hand side of (4.15)), vortex energy Hv (the second term), and interaction energy Hint.
Hw and Hv increase during the interaction, while Hint decreases.
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Maxwell (1870) and Darwin (1953) we find that

X =

∫

a2 cos 2θ
√

Y 2
0 + 4a2 sin2 θ

dθ. (4.22)

Let cos θ = −sn(ν) with the suppressed modulus of the Jacobi elliptic function under-
stood to be

m = κ2 =
4a2

Y 2
0 + 4a2

. (4.23)

It is tedious but straight-forward to show that

X =
a

κ

((

1−
κ2

2

)

ν − E(ν)

)

. (4.24)

Similar expressions may be found for y1(ν) and t(ν) but fall outside the scope of our
discussion (Darwin 1953).
From (4.24), the total drift in the x-direction is

∆X =
2a

κ

((

1−
κ2

2

)

K − E

)

, (4.25)

where E,K are the complete elliptical integrals of the first and second kind, respectively.
The drift volume, D, defined as

D =

∫ ∞

−∞

X dY = πa2, (4.26)

has the same order of magnitude as the vertically integrated Stokes drift. Note, the
connection between Stokes drift (specifically the motion in the vertical plane) and Darwin
drift has been examined by Eames & McIntyre (1999).

5. 1 vortex, N wave packets

We now search for simple harmonic motion in a system comprising one vortex and
N > 1 wave packets (see also the related discussion on a ring of geostrophic vortices in
Morikawa & Swenson 1971). The single vortex of strength Γ = 2π remains stationary
at x = 0. The N wave packets at xp = (xp, yp) have equal actions Ap = A, and wave
vectors of equal magnitude |kp| = κ. They lie symmetrically on the circle |xp| = χ. Both
κ and χ are constants. We take the arbitrary depth parameter to be unity, H0 = 1.
A vortex at x induces the velocity field

Um(x′,x) =
(y − y′, x′ − x)

(x − x′)2 + (y − y′)2
(5.1)

at x′. Hence

Um(xp,0) =
(−yp, xp)

χ2
. (5.2)

We also need

∇Um(xp,0) =
1

χ4

(

2xpyp, x
2
p − y2p

)

(5.3)

and

∇Vm(xp,0) =
1

χ4

(

−x2
p + y2p,−2xpyp

)

. (5.4)
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Figure 6: Trajectories exhibiting circular motion for a system with four wave packets and
one vortex. The wave packets are shown in black, with their intensity increasing with
time. The red circle represents the stationary vortex.

The wavepacket at xp induces the velocity

Ud = −
A

2πχ4

(

2lpxpyp + kp(x
2
p − y2p) , 2kpxpyp − lp(x

2
p − y2p)

)

(5.5)

at the vortex.
The equations of motion reduce to

ẋp =
1

2

√

g

κ3
(kp, lp) +

(−yp, xp)

χ2
, (5.6)

χ4k̇p = (−2kpxpyp + lp(x
2
p − y2p), 2lpxpyp + kp(x

2
p − y2p)), (5.7)

and
∑

p

A(−2lpxpyp − kp(x
2
p − y2p),−2kpxpyp + lp(x

2
p − y2p)) = 0. (5.8)

The last equation is the condition that the vortex remains stationary.
We look for solutions exhibiting simple harmonic motion with kp = κ(sin θp,− cos θp)

and xp = χ(cos θp, sin θp). This leads to the constraints

κ =
χ2

16
, (5.9)

dθp
dt

= −1/χ2, (5.10)

and
∑

A(cos θp, sin θp) = 0. (5.11)

Taking A = 1, we observe that solutions to this system are related to the N -th roots of
unity. This sets the initial phase of θp. We find that

M = 0; H =
3χ

16

∑ Ap

2π
. (5.12)

Figure 6 shows a solution of this type with four wave packets.
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6. The Lagrangian motion of a particle near a periodic wave packet

We now consider the motion of a very weak point vortex near a periodic array of wave
packets. In the limit of vanishing circulation, the vortex acts as a passive tracer, and
sets the foundation for the stability analysis performed in §7. This is a generalization of
the motion considered by Maxwell (1870) and Darwin (1953). Unlike the analysis there,
closed form solutions for the motion of a particle are not found, but asymptotic analysis
reveals interesting features of the induced flow.
The system we now consider is unbounded in x and y, and infinitely periodic in the

x-direction. Initially, the wave packet propagates along the x-axis. Each vortex or wave
packet at (x, y) sees its images at (x + 2πn, y), where n is any integer. Again we take
H0 = 1.
The governing equations are (2.49) - (2.51) with Um and Ud now calculated from the

stream functions

ψm(x,xi) =
1

4π

∑

n

ln[(x− xi + 2πn)2 + (y − yi)
2], (6.1)

and

ψd(x,xp,kp) =
1

2π

∑

n

(x− xp + 2π(n, 0))× kp

|xp − x+ 2π(n, 0)|2
. (6.2)

6.1. Limit of weak point vortices

We begin by considering the wave-packet-induced motion of the vortices when |Γi| , 1.
As in §4—see particularly §4.1—this motion takes a nontrivial form.
We consider a wave packet traveling along the x-axis so that l = yp = 0. To O(1),

(2.49)-(2.51) reduce to

ẋp =
1

2

√

g

|kp|
kp

|kp
, (6.3)

k̇p = 0, (6.4)

ẋi = Ud(xi,xp,kp), (6.5)

where Ud is computed from (6.2). As we are considering one (weak) vortex per period,
i = 1 and we take y1 = y.
It is convenient to define

χ = x1 − xp. (6.6)

The governing equations become

χ̇ = −cg0 + µ
∞
∑

n=−∞

(χ− 2πn)2 − y2

((χ− 2πn)2 + y2)2
, (6.7)

ẏ = 2µ
∞
∑

n=−∞

(χ− 2πn)y

((χ− 2πn)2 + y2)2
, (6.8)

Defining z = χ+ iy, we have

ż = −cg0 + µ
∞
∑

n=−∞

(z − 2πn)2

(z − 2πn)2(z∗ − 2πn)2
= −cg0 + µ

∞
∑

n=−∞

1

(z∗ − 2πn)2
. (6.9)

Define the complex-valued velocity potential w = φ + iψ where (wz)∗ ≡ ż. This implies
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(Lamb 1932, §64)

w = −cg0χ− µ
∞
∑

n=−∞

1

2πn− z
= −cg0χ− µ cot

z

2
. (6.10)

Eqn (6.10) implies

φ = −cg0χ+ µ
sinχ

cosχ− cosh y
, (6.11)

and

ψ = −cg0y − µ
sinh y

cosχ− cosh y
. (6.12)

From the relation (wz)∗ = ż, we find

χ̇ = −cg0 +
µ

2

1− cosχ cosh y

(cosχ− cosh y)2
, (6.13)

ẏ =
µ

2

sinχ sinh y

(cosχ− cosh y)2
. (6.14)

The stream function is a material contour. As in §4.1, this provides an additional
conserved quantity. When (χi, yi) are small—vortex i very close to the wave packet—our
equations reduce to the equations of Maxwell discussed in §4.1.
Although we have been unable to find closed form solutions, asymptotic analysis reveals

interesting properties of this system. We expand the transcendental pieces of (6.13) and
(6.14) as

sinh y sinχ

(cosh y − cosχ)2
= 2

∞
∑

n=1

ne−ny sinnχ (6.15)

and

1− cosh y cosχ

(cosh y − cosχ)2
= −2

∞
∑

n=1

ne−ny cosnχ. (6.16)

This expansion assumes y > 0 ; a similar formula holds for y < 0. The equations of
motion may then be written as

χ̇ = −cg0 − µ
∞
∑

n=1

ne−ny cosnχ, (6.17)

ẏ = µ
∞
∑

n=1

ne−ny sinnχ, (6.18)

or, more compactly, as

ż = −cg0 − µ
∞
∑

n=1

ne−inz∗

. (6.19)

Let b > 0 to be the initial vertical coordinate of the particle, and (for reasons that become
clear in §7) let π/2 be its horizontal coordinate. Let the initial location of the wave packet
be (π, 0).
As the wave packets and vortex are sufficiently far apart, a natural small parameter

arises, namely

ε ≡ e−b , 1. (6.20)
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We expand z as

z = z0 + εz1 + ε2z2 + · · · (6.21)

To O(ε2), we find

ż = ż0 + εż1 + ε2ż2 = −cg0 − µ
(

εe−iχ0 + ε2(2e−2iχ0 − iz∗1e
−iχ0)

)

. (6.22)

We solve this system iteratively. To lowest order,

z0 = z00 − cg0t, (6.23)

where z00 = −π/2 + ib. This implies

z1 = −
iµ

cg0

(

e−iχ0 − i
)

= −
µ

cg0
(eiθ − 1), (6.24)

where χ0 = −π/2− cg0t and we define

θ ≡ cg0t. (6.25)

Thus z1 takes the form of a simple harmonic oscillator. The constant is taken to ensure
that z1 = 0 at t = 0.
At second order we find

ż2 = µ(2e2iθ − z∗1e
iθ), (6.26)

so that upon substitution of the result for z1, we find

z2 =
µ2

cg0
t− i

µ

cg0

(

e2iθ − 1
)

+ i
µ2

c2g0

(

eiθ − 1
)

. (6.27)

At this order there is a mean drift in the direction of wave propagation. Unlike the Stokes
drift which is O(A), this term is O(A2). This has potentially important implications for
the stability of vortex streets, as discussed in §7.
Figure 7 compares our approximate analytical solutions to numerical integrations of

the full equations for ε = 1/10 (left panel) and ε = 1/3 (right panel). We see that the
asymptotic theory works relatively well for small values of ε.

7. The stability of a symmetric vortex street in the presence of a
wave packet

Numerical solutions (not here described in detail) suggest that there are cases in which
the wave packets organize the vortices into patterns. As a first step in understanding
this phenomenon we study the stability of a vortex street in the presence of a single
wave packet (per period) in the semi-periodic domain. This system conserves energy
and momentum, but angular momentum is not conserved because the periodicity breaks
rotational symmetry.
Within the (periodic) domain, we have four vortices, arranged symmetrically about

y = 0, with y = ±b, and spaced π apart in the x-direction. Refer to figure 8. This is
the minimal system to illustrate the instability of a periodic vortex street (Domm 1956).
The stability of vortex streets was first considered by von Kármán (1911), and discussed
in detail by Lamb (1932, §156). Domm (1956) examined its nonlinear stability, reducing
the system of four vortices to two dependent variables. The symmetric vortex street
proved to be linearly unstable in all of parameter space, whereas the asymmetric vortex
street is linearly stable at a single value of the ratio of vertical to horizontal spacing of
the vortices. However, even the linearly stable asymmetric vortex street is nonlinearly
unstable (Domm 1956).
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Figure 7: A comparison of the numerical integration of the full equations of motion (black
lines) and the second order asymptotic solutions (dashed-red lines). The left column
shows the results when ε = 1/10, while the right column shows the results for ε = 1/3.
The top two row shows y1 and x1, the vertical and horizontal motion of the vortex, as
a function of time. The bottom row shows the behavior of the wave packet. We see that
the asymptotic theory describes the numerical results well for the case of ε = 1/10 but
begins to break down for ε = 1/3.
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Figure 8: The vortex street configuration considered in this section. The vortices in the
top row have strength Γ while those in the bottom row have strength −Γ . The domain
is periodic in the x-direction, and there is a wave packet travelling along the x-axis. We
study the stability of this vortex street in the presence of the wave packet.

The equations of motion are (2.49) - (2.51) with the stream functions given by (6.1)
and (6.2). We take Γi = ε2γ so that Γ1 = Γ2 = ε2γ and Γ3 = Γ4 = −ε2γ. We seek
equations of motion valid to O(ε2). We begin by expanding the variables describing the
wave packet as

xp = xp0 + cg0t+ ε2xp2, yp = 0, (7.1)

kp = kp0, lp = 0. (7.2)

If there are no second order corrections to the wavenumbers initially, and if the momen-
tum is conserved, then the second order wavenumbers must remain zero for all time.
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The governing second-order equation for the horizontal motion of the wave packet is

ẋp2 = −
1

4π

∑

i

γi
sinh yi0

cosχi0 − cosh yi0
. (7.3)

Expanding hyperbolic functions, we find that

ẋp2 =
γ

π
+O(ε), (7.4)

where γ ≡ γ1. Eqn (7.4) implies a correction to the wave packet speed, due to the velocity
induced by the vortex street, which has the magnitude of the mean velocity in the plane
of symmetry of the vortex street (Lamb 1932, §156). Expanding

ẏp2 =
1

4π

∑

i

sinχi0

cosχi0 − cosh yi0
= 0 +O(ε), (7.5)

we find that there is no correction to the vertical speed of the wave packet.
We now solve for the motion of the point vortices. It will be a combination of the

motion induced by the wave packet (as calculated in §6) and the uniform self advection
of the vortex street. Lamb (1932, §156) finds that the self advection of the vortex street
leads to a uniform translation of the vortices with speed

ε2
γ

2π
coth b = ε2

γ

2π
+O(ε3). (7.6)

Then, from (6.27), we obtain the second order behavior of the vortices as

z2i =

(

γ

2π
+

µ2

cg0

)

t−
µ

cg0

(

e−2iχi0 − 1
)

+
µ2

c2g0
(e−iχi0 − 1), (7.7)

where, from our initial conditions χ10 = χ30 = −π/2− cg0t and χ20 = χ40 = π/2− cg0t.
Note the presence of two mean flows. One is induced by the wave packet; the other
represents the self advection of the vortex street. These two competing mean flows are
now shown to have implications for the stability of the vortex street.

7.1. Linear stability analysis

Now we perturb our system to examine its linear stability. We expand the vortex
locations as

zi = zi0 + εzi1 + ε2zi2 + δzδi, (7.8)

xp = xp0 + ε2xp2 + δxpδ, yp = δypδ, kp = kp0 + ε2δkpδ, lp = ε2δlpδ, (7.9)

where δ is the amplitude of the perturbations. The goal is to expand the equations of
motion to O(ε2δ). Starting with the motion of the wave packet, and using the results
found in the previous subsection, we find that at O(δ)

ẋpδ = cgxδ, (7.10)

ẏpδ = cgyδ, (7.11)

where (cgxδ, cgyδ) are the O(δ) expansions of the group velocity. The wavenumbers evolve
according to

k̇pδ = l̇pδ = 0. (7.12)

If our initial conditions are such that these perturbation wavenumbers vanish, they will
vanish for all time. This implies that (xpδ, ypδ) are constants which we take to be zero.
The nontrivial part of the analysis comes from the evolution of the vortices. We need
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Um and Ud to O(ε2δ). At this order, the vortex induced flow is the same as it would be
in the absence of the wave packet, hence, from Lamb (1932), we have the O(ε2δ) result

Um(z1) = −i
γ

8π
(−zδ1 + zδ2), (7.13)

Um(z2) = i
γ

8π
(−zδ1 + zδ2). (7.14)

At this order Um(z1) and Um(z2) only depend on vortex 1 and 2, hence we omit Um(z3)
and Um(z4) for clarity of presentation. That is, we only need to consider the evolution
of vortices 1 and 2, or equivalently vortices 3 and 4.
The O(δ) contributions to Ud(z1,2) are found by substituting the expansion given by

(7.8) into (6.19) so that

Ud(zi) = µεδe−2iχi0z∗δi(ie
iχi0 + ε

(

4i + eiχi0z∗i1)
)

. (7.15)

To solve this system of equations, we must also expand the perturbations in ε, so that

zδi = zδi0 + εzδi1 + ε2zδi2. (7.16)

We assume the time dependence of the order zero terms goes like eΛt, where Λ = ε2λ
(which may be inferred from the classical stability analysis, which implies that the growth
rates are proportional to the strength of the vortices, see Lamb 1932). Additionally, we
assume that the first order terms have fast oscillations, so that their time derivatives
have the same order as the original term. We need not solve explicitly for the second
order terms to conduct the stability analysis.
The restrictions on the first order terms are found to imply

zδ11 = i
µ

2cg0
z∗δ10(e

iθ − 1), (7.17)

and

zδ21 = −i
µ

2cg0
z∗δ20(e

iθ − 1). (7.18)

We now have sufficient information to solve for the stability of the vortex street config-
uration, which will be dictated by the evolution of {zδ10, zδ20}. Substituting the lower
order expansions into Ud and Um, we find that the dynamics of {zδ10, zδ20} are given
by the phase averaged equations of motion.
The evolution equations are given by

żδ10 = ε2
(

−
iν

2
(z∗δ10 − z∗δ20) +

iσ

2
(zδ10 − z∗δ10)

)

, (7.19)

żδ20 = ε2
(

iν

2
(z∗δ10 − z∗δ20) +

iσ

2
(zδ20 − z∗δ20)

)

, (7.20)

where

σ =
µ2

2cg0
; ν =

γ

4π
. (7.21)

Define zδ10 = αeε
2λt, zδ20 = βeε

2λt. Then, (7.19-7.20), together with their complex
conjugates, imply the following eigenvalue problem









σ − 2iλ 0 −ν − σ ν
0 σ − 2iλ ν −ν − σ

ν + σ −ν −σ − 2iλ 0
−ν ν + σ 0 −σ − 2iλ

















α
β
α∗

β∗









= 0 (7.22)
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The eigenvalues λ are found to be

λ2 = ν(ν + σ). (7.23)

In the limit that σ = 0, we recover the result of Lamb (1932, §156) that the symmetric
vortex street is linearly unstable. It follows from (7.23) that the system is stable when

ν(ν + σ) < 0. (7.24)

We note that ν can be positive or negative depending on the sign of γ, so that the
inequality may hold only if the sign of ν and σ are different. Physically, the stability
depends on the sign of the induced motion of the vortices. If the drift induced by the
wave packets is larger than the self advection of the vortices, and ν < 0, the system
remains linearly stable.

7.2. Long-time behavior

In the previous subsection, we analyzed the linear stability of the vortex street to
perturbations. However, as was shown by Domm (1956), even a linearly stable vortex
street might be nonlinearly unstable. This may be examined analytically, but the algebra
becomes considerably involved, so we instead perform a numerical investigation. We
integrate our equations of motion using a fourth order Runge-Kutta scheme, ensuring
that the Hamiltonian and momentum are conserved. We also increase the number of
adjacent periodic extensions until convergence is found (here we take our total domain
to be of length 5001×2π). We take ε = 1/4, k0 = 1,Ap = 1,Γ = ε2, and we integrate the
system for 3×104 seconds. This is shown in the left panel of figure 9, where it is seen that
the vortex street remains stable for long times in this configuration. In the absence of the
wave packet (Ap = 0), shown on the right panel of figure 9, the system is unstable, and
the vortex street eventually dissolves, analogous to the behaviour found for two vortex
pairs (Love 1893; Tophøj & Aref 2013).

8. Conclusion

It has long been recognized in the oceanographic community that surface waves
may freely exchange momentum and energy with underlying currents. The dynamics
are governed by wave action conservation (Longuet-Higgins & Stewart 1962; Whitham
1965), while the evolution of the phase obeys the equations of geometrical optics. These
equations are valid for small amplitude inviscid waves that are slowly varying. Despite
the maturity of this theory (Phillips 1966), there are still many fundamental questions
regarding wave - current interaction, including a need to better understand their two
way coupling (McWilliams et al. 2004). This is thrown in to particularly stark relief by
numerical models of climate, which are beginning to resolve the submesoscale (on the
order of 1-10km), where these interactions may be especially pronounced (McWilliams
2016; Romero et al. 2017). At even smaller scales, wave breaking in deep-water occurs for
waves with finite crest length, which implies that at the free surface the breaking induced
flow is characterized by a dipole structure (Peregrine 1999; Pizzo & Melville 2013). The
interaction of this flow with the wave field is thought to be significant for establishing
Langmuir circulations (Leibovich 1983), a crucial process for mixing the upper ocean.
However, these classical theories do not take into account finite bandwidth effects, nor
do they account for the two way coupling between the wave and current fields.
Recently, there have been efforts to better describe two-way coupling effects (e.g.

Phillips 2002; McWilliams et al. 2004; Suzuki 2019). Although these theories provide
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Figure 9: Left: Stability of periodic (in the x-direction) vortex street, with initial
conditions depicted in figure 8. The wave packet motion is shown in blue, while the
vortices are shown in black (Γi < 0) and red (Γi > 0). The left panel shows that the
vortex street is stable over this long time integration. The right panel shows the same
initial configuration of the vortices with no wave packet, and we see the system is unstable,
with vortices propagating far away from their initial locations.

crucial insight, they are complicated and often obscure simple underlying physical con-
straints. Here, we have provided a simplified framework to examine wave-current in-
teraction by assuming that the wave packets are compact, and that the currents are
a collection of point vortices. Since this simplified system is derived from a variational
principle, conservation laws arise naturally from the symmetries of the Lagrangian.
The central assumption made in this study is that the Doppler-shifted dispersion

relationship serves as a faithful starting point to model wave - current interaction. That
is, no additional terms are needed in the dispersion relationship to account for the vortical
nature of the currents (see, for example, Stewart & Joy (1974) to see how vertical shear
may modulate the dispersion relationship). Additionally, we assume that the currents
(in the form of point vortices) and the wave packets are compact and widely spaced. A
further simplifying but unnecessary assumption is that the wave packets do not interact
with each other.
We have examined several solutions for the case of one wave packet and one vortex.

These include stable bound orbits and unstable configurations. The wave packet and
vortex may capture one another. We have also examined situations in which the wave
packet and vortex collapse, occupying the same location at the same time. When collapse
occurs, our theory breaks down. We also considered blow-up solutions, in which the
modulus of the wavenumber grows without bound. In reality this growth would be
arrested by wave breaking.
After examining a solution with two point vortices and one wave packet, we considered

the motion induced by a wave packet on a weak point vortex in a horizontally periodic
domain. It was shown that a net drift is induced by the wave packet, which may have
possible implications for the advection of jetsam, flotsam and pollution at the ocean
surface. This drift also has implications for the stability of a vortex street in the presence
of a wave packet. Our analysis shows that the wave packet may stabilize the vortex street.
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Numerical calculations confirm that this system is stable for long times, suggesting that
this phenomenon might be observable in nature.
This work motivates several future studies. In particular, the addition of the generation

of waves by wind, wave packet - wave packet interaction, and wave breaking, which
creates a pair of oppositely signed vortices, would make this a more realistic description
of the upper ocean.

Declaration of Interests: The authors report no conflicts of interest.

Appendix A. Justification of Whitam’s Lagrangian

This Appendix offers a derivation of (2.1) following Whitham’s averaged-Lagrangian
method. Our starting point is the linear approximation to the Lagrangian of Miles
(1977)—see also Luke (1967) and Zakharov (1968)—namely

L[φ, η] =

∫

dt

∫

dx (φηt −H [φ, η]) , ( 1)

where

H [φ, η] =
1

2
gη2 +

∫ 0

−∞

dz
1

2

(

φ2x + φ2z
)

. ( 2)

Here φ is the velocity potential and η is the surface elevation. The integral in ( 1) is over
the sea surface z = 0, and, for simplicity of notation, we ignore the y-direction. Variations
δφ, δη yield the familiar linear equations and boundary conditions. A solution is

η(x, t) = A cos(kx− ωt), φ(x, z, t) =
Aω

k
ekz sin(kx− ωt), ( 3)

where A and k are constants, and ω2 = gk. Following Whitham, we substitute

η(x, t) = A(x, t) cos(θ(x, t)), φ(x, z, t) =
A(x, t)θt

θx
eθxz sin(θ(x, t)) ( 4)

back into ( 1) and ( 2), obtaining

L[A, θ] =

∫∫

dtdx
ω2A2

k
sin2 θ −

∫

dt H [A, θ]

=
1

2

∫∫

dtdx
ω2A2

k
−
∫

dt H [A, θ] ( 5)

and

H [A, θ] =

∫

dx A2

(

1

2
g cos2 θ +

1

4

ω2

k
cos2 θ +

1

4

ω2

k
sin2 θ

)

=
1

4

∫

dx A2

(

g +
ω2

k

)

, ( 6)

where now ω = −θt and k = θx. In the final step of ( 5) and ( 6), we average over the
fast dependence of θ(x, t). Combining results, we have

L[A, θ] =
1

4

∫∫

dtdx

(

ω2

k
− g

)

A2 =
1

2

∫∫

dtdx

(

ω −
gk

ω

)

A, ( 7)

where, by ( 6),

E =
1

2
gA2 =

1

2

ω2

k
A2 ( 8)
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is the wave energy per unit area, and A = E/ω is the action. Independent variations of A
and θ are equivalent to independent variations of A and θ, and either choice of variation
yields the dispersion relation and the action conservation equation for surface waves. The
Lagrangian

L[A, θ] =

∫∫

dtdx
(

ω −
√

gk
)

A ( 9)

yields the same two equations and is equivalent to (2.1).

Appendix B. Stream function generated by a single wave packet.

Let the wave packet be located at x = 0. For r ≡ |x| - |x′|,

ln |x− x′| ≈ ln r −
x · x′

r2
( 10)

and (2.35) becomes

ψw(x) ≈
ln r

2π

∫∫

dx′ ρ(x)−
1

2π

x

r2
·
∫∫

dx′ x′ρ(x). ( 11)

The first term in ( 11) vanishes, because A = 0 at the boundary of the wave packet. In
the second term,

∫∫

dx xρ(x) =

∫∫

dx x (Axlp −Aykp) = Ap(−lp, kp) ( 12)

after integrations by parts, where

Ap =

∫∫

dxA. ( 13)

Appendix C. Elimination of ψ from the Lagrangian

In this Appendix we justify the step of using the equations obtained by varying a
particular field ψ(x, t) to eliminate that same field from a Lagrangian that depends
on several fields. We show that variations of the modified Lagrangian yield the correct
equations for the remaining fields.
First we consider the related problem of finding the stationary points—maxima,

minima or inflection points—of an ordinary function of two variables. Let the function
be f(φ,ψ). The stationary points are found by solving the set

∂

∂φ
f(φ,ψ) = f1(φ,ψ) = 0 ( 14)

and
∂

∂ψ
f(φ,ψ) = f2(φ,ψ) = 0 ( 15)

where f1 denotes the derivative of f with respect to its first argument, and f2 denotes
the derivative of f with respect to its second argument. Suppose that ( 15) can be solved
explicitly for ψ in the form

ψ = g(φ) ( 16)

Then, substituting ( 16) into ( 14) we obtain a single equation for φ, namely

f1(φ, g(φ)) = 0 ( 17)
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Our contention is that ( 17) is equivalent to

∂

∂φ
f(φ, g(φ)) = 0 ( 18)

Clearly ( 18) is equivalent to

f1(φ, g(φ)) + f2(φ, g(φ))g
′(φ) = 0 ( 19)

and the fact that ( 16) solves ( 15) means that f2(φ, g(φ)) = 0. Thus ( 18) is indeed
equivalent to ( 14).
To see that this proves our contention about the Lagrangian, replace the integral over

space and time by a sum over gridded values, and replace the derivatives of the field
variables by finite differences. Then the Lagrangian becomes an ordinary function of
many variables, namely, the gridded values of the fields. We again regard this function
as f(φ,ψ) where now ψ stands for a vector whose components are all the gridded values
of ψ, and φ stands for a vector whose components are all the gridded values of φ. If
there are N spacetime gridpoints, then ( 14) and ( 15) each represent N equations, but
the essence of the proof is the same as that given above. It is easy to invent examples
that show that the use of ( 16) to eliminate some but not all of the ψ-terms in f(φ,ψ)
leads to erroneous results. The results given here border on the trivial, but the strategy
of completely eliminating a field using the equations that result from the variations of
that same field is important, because it seems to be one of the few legitimate methods
of using the results of a variational principle to simplify the variational principle itself.
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