Geostrophic Turbulence.
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1. — Introduction.

Highly nonlinear, quasi-random motion in rapidly rotating, stably stratified
fluid is called « geostrophic turbulence». The subject has relevance to large-
scale flow in the Earth’s oceans and atmosphere. The theory of geostrophic
turbulence bridges the distinet fields of geophywsical fluid dynamics and statis-
tical turbulence theory. The present lectures offer a self-contained but brisk
introduction to both of these fields.

The quasi-geostrophic equations (sect. 2) form the basis for the theory.
These equations approximate the general equations of fAluid motion in the-
limit of small Rossby number. The Rosshy number may be defined as the
ratio of the Earth’s rotation period (a day) to a characteristic time scale of
the flow. The operative equation expresses the conservation of a scalar quantity
called potential vorticity following fluid particles.

The quasi-geostrophic potential-vorticity equation generalizes the vorticity
equation governing two-dimensional Navier-Stokes turbulence (sect. 3). The-
latter subject has aroused intense theoretical interest, in part for its geo-
physical relevance, but more perhaps for the opportunity it affords to test.
deductive theories of homogeneous turbulence against relatively high-resolution
numerical experiments. Numerical simulations of three-dimengional turbulence:
are severely limited in spatial resolution by the computing capacity of even
the most powerful modern machines.

The vast differences between two- and three-dimensional Navier-Stokes.
turbulence set the tone for our subject. The differences arise because vortex
stretching, which is the primary mechanism of energy transfer from large to.
small scales of motion in three dimensions, is absent in two-dimensional flow.
In two dimensions the simultaneous conservation of energy and vorticity
actually implies a transfer of energy from the small to the large scales of
motion. Simple arguments based upon energy and potential-vorticity conser-
vation expose analogous distinctive properties of the quagsi-geostrophic equa-
tions (sect. 4).
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The complexity of turbulence invites statistical analysis. Classical statistical
mechanics predicts the ideal states of ¢ absolute equilibriwm » towards which
nonlinearities acting alone would drive the flow (sect. 5). These states are
strictly nonrealizable, but they indicate the qualitative role of nonlinear inter-
actions in realistic, nonequilibrium flows. The quasi-geostrophic equilibrium
states are unusual and instructive. For example, equilibrium nonequatorial
fiow is nearly depth-invariant at the largest scales of motion. Nonegquilibrinum
(closure) theory is more complicated (sect. 6), but has proved useful in con-
junction with direct computer simulations of the equations of motion. Beta-
plane turbulence (sect. 7) is a case in point.

This is not a comprehensive review paper. Rather, topics were selected
and ordered to illustrate the important ideas in logical sequence. The material
in sect. 5 on «the equatorial funneling effect» is new.

2. — The quasi-geostropic equations.

We employ the quasi-geostrophic equations for a system comprised of two
immiscible fluid layers with glightly different uniform densities (fig. 1). The
upper surface at z= n(z,y,t) is free and the lower rigid boundary lies at
¢ =—D -+ d(z,y), where D =D,+ Dy, D;=h; hJz,y,1) is the vertical
thickness of the 4-th fluid layer, and the overbar denotes horizontal average
over the flow domain. The horizontal boundaries are rigid vertical walls or
absent altogether.
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Fig. 1. — The geometry of the two-layer fluid.

Let (L, U, L/U) be the scale for the (horizontal variability, horizontal
velocity, time). If either

\

2.1) (DIL)p<1 or  R(D/L)*<1,
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where R, == Uff, L is the « Rossby number », then the motion is hydrostatic,
the horizontal velocity is depth-invariant within each layer, and the governing
-equations are the «shallow water » equations:

ou, —gVn, i=1,
(2.2) 5 e Vet fhxu= { — gV 4 g' Vhy P2,
and
(2.3) V-u‘+%}§»"=0-

Here u; = (1, v;) is the horizontal and w, the vertical velocity of the i-th
layer, the (2, y, 2) axis points (east, north, up), ¢ is gravity, ¢ roduced gravity,
and the Coriolis parameter :

(2.4) f=f-+8y,
‘where

fo=28Rsing,, p=22cosqyrs,

L2 =2x day, ®o 18 a reference latitude, and rg is the radius of Warth. We
agsume 7 =0 and |n|< h,. Then the vertical boundary conditions are

wy=0 at 2==0,
2.8) w:'—=-—(%%+u,‘\7h1) at z == —h,
and
Wy = Uy Vd at g=—D-d.

Taking the vertical component of the curl (£-Vx ) of (2.2) and using (2.3)
Yields the vorticity equations

9 )
(2.6) (5i+ V) et n=tetn 2,
where
\ __ov, B,
@0 =% %

iy the relative vorticity. Integrate (2.6) through each layer and use (2.5).
The result is

0
(2.8) | (a—t“}“uf‘v)%:o )
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where
(2.9) 4= (0s + NIk

is the potential vorticity. In general, (2.8) is a single equation in the three
dependent variables u;, v; and k;. However, under the additional scaling
assumptions of o rapid, slowly varying rotation rate,

(2.10) Ryl and pLify <1,

(2.8) roduces to an equation in a single unlknown, and potential-vorticity con-
sorvation determines the full dynamies. The most convineing derivation is
an expansion in powers of the Rossby nuniber (see[1], p. 386). Wo shall be
lIess formal. If (2.10) hold, then tha horizontal momentum balance is geo-
strophice, that is, between the pressure gradiont and Corvielis terms in (2.2).
Thus

{2.11) uim/ﬁx\?wi,

where

(2.12) Y= guffy

and

(2.13) Pa= git/fo— g /fy .

Then

(2.14) o: Vi,

(2.16) hy &~ Dy - folyn — wafy’

and

(2.16) by 0 Dy - folype — ) g’ —

Substitution of (2,12)-(2.16) cloges (2.8). Bub

(2.17) lo:il/fo = O(Ry)
and
(2.18) 1By llfe = OBL/fo)

which are both small parameters. If, in addition, we assume
(2.19) Di — /D, 1,

3 - Rendiconti 8.I.FF, - LXXX
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then
D;,—h,
(2.20) ot [1+4 + 004 D]
0 ‘L

and (2.8) reduces to the form used throughout these lectures:
(2.21) 7 T =0, JU4B=g -,
‘where
6 =V 4 oy — 1) + 1
(2.22) G = Vi + Po(ps— o) + f - b2y 9)
P,=filgyD, and b=f,d/D,.

The assumption of two immiscible fluid layers separated by a sharp change
in density is appropriate for much of the ocean. However, (2.21), (2.22) ave
closely analogous to the corresponding equation for a continuously stratified
fluid, wie.

oq
a

_ v 2oy
9=V ‘”az(maz)“’

+Jp,q)=0,
(2.23)

where A4"(2) i the buoyancy (or Viisild) frequency. In particular (2.21), (2.22)
are vertical-finite-difference analogs of (2.23). (See[1], p. 396.) Thus (2.21),
(2.22) govern atmospheric motion ag well. The rigid-lid condition (2.5a)
becomes a crude model of the tropopause. More surprising is the fact that
two vertical degrees of freedom appear adequate to resolve low-Rossby-numbes
motions in both ocean and atmosphere. An explanation will be offered in

sect. 4. The parameters F, in (2.22) may be specified in terms of the depth
ratio

(2.24) 4= D,/D,=F,/F,

and the internal deformation radius

(2.25) kgt = (F, + F,)

(units of length). Typical mid-latitude values are A = 1/7, k7' =50 km for

the ocean and 4 =1, k7' = 500 km for the atmosphere. In these lectures we
assume 4 =1 (for algebraic simplicity) corresponding to a linear mean density
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gradient. Then

(2.26) P =T, =12 .

In simply conmected geometry, the appropriate horizontal boundary condi-
tions are g, = 0. If islands are present, more general boundary conditions
are required, but these are of no interest heve.

In addition to potential vorticity, (2.21) conserves the total energy (pro-
portional to)

(2.27) Vopu Vg + Vg Vg - Teg(p— )22

The terms in (2.27) represent the kinetic energy in the top layer, the kinetie
enorgy in the bottom layer and the « available potential energy ». The latter
vanishes when the interface is flat (cf. eqs. (2.15), (2.16)), which is the state
of minimum potential energy. Currents with horizontal length scale L and
order U shear across the interface have a ratio of available potential to kinetic
energy of order L*k}, which can be very large. Such large-scale baroclinie
currents exist and can boe stable because of the rotation. Conversion from
potential to kinetic energy is much less efficient in rotating than in nonrotating
flow and takes the form. of a « baroclinic instability » that prefers the length
scale k' Much of the special flavor of geophysical fluid dynamics derives
from these facts. Linear stability theory offers a quantitative description in
the small-amplitude regime, but more general arguments based on integral
conservation properties alone lead qualitatively to the same results. The
conservation arguments are valuable because they extend to realistic, non-
linear flow.

3. — Two-dimensional turbulence.

The vorticity equation for a single layer of uniformly rotating (f = const)
Newtonian fluid over a flat bottom (d = 0) is

9

(3.1) = +J(v, ) =2V,
where

(3.2) o= Vip.

Two-dimensional turbulence governed by (3.1) is the prototype for geostrophic
turbulence. Its distinctive property is a tendency for smaller eddics to feed
their energy into the larger scales of motion [2,3]. To isolate the role of non-
linear interactions specialize (3.1) to inviseid flow (v = 0). The inviseid equa-
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tions conserve energy

8.3) Vy-Vyp = {é”(k, 1) dk,
[
and. « enstrophy »
(3.4) o° :flc“ E, )k ,
0

where &(k,t) is the energy in wave number k (summed over all directions)
at time ¢. Suppose &(k, 0) is concentrated at %, (fig. 24)). If the energy sub-
sequently spreads out to other wave numbers, then simultancous conservation
of the zeroth and second moments of &(k) implies that more energy moves
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Fig. 2. - A .trio of simple arguments illustrate the transfer of energy from small to
large scales in two-dimensional flow.
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toward wave numbers less than & than tovard higher wave numbers. Precigely,

L]

1 (A/d2) | (Te— ky)2 &k, t) Ak

d
(3.5) — k= o - ’
s oy o)
b
where
(3.6) Ty = 168 (b, 1) B / [&) an
L1 0

is a wave number that characterizes the onergy-containing scales of motion.
The right side of (3.5) is noegative if the disporsion of &(k) is increasing. By
similar reasoning onstrophy moves chiefly to higher wave numbers, In three-
dimensional turbulence, enstrophy is not conserved, and energy moves to high
wave numbors,

The Fourier-space argument gives 1.0 hint at the mechanies of theso transfors,
but consider the following: If » = 0, then isolines of vorticity are also material
lines, that is, always connect tho same fluid particles. Consider two such
neighboring lines of constant vorticity (fig. 2B)). If, as expocted, these ma-
terial lines lengthen on the average in time, then mass conservation requires
their average separation to docrease, because tho area botween tho lines is
constant in two-dimensional flow. Thus the mean square vorticity gradient,

(3.7) Vo Vo = f Tes £k, 1) e,
0

increases, moving enstrophy into higher wave numbers.

Again, consider an initially isofropic small-scale eddy in a large-geale
uniform shear (fig. 2¢)). At a later time the eddy has been strained into the
shape at the right, the Reynolds momentum flux wiw! is up the mean mo-
mentum gradient, and energy moves from the eddy into the mean flow.
Crudely, if % is the wave number assoeiated with the eddy and J is its energy,
then, by vorticity conservation on particles, k*E remains constant. But k
increases as tho eddy is stretched, and, therefore, © must decrease. The
energy which is lost by the eddy must, by conservation of total energy, show
up as an increase in the energy of the straining field.

Now consider the flow which develops when friction is restored and an
external source injects energy continuously into the fluid at an intermediate
wave number k. By all of the above arguments, we expect energy to move
leftward (i.e. toward lower wave numbers) and enstrophy rightward from %,
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Let & be the injection rate of energy (por unit mass per unit time) and 7y the
corresponding enstrophy injection rate. Let g(k) and n(k) Dbe the rates of
nonlinear energy and onstrophy transfer past % (positive toward higher k).
The viscosity in (3.1) is scale-selective, Lot k, be the highest wave number
below which this viscosity is negligible. Then, if we assume quasi-steady sta-
tigtics in the «inertial range » on k, < k< k,, the nonlinear transfer of onergy
and enstrophy must be independent of k, i.e.

(3.8) e(k) = e(k,) and (k) = n(k,) .
Also
(3.9) K 8(ky) < n(ly)

by definition of k,. Thus, if » — 0 (ky, — o), then e(k,) — 0, sinco n{fey)
cannot exceed =, .

Inertial-range theory [4, 5] hypothesizes that, as ky/l, ~> oo, the inertial
range behaves like a « cascade » in which direct enstrophy transfer occurs only
between eddies of comparable size. (Such transfer is also said to be «local »
In wave number.) Towards the middle of the inertial range, which is many
cascade steps removed from both foreing and viscosity, the energy spectrum

depends plausibly only on % and n — w(k). It then follows from dimensional
requirements that

(8.10) E(k) = On2ls g3, by << k<ky ,

where € is a universal dimensionless constant. Similay arguments suggest
the existence of an energy inertial range on k<, in which n(k) is zero,
¢ =¢(k) is (a negative) congtant,

(3.11) E(k) = C'lg[*/a Jg-ss, k<t ,

and ¢’ i3 another universal constant. Numerical experiments generally sup-
port these ranges [6], but the theoretica] question of existence of «true » iner-
tial ranges is hoth extremely thorny and probably irrelevant to the Barth's
geophysical fluids, We regard (3.10) and (3.11) as conceptually useful ideal-
izations,

There is a cloge correspondence between the k-t engtrophy spectrum in
the enstrophy-cascading inertial range and Batchelor’s [7] k-1 spectrum. for
the variance of a Passively advected scalar quantity., The passive scalar con-
centration obeys the same equation (3.1) as g, but without (3.2). Batchelor’s
argument assumes only that the scales of motion contributing to the r.m.s.
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strain rate ¢ are largo compared to the length scales of scalar variability under
consideration, and that the straining is persistent in time. If

(3.12) W= guy

locally in the vieinity of # =y = 0, and thoe scalar field is a loeal sinusoid
with wave number %, then, after a sufficient time,

(3.13) %—? = gk

following particles. Let /(%) be the spectrum of sealar variance. The variance
in & wave number band with initial width Ak centered on wave number %
must, by conservation of variance, obey

(8.14) All) Ale = A(yk)-(y Ak) ,

whore y == exp[ct]. The right side of (3.14) is the spectrum. times the band
width after time ¢. If the statistics ave steady, then (3.14) holds for arbi-
trary y. Thus

(3.15) A(k) oc T,

Note that this argument does not require a localness-in-wave-number hypoth-
osis (rather the opposite), so that Batechelor’s theory might help explain
why a k=2 energy spectrum ig often observed when the conditions for a true
inertial range seem. lacking.

Harrxas studied two-dimensional turbulence in a specially designed plexi-
glass tank on the rotating table at the Scripps Institution of Oceanography
(plato 1), The tank radius and depth are comparable, so that the flow is two-
dimengional only because the Rossby number is small. In a series of experi-
ments, a vertical eylinder moving slowly relative to the tank releaged a column
of dye in its wake. The dye streak (viewed from above) further demonstrates
the dramatically different behavior of two- and three-dimensional turbulence.
In nonrotating flow (plate 2), the dye sheet rapidly increases its surface area,
molecular diffusion ig very efficient, and the dye concentration quickly becomes
uniform. over a wide area. In rotating flow (plate 3), the fluid motion is columnar,
the dye shoet increases its surface area much more glowly, and the dye remains
concentrated in a small volume of fluid. Because of the vastly different dilution
rates, Halikay’ flow visualization technique actually works better in rotating
than in nonrotating flow. This oxperiment is relevant to diffusion from a
point gource in the geophysical fluids.
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Plate 1. - Cylindrical tank on the rotating table, The vertical dye-filled column is
moved by an arm attached to the axig of the tank. The tank diameter is 126 em.
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4. ~ Two-layer rotating turbulence.

The quasi-geostrophic ecquations (#.21), (2.22) for two-layer flow inelude
tho effeets of density stratification, bottom topography and spatially variable
rotation rate. The latler, particularly, has interesting consequences in the
prosence of horizontal boundaries. Thoe remainder of these lectures will entertain
el of these features in isolation. The present section treats horizontally
unbounded stratifod flow over o flat bottom [8-10], The governing equations
are (2.21), (2.22) with f constant, Iy == Dy, and b= (O,

The discussion i simplest if wo exchange 4y, g, for the vertieal-mode :
variables a

(+.1) g (g -l ) /2
el
(4.2 T (g — )

whore ¢ will be callod the bavotropic streamfunction and 7 the baroclinie.
Noto that the upper thermoeline displacement is proportional to

(4.8) Dy — Iy == —2fy ]y’

and that v is tempoeraturelike in the sense that 73> 0 implies a lower-than-
avernge vortieally averagod density, The (inviseid) dynamies becomo

{4.4) —%V“w A I (p, Vi) - J(r, Vi) =0
and
a & ] 2 2 2 a't
(4.5) 5 Ve 4 J(p, V27) - J(v, Vi) =2 3 + I, )| .

Lot the streamfuncetions be expanded in Fourier series:
(4.0) (4, T) == 2, (s Ty) 0xD [Pk x]
k

and define

2

(L7 U(k) == k*|y,|* and B(k) = (B 4 )|,

Weo call U(k) the barotropic energy in wave number k and JE(k) the total
baroclinic energy. The latter consists of baroclinie kinetic energy and available
potential onergy in the ratio k*/kj.
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The quadratic integral invariants of the motion are the total energy and
the potential enstrophy ¢¥ of each layer. It is convenient to roplace the latter
two by their sum and difference, which are, of course, also conserved. Then
conservation of the energy and sum enstrophy ave equivalent to

d o AT
(4.8) T % [U(k) + E(k)] = 0
and
(4.9) c%},:‘ [k U(k) +(k*+ B2 B(k)] =0 .

Conservation of the difference potential enstrophy,
(4.10) DEE B et
k

puts a restriction on energy transfer between layers, Howover, our arguments
require only (4.8) and (4.9). The analogy with two-dimensional turbulence is
already apparent. The energies enter (4.8), (4.9) precisely as in two-dimensional
turbulence, except that the baroclinic encrgy E(k) has an offective AQuUATo
wave number of &' 4-k}. By analogy with two-dimensional turbulence, wo
expect the total energy to move toward lower effective wave numbers. Thus
(4.8) and (4.9) imply that nonlinear interactions barotropize the flow.

The quadratic integral invariants of the motion are significant boceause
they are conserved by individual wave number triads. Let k, p, ¢ be any
three horizontal wave numbers that sum vectorially to zero:

(4.11) E+p+qg=0.

The dynamics permits two types of triad in the two-layer fluid. One type
eonsisty of three barotropic components and the other consists of one barotropic
and two baroclinic components. Energy transfer in the two types of triad is
constrained by the detailed forms of (4.8) and (4.9), namely

412) [ Uk) +U(p) +Ulg) =0,
kU(k) + p2U(p) + ¢*Ug) =0,
and.
is) { U(k) + H(p) 4 B(q) =0,
KU + (p2 + k2) B(p) + (¢* + ) B(q) =0,
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where the tendencies in (4.12), (4.13) are those resulting from. interactions
with other members in the trind. (Phus U(k) is different in (4.12) and (4.13).)

The constraints (4.12) on the UUU {riad are the same as in two-dimensional
turbulence. In (4.12) suppose k-Ip<q. The constraints (4.12) prevent energy
transfer between different seales of motion in both extremely local (kv p)
and extremely nonlocal (k< p) triads. In three-dimensional turbulence only
(4.12a) holds and any shape triad can transfer energy between scales.

For URE triads the deformation radius is a eritical length scale. When
Ey py ¢ 20 Iy the constraints (4.13) are the same ag (4.12), so that enorgy transfer
in the UL triads is the samoe as in two-dimensional turbulence. This agrees
with the physical picture of two-layer flow on scales smaller than the defor-
mation radius ag being ossentially uncoupled singlo layers which gee the inter-
faco as a rigid boundary. However, the situation when %, p, ¢ < &, is similar
to three-dimensional turbulence. In this case energy transfer is between the
two baroclinic components only and may be either local (p = 0(g)) or non-
local (p-<q). Because of %, in (4.13D), the onstrophy constraint poses no
inhibition againgt rightward transfer of baroelinic energy on wave numbers
less than k. If k= 0(k,) in (4.18), then encrgy can bo transferred to the
barotropic component U(k) as woll.

An extension of the above ideas yields the direction of wave number energy
transfer in forced-equilibrium flow. Consider a hypothetical two-layer fuid
with w minimum wave number k, < &, near which stirring and/or heating forces
act, « Dissipation » is also present, hut, for simplicity, it is limited to only
two regions of the speetrum: near k,, where it models the loss of large-seale
energy to (Ekman-type) frictional boundary layers, and near %, >k, where
it paramecterizes the transition from. two- to three-dimensional flow on scales
too small to feel the Tarth’s rotation, In the general inertial region k, <k < kj
neither foreing nor dissipation is significant. The fluid is assumed to reach a
statistically steady state in which the transfer of total energy and sum enstrophy
past k is the same for every & on k<< k< k. On scales smaller than the
deformation radiug, the dynamics are those of uncoupled single layers in which
the general invariants reduce to ordinary kinetic energy and enstrophy. Since
the only energy source is at k,, we expect k=2 enstrophy inertial ranges on
ky<k<k,. X ky/k, is Iarge, then the energy reaching %, is negligible, This
moeang that the large seales must adjust to a state in which the net ecnergy
production at k, is zero, that is

(4.14) Uk, + B(ky),, =0,

where the subseripts ne denote tendencies due to forcing and dissipation.
Because of (4.14) the potential-enstrophy production is proportional to

(4.15) K E(k,),, -
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The potential-enstrophy production equals the transfer rate of potential en-
strophy across k, << k< ky, and it must be positive since there is only an
enstrophy sink at &, . Thus (4.15) is positive, U(ko)‘m must be negative by (4.14),
and internal interactions must transfer large-scale energy from baroclinie to
barotropic mode. However, by the reasoning given above, large-scale baro-
clinic components can transfer encrgy only between themselves. The transfer
from baroclinic to barotropic mode must, therefore, occur on k,< & <<k, as
a rightward transfer of baroclinic energy in UEE triads and an equal and
opposite leftward transfer of bavotropic energy in UUU triads. The con-
version of baroclinic to barotropic energy can occur near k,. Figure 3 sum-
marizes the energy flow in wave number space. Potential-enstrophy transfer,
which may be deduced by similar arguments, is indicated by dashed arrows.
Figure 3 differs from the wave number energy flow diagrams conventionally
drawn in meteorology in that both the upper horizontal and vertical arrows
represent & conversion of potential to kinetic energy.

wind, or solar
net Input
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barotropic energy Y
Ko Kn [N

net loss to boundary
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Tig. 3. — The wave number energy flow diagram for a two-layer system. The solid
arrows represent energy flow and the dashed arrows sum potential-enstrophy flow.

The generalization of these ideas to multilayer or continuously stratified
flow is straightforward. The multilayer system. conserves

(4.16) f [By(k) -+ By (k) + Bok) + ...]dk
and
(4.17) f[lc*Eo(7o) - (K2 - B By(k) + (B - 13) By(k) + ... ]dk,

where H,(k) is the energy in horizontal wave number k and vertical mode #,
k' is the »-th internal deformation radius, and k, =k,. In a uniformly
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stratified ocean,

(4.18) Iey = nzf/A"D .

We expect net energy transfer into modes (k, 2) with lower total wave numbers.
E* %% . But k, increases with n. Observations do indeed suggest that the
barotropic (n = 0) and first baroclinic (n = 1) modes hold most of the energy
in nonequatorial geostrophie flow [11],

Now consider what happens as k, varies with latitude through its depend-
ence on f. As the equator is approached, the k, vanish, removing the inhi-
bition against high vertical-mode numbers. Since the total wave number
VI + & of each mode (k, n) is smaller than its value in mid-latitudes, the
total enorgy at the equator will be greater than in mid-latitude. Thus the
samo logic that predicts negative eddy viscosity in two dimensions suggoests.
that a uniformly excited ocean would transfer energy equatorward and into
high vertical wave numbers. Recent observations of the eguatorial ocean.
reveal that the equator does confain a surprising amount of low-frequency
energy in high vertical wave numbers [12]. These large-amplitude equatorial
motions have previously been explained as a forced response to local winds [13].
The above arguments suggest, however, that energy at higher Iatitudes could
be the soarce for equatorial motion. However, the guasi-geostrophic approx-
imation itsell breaks down at the equator, so that these ideas require some
generalization. We shall return to this « equatorial funneling effect » in the-
following section.

5. — Entropy and absolute equilibrium.

Classical stutistical mechanics can apply to the macroscopic motions of
ideal fluids and other continuous flelds[2,14, 15]. The macroscopic analog:
of thermal equilibrium is physically nonrealizable, but it anticipates the role
played by nonlinear interactions in realistic monequilibrium flow. We com-
mence with a swift review of the basies, adopting the information theory view-
point [16]. This approach emphasizes the guessing nature of the whole subject.

Consider a general mechanical system whose precise state is specified by
the value of N real numbers [, ¥, ..., ¥v] and whose dynamics is governed.
by N first-order ordinary differential equations of the form

(6.1) Y= Gi(Y1, Yay -y Yn) -

This form encompasses our fluid equations if N = co. For example, let the
y, be defined by

(5.2) v= 3 k) gx),

i
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where ¢,(x) is a normalized eigenfunction satisfying
(5.3) V'-!qyi .IM 7"? Qi == () s (/? e} )

and @; =0 on the boundary of the fluid, and &} is the associated eigenvalue,
Then (3.1) transforms to

(5.4) Jo= 2 L — v,
where "

{5.5) A= Toyfkik) pod (1, 7))
and

{5.6) v, =k} .

The N-dimensional space spanned by the g, is ealled phase space, and cach
point in phase space represents a possible state of the system as a whole.
Every realization of (5.4) traces out a trajectory in phase space,

Let the joint-probability distribution of the #; in an ensemble of reali-
zations of (5.4) be

(8.7) Py Yoy ooy Yy 1)

Since the moving phase points that represent individual realizations of (D.4)
can neither be created nor destroyed,

opP 3 .
(5.8) -+ 25—7] @ P)=0,

where 7, is given by (5.4). Equation (5.8) is analagous to the continuity
equation in fluid mechanics with P (the density of phase points) replacing the
ordinary flunid density, g, (the i-dirvection velocity of phase points) replacing
the fluid velocity, and the summation over N phase-space dimensions replacing
the summation over three physical-space dimensions. If (5.4) is such that

(5.9) 229ty =0,

T

‘then (5.8) reduces to

’\I) ’\1)
5.10 o Pl

which is the analog of the continuity equation for an incompressible fluid.
Hamiltonian systems satisfy (5.9) automatically provided that the ¥; arc chosen
to be generalized co-ordinates and momenta. For the fluid §ystems considered
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here, (5.9) holds because Ay vanigshes whenever two of its indices are equal.
(The fluid equations can, in fact, be derived from Hamilton’s principle (see,
for example [17], p. 3). However, a close connection betweon the corresponding
canonical equations (which involve functional derivatives) and (5.9) has not
been demonstrated. In practice, it seems easiest tio verify (5.9) directly as
needed.)

Tiguation (5.10) implies that the volume occupiod by a collection of phase
particles always containing the same particles remains constant in time. This
contraint, while important, is not confining. Consider, for example, a two-
dimensional phase space in which P is initially constant within a compact
region and zero outside (fig. 4). In a wide class of physical systems, which are

time t, time 1,

Tig. 4. — Mixing in a two-dimensional phase space.

said to «mix », the initially compaet region « spreads out» by developing fila-
mentous arms which gradually «fill up » the phase space. Now P ig typically
sought for computing the statical average of phage functions F(yy, Yay ..oy
vy Wy 1), viR.

(5.11) ) =ff...f1!’1’1:[dy,.

Suppose that P does indeed evolve from. time t, to ¢, as shown in fig. 4. In
practice, it ig usually impossible to caleulate P(,) accurately from (5.10)for
use in (5.11). However, it is obvious that, for any F that depends smoothly
on its arguments, (I"> at #, can be calculated to good accuracy by replacing
P(t,) with a density function that is constant over the circular region of fig. 4.
We, therefore, distinguish between P({), the probability density obtained
from (5.10) by solution of (5.4) for & entire ensemble of systems, and P(t),
the «phenomenological» or practical densitiy, which can be considered a smooth-

4 - Rendiconti S.I.F, « LXXX
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ed version of P(f). Statistical mechanics seeks Pty without first (rlecsljltbt~
ing P(t). The mixing property of the dynamies motivates the concept of P(t),
but it also impoges the consistency requirement that P(t) ought to be progres-
sively more«spread out» at successively later times. This is a qualitative state-
ment of the second law.

Entropy is a functional of P which measures the spread of P, that is, by
how much P differs from a delta-function in phase space. If the y, can asgume
only digcrete values y,;, then the entropy takes the form

(5.12) §=—33P,nP,

([18], p. 9). If the y, assume continuous values, then (5.12) generalizes to
(5.13) Sz—ff...fﬁlnpuﬂndyi,

where .# is an undetermined measure of the phase space. Becauso of (5.9),
however, .# must be a constant. To see this, specialize to the inviscid case
and imagine an extremely clever observer for whom integration of (b.4), (5.10)
presents no difficulty. For such an observer, P = P at all times, and the entropy
should not increase. However, (5.10) implies that

(5.14) ff...fPlnP-u//Hdu

can remain constant only if .# is a constant.

Practical knowledge about a mixing system based upon partial (i.e. statistical)
specification of its initial state always decreases in time, and the entropy,
therefore, increases. However, information about quantities which are constants
of the motion is never degraded in time. Absolute equilibrium. ig defined to
be the state in which only certain integral constants of the motion are known.
(Only linear and quadratic invariants are easily handled. However, these seem
to be the most important.) Unfortunately, if » « 0, then (6.4) has no congtants
of the motion. Viscous ensembles cannot, therefore, approach absolute equilib-
rium. However, if the «mixing time » is short compared to the viscous time
for at least a subset of phase co-ordinates, then qualitative features of absolute
equilibrium. can appear in realistic, dissipative flows.

We begin by calculating absolute equilibrium for two-dimensional turbulence.
The constants of the motion are the energy

(5.15) E=3E=3y
i 1
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and the censtrophy

(5.16) Q=730 == >k,
i i

To discover P, maximize S subject to the requirements

(6.17) aA>=1, (B =8, (D = L,

where ¥, and £, are known initial values. The reswlt is

(5.18) P =oxp[A—all —yQ],

where 1, «, ¥ are constants determined from (5.17). Directly from (5.18)
(5.19) Y> = Yo -+ v

which shows that the quantity «F; +- ¢, is equipartitioned among the modes.
Equation (5.19) implies an energy spectrum proportional to

(5.20) kf(e + yk?) ,

which corresponds to infinite total onergy and enstrophy, because the integral
of (5.20) diverges at large wave number. In three dimensions onergy alono
is equipartitioned, the equilibrinm speectrum goes like k2, and the divergence
is even more catastrophic. These equilibrium states are, therefore, realizable
only if the system is artificially truncated to finite N, as if, for example, all
modes with wave numbers larger than some arbitrarily chosen cut-off &, were
excluded from the dynamics. The truncated system gtill satisfies (5.9). A
thought experiment in which %_ is raised by finite incroments, with the system
allowed to re-equilibrate at each new value of k,, then suggests that nonlinear
interactions in three-dimensional turbulence would, acting by themselves, pass
all of the energy out to infinite wave number. This conclusion seems rather
tame, but similarly spirited interpretations of the formally divergent equilib-
rium states corresponding to more complicated dynamics yield useful and
sometimes surprising predictions [19].

Consider, for example, the flow of a single layer of rotating fluid over
topography. The dynamics are

3 . .
(5.21) 5%+J(1p, 7)=0,
‘where

(5.22) ¢ = Ve + h(w, y)
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and

(5.23) b= f(y) + b(z, y) .

The notation is the same as in sect. 2. In terms of the coefficients ¥y, defined
by (5.2), the quadratic invariants arve the energy,

(8.24) BE=3y,
i

and the pofential enstrophy (less a constant),

(5.25) QR=3Iy—2>kh,.
i i

Again the equilibrium state is multivariate Gaussian, but now there is a non-
zero mean flow,

(5.26) Cysy = pleihf(a + yi)
which is locked to the topography. The energy in mode i,

(5.27) U = $lo 4yl 4 (y,>?,

i,

is enhanced by the energy in the averago contour current. The transform
of (5.26),

(5.28) (5— Vﬁ) yy=1,

4

is useful if A(z, y) has coherent form. Note that () is an exact steady solution
to (5.21), (5.22).

. If the nonlinear terms in (5.21) are suppressed, then the enstrophy invariant
reduces to hV:p, the mean flow vanishes if the latter is initially zero, and
absolute equilibrium has energy equipartition. The topography scatters enorgy
into higher wave numbers, but thoe linear dynamics prevents vortex stretching
on slopes from aceumulating vorticity of preferred sign on topographic peaks
and troughs. ‘

Numerical simulation of (5.21) with random topography and constant f
confirm all of these qualitative predictions [20]. Figure 6 shows the enstrophy
spectrum. after 2.5 turn-over times in three independent experimonts with
identical, sharply peaked initial spectra. The three experiments correspond
to a) no topography (long dashes), b) topography and noulinearity of equal
strength (solid line) and ¢) no nonlinearity (short dashes). The topography
spectrum is hatched. The induced mean flow in cage b) shows up as a spectral
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Fig. 5. — Enstrophy spectra of two-dimensional turbulence over topography after 2.5
turn-overs beginning from a narrow spectral peak. The three experiments correspond
to no topography (long dashes, Ey/d = co), topography and nonlinearity of equal stroength
(solid, Ry/d~ 1) and no nonlinearity (short dashes, E,/d ~0). The topograply spec-
trum is hatched. Courtesy of G. Hornoway.

bump at the topography wave numbers and as a visually apparent correlation
between the topography and instantaneous streamfunetion (fig. 6). Topographic
seattering increases the enstrophy at high wave numbers in both cases b) and o),
but more so0 in ¢), where the enstrophy transfer to high wave numbers is not
linked to energy transfer to low wave numbers by an enstrophy invariant.
An interesting special case of (5.21), (5.22) is beta-plane flow in a rectangular
flat-bottomed ocean, 0 < # < L, 0 < y < L. The mean-flow equation is

o
(5.29) (;—~V2) > = By — o)
with {y> =0 on boundaries. The constants «, ¢ are determined from

(5.30) By=(By =} 3 (o + y&) + Vp> Vi
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and,

(5.31) 0-<D)—.52ﬁﬂa-#ykﬂ*—k(V P> 2f (Vg ,

where H, and 2, ave the initial energy and enstrophy. (The constant y, can
be considered a Lagrange multiplier corresponding to a third possible integral
invariant, the average potential vorticity g.) IL.et the initial state be a random
field concentrated at wave number %, = O(L~!) and uncorrelated with lati-
tude. Then ) = ki, and the initial Rossby number ix small if L, <2 f2 LA

b)

i;;tguﬂ . N
O;- = @~ v
@;M %) Do

TFig. 6. — The topography (a)), initial streamfunction (b)) and the streamfunction
after four turn-overs (c)). Courtesy of G. HorLoway.

The equilibrium mean flow exceeds the initial bounds on energy or enstrophy
unless

(5.32) o<£EP<Lh
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Thus consisbent solutions to (5.29) have a westward interior flow with speed SI°
and boundary layoers of thickness I and characteristic speed fII. The total
mean kinetie energy is shared equally by the boundary layers and the interior
flow, but the boundary layers constitute the sole contribution of tho mean
flow to the enstrophy. This moean flow iy the same as that derived by Foro-
Norr [21] in another context, The transiont energy is spread uniformly through-
out the basin and the transient spectrum has a (broad) peak at wave number 1%
Thus tho eddies have the same scale as the boundary layer thickness and
cannot grow larger without breaking the constraints. Note that the seale 1
is unrelated to the deformation radius. This small-seale energy originates from
Rossby-wave vefleetion at the western boundary [22].

Multilayer equilibria show how enorgy gets spread among the vertical modes.
Tor example, absolute equilibrium. for the two-layer system with equal layer
dopths and the same initial energy spectrum in each layer has barotropic energy

(5.33) Uk) = 1/(a -+ yk?)

and bavoclinic enorgy

(5.34) Bk) = 1[oc + p(k* 4 k2] .
Thus
oo ) = UV,

Tn all cases of interest, the equilibvium. U(k) increases with decreasing k.
Thus the equilibrium flow is nearly barotropic on scales larger than the dotor-
mation radius. Paradoxically, then, depth-invariant flow constitues the « most
disordered » state for large-scale ocean currents. Strong barotropic flows are
in fact obgserved. Rminms [23] describes a six-month mooring record in which
a fransient 20 em/s current remained nearly depth-invariant through 4000 m
depth over the entire observing period. The site was in the energetic Gulf
Stream oxtension region, over a smooth abyssal plain. The goneralization
of (5.33), {(5.34) to a N-layer system. is

(5.36) Bo(k) = 1/[oc + p(k* + &3)] ,

where %, is given by (4.18). The higher vertical modes contain decreasing
amounts of energy in equilibriunm.

We next consider absolute cquilibria for flows with variable Véisila fre-
guency and Coriolis parameter. These equilibria suggest how far the previously
postulated « equatorial funneling effect » would proceed. Because A47(z) and
fly) are spatially inhomogeneous, it is now more natural to formulate the
problem in physical space than in transform space. Tirst, consider continuous
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stratification. The dynamics are

(5.37) %+JW&F=M
where

(5.38) q= Zp]+ 1)
and

(5.39) gﬂW=Ww+%k%%?

The boundary conditions are

(6.40) dp/dz = 0 at 2=0,—D,

corresponding to zero vertical velocity. It is temporarily convenient to expand
v and ¢ in the eigenmodes ¢,(x, y, 2) of the operator . These obey

(5.41) Llp]+ X, =0
and
(5.42) Q(%: a,t, z=0,-——-—.D,

where ¢ is the index for the eigenmodes and A2 is the corresponding eigen-
value. Then, if

(5.43) p=2ap; and f=>fp,
1 3

it follows from (5.39) that

(5.44) g=2 (—Aa:+1f)g:.

Since 27 is self-adjoint, the @, can have the usual properties of orthonormality

(5.45) [[[axedarp:x) = 8,
and completeness
(5.486) > @i x) pi(x,) = O(x — x,) .

Motion in the phase space spanned by the a, is nondivergent. The quadratic
integral invariants are the energy

(547) F= zl?af
i
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and the enstrophy at level 2

(5.48) Q@) =33 (Blaa,— 2 a.f,) f f dz dy gu(x) p,(x) - constants .
i 4

The equilibrivin probability distribution is

(8.49) B o oxp [—~ ol »——fy(z) (z) dz] ,

where « and yp(z) are Lagrange multipliers chosen such that CED and (Q2(2)>
match their initial values. Since (5.49) is multivariate Gaussian, the equilibrivm
flow statistics are completely specified by the first and second moments {ay
and {a;a;y, or by the equivalent physical-space moments <{p(x)> and
<p(x)wp(xo)>. It is possible to get differential equations governing the latter
directly from manipulations on (5.49). To derive these equations, note that.
(6.49) may be written in a standard form

(5.50) P o exp [-%gjg,ati,a;a;],
where

(5.51) Aiy = 20228, + 22 A2 B,,
(6.52) By = [ [v(2) pi) p(e)
and

(6.63) a; = a; — <a;> .

Then

(5.54) a> =233 A5 2 Byuf,
and jl

(8.55) {aya = A7,

where 4~ is the inverse of the matrix 4. Now (5.55) implies that

(6:56) 33| Aiaia> giw)pilm)| = 3 g pulx) = 6(x — x,)

i i

by (5.46). Substitution of (5.51) into the left-hand side of (5.56) and gtraight-
forward manipulations using (5.41)-(5.52) reduce (5.56) to

(5.57) 2. L[y L — ] R(x, %) = d(x — #,),
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where

{B.0x) L, ) - ' (26) ' (20))

and 2 operades on x. Similarly, the transform of (5.54) is
{h.a) (Y& —a)lyd +yf=0,

which is amlogous to (h.2R). Bquations (5.57), (5.59) completely determine
the equilibrium state, For example, the equilibrium transient kinetic energy
nl ox s

{5i.00) [V -V, B(x, )]

ey 7

2 %,
r}) and VO“(E&;’-@}/})'

The development leading up to (6.67), (56.59) can also be carried out directly
in physical spuee, without reference to the eigenmodes of . Then, instead
of the infinite-dimensional integrations, one has to deal with functional deriv-
wlives, Tlere the cigenmodes ave purely a deviee for avoiding functional methods.
An alternade deviee (which is less efficient in this case) would be to write the
averiges as funetional integrals over physieal space, replace derivatives by
finite differences, perform the intogrations required to get the moments of y(x)
andd then pass back from differences to differentials. The same equations result.
Qualitative properties of the equilibrium state are obvious from (5.57).
he operator 2 has the form of a diffusion operator with vertical-diffusion
voclliciont. f247, Thus B(x, a,) corresponds to the equilibrium « temperature »
distribution with o delta-function source at x,. The vertical boundaries are
noncondueting.  (The analogy is inexact because the diffusion operator acts
Lwico, Also p(2) has genoral s-dependence.) We anticipate maximum transient
anergy in regions of strong stratification and small Coriolis parameter.

To investigate the funneling effect in its simplest form, consider N-layer
quasi-geostrophic flow in an equatorial (f = By) channel between walls at
Y e ol Lot the layoer depths and density jumps all be equal. Nondimen-
#ionalize the horizontal distance by L, time by L/U (where U is a characteristic
veloeity), vertical distance by the fluid depth D, and the streamfunction by UL.
Tho nondimensional dynamics are

whers

(5.61)

fl\

2 d
{5.62) % F I g) + A =0,

cw
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where
(5.63) qi= Zy],
(5.64) L) =V, + Toy* 3 Tiw;
1
Fy=DNfLtg'D,  f*=pIYU,
and
T—1 -1 ]
1 —92 1 0
—2
(T:]= bo== . ] ......... )
0 1 —2
i +1 —1 ]
Let the boundary conditions be
(5.65) (@, ) = p(® - 27, ¥)
and
{b.66) P (a;, :}:g -+ g/) =—9 (.’v, + g-— y) .
The analog of (5.57) is
(567) 23{')’! zi[Rmn(x; xo)] - “Rin(x7 xn)] = ‘S(x - xo) 61’1; .

Buppose y; is independent of § (corresponding to an approximately unifornm.
vertical initial energy distribution). It is then convenient to introduce the
vertical-mode variables 1, defined by

N1

(5.68) Y= 2 Pul@, y) @ald),

#=0

where

(5.69)  p.6) = 2= 404 [(i-—l) fl\fr] , i=1,..,N,s=0,.., N—1.
We find that

(5.70) @y Y) Do (o, Y0)> = Rol@, §;5 @0y 90) s,

obeys

~

.71) 2 Pi—afy) Be= ;—ymw—wo)a(y—yo) ,
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whera
(5.72) P, = V2 — Ty
and

— -1
(5.73) g, == [2 VT, sin ;f%]

R.

SALMON

is the (nondimensional) s-th deformation radiug, In this geometry ZEP and

r@

v

/

r”Q@ Yé%

,_J S—

Tig. 7. — The vertical-mode streamfunctions 4, in the equatorial channel (0 << 2g,

—n/2 <y < x/2) for the barotropic mode s =0 (bottom), s=1, s=
a) weeks == 0,

The equator lies along the axis of the channel.
¢) weeks = 23.421,

3 and s =15 (top).
) weeks = 3.340,
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For the barotropic mode (s == 0), the equilibrium energy is independent of
latitude and maximum at wave number «/y. For the baroclinic modes (s # 0),
goefy is small and

(5.75) (Vi — e-tys)2 B, = %5(x-xo)
has solutions of the form

5 & X
010 r=go (33
where
(8.77) (Ve — )2 B(x, xy) = 0(x — x,)

(independent of &,). Thus the equatorial peak in the kinetic energy in vertical
mode ¢ has latitudinal width &, or dimensionally

g H\ . sw
(5.78) ('—ﬁ—‘r) S1n }é-‘ﬁ,

where H is the layer thickness. This region narrows with increasing s, but:
(5.60) and (5.76) imply that the equilibrium kinetic energy at y = 0 is inde-
pendent, of s in this case. Thus equatorial confinement is sharpest for the
higher vertical modes. For |y|>>sj (5.75) is solved approximately by treating
¥* as a constant on the left-hand side. To the same order of approximation
&, is independent of latitude.

Tigures 7-9 show the evolution of a six-layer inviscid quasi-geostrophic
oeean in the equatorial beta-plane channel. The initial streamfunction is ran-
dom and the kinetic energy is invariant with depth and equally divided between
the barotropic and first baroclinic modes. The channel is 6000 by 3000 km:
and the energy density is 1.2-10% erg-cm. After only 23 weeks, high vertical-
mode kinetic energy is strongly trapped at the equator and £, is nearly inde-
pendent of latitude.

6. - Closure.

Real turbulence is often far from the state of absolute equilibrium consid-
ered in the previous section. Unfortunately, no fully satistactory nonequilibrinm
theory exists. Straightforward averaging of the equations of motion yields an
unclosed hierarchy of statistical moment equations in which the evolution
equation for the n-th moment always contains the (n-+-1)-th moment. This is
the « closure problem » All known methods for closing the moment equations
involve additional physical assumptions not deducible from the equations of
motion.
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This section discusses relatively simple second-moment single-time closures
which are representative of the closures used in application-oriented studies.
These closures (and others of the « direct interaction » group) can bo « derived »
by a variety of perturbationlike procedures, none of which protends to math-
ematical rigor. The derivations lead to moment oquations which always
resemble Boltzmann’s collision equation for a gas of hard spheres. This structure
is virbually guaranteed, if the moment equations are to satisfy certain consistoncy
properties. However, the best justification for these closures is the usually
good agreement between their predictions and direct computer simulations of
the equations of motion [24].

A traditional goal of closure theory is to extend the spatial resolution (or
Reynolds number) beyond that attainable in direct numerical simulations of
the equations of motion. However, quasi-geostrophic dynamics obtain over
dess than three wave number octaves in the ocean and two in tho atmosphere.
This resolution is within the reach of modern computers. Still, closure is o
useful tool for interpreting the statistics obtained by averaging the dirveet
simulations. For example, closure theory can compute the effects of one statistio
on another in a way that permits analytical simplifications after the dominant
terms are identified, Unfortunately, the complexity of tho theory can incroase
Prohibitively if statistical symmetries (such as spatial homogeneity) are relaxed.
Let the equations of motion again be

(6.1) Ji= 2 Ay, 4 — vy,
I‘Il

where

‘(‘6'2) Am == Aiu )

with no loss in generality. The coupling coefficients also satisfy the Liouville
property

(6.3) 'Aiﬁ - 0 = Aii/ .

For simplicity we assume

(6.4) Wo=0 and )y, =Y,1)4,,

which are equivalent to horizontal statistical homogeneity.

The eddy-damped Markovian (EDM) model [25, 26] closes the moment
hierarchy hy discarding fourth cumulants. A « cumuwlant » is the difference
between a moment and the value it would have if all the variables were
Gaussian. Direct averaging of (6.1) yields

(6.8) (5 + 2%) Y,=2 %Am@myo
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and

d
(6.6) T + v o0 ) Yy =

== z {Ainzn<?/1ny1lyfyl> "l" Aimn<ym? nv?/i?/l> "[‘ Ahnn(ym?/nylyi)} .

My

If 4, B, ¢, D are Gaussian variables, then
(6.7) {ABCD} = (ABY {CD) -} {LACY{BD> 4 LADY(BCY .

Apply this factorization to the right-hand side of (6.6), solve (6.6) for (y,y,; ¥,
and substitute the rosult into (6.5). Then (6.5) becomes

3

1 . . ,
(6.8) ({E + 2 ,-) Y, = % ds exp [~ (t— 8)(v; + v, 4 0)]*

A Y (8) Y ols) + 845 d,0 Yo(8) Y i(8)},

Unfortunately, numerical solutions of (6.8) lead to unphysical large negative
energy (Y,< 0) when the Reynolds number is large. To see why, identify
subseript ¢ with wave nunber k, and imagine that the initial spectrum has
a sharp peak (fig. 10). Soon after ¢ = 0, the right-hand side of (6.8) is large
and negative for wave numbers ingide the peak and large and positive for
thoso outside. At even later times, the magnitude of the term in curly brackets
in (6.8) decreases, but the fluid still remembers the initial large tendencies,
because the time integration in (6.8) runs all the way back to ¢ == 0. The
limit of large Reynolds number corresponds to v, v,, v, =0 in (6.8), and in
this limit the values of the term in curly brackets in the distant past (s<i)
are weighted equally with those of the near past (s=a1). Consequently the
large initial tendencies arve never forgotten and the plunging spectral poak
shoots right through the zero level. The cause of this «sling shot» effect is
oasily seen to. be the inefficiency of memory cut-off in the model as the v, — 0,

enérgy

RN
i

Tig. 10. ~ Failure of quasi-normal closure (6.8).

A
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In real turbulence, past states are forgotten not beecause of the viscosity but
a8 & result of nonlinear scrambling of the fluid by itself. At large Roynolds
numbers the memory time should become independent of the viscosity, in
contradiction with (6.8). These remarks suggest that (6.8) can be repairved by
replacing v;, v;, v;, on the right-hand side only, with augmented viscosities
Biy Wy o which measure the secrambling effect of the flow on itself. The u,
differ from the familiar « eddy viscosity » of Aluid mechanics in that they enter
(6.6) but not (6.5) and, therefore, do not directly augment the dissipation of
energy. Since the u, ought to be increasing functions of the Reynolds numbor,
at large Reynolds number it might become accurate to replace the term in
curly brackets of (6.8) (with the u; inserted) with its value at 8 == ¢ The
latter (Markovization) step eliminates nonsimultaneous covariances. The
regult is

d
(6.9) (’(ﬁ + 20, + 2’"/;')171- = Z 0«'11{4(-‘4-;'11)2 X, Yl} )
j,l
‘where
66.10) Ny=—4 304, 4,,7, ’
. jil
d
(6.11) a“t0m= 1— (ﬂi‘i“ﬂj“‘ﬂl)oul
and
(6.12) 0:(0) =0,

corresponding to precisely Gaussian initial conditions.

Bquations (6.9)-(6.12) comprise the BEDM. Tt is easy to show that the
EDM does not allow ¥, < 0. Note that

1

(6.13) 0> ———
” Mt g+

a8 t— o0 .

The parameters 44 can be prescribed heuristically. For example,

. A s
(6.14) | = f K & (k, 1) dk

0

equates the memory time to the time required for larger-scale flow to strain
an eddy of size k-1,

The EDM has several desirable congistency properties. First, it automatically
conserves any quadratic invariant which is conserved by the exact dynamics.
Second, it predicts only realizable statistics. (Negative energies can never
appear.) Third, EDM is consistent with the gsecond law. Thig third property
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requires elaboration. From the point of view of EDM, the Y,(0) are given
initially and the closure prediets Y,(f) at all future times. Howoever, the
initial conditions correspond to many possible exact specifications of the Y
which together fill a finite volume in phase space like that of fig. 4. Since the
averages predieted by EDM are phenomcnologieal (no pretense is made of
actually solving the equations of motion), EDM must be consistent with the
principle of continuous increase in entropy. To caleulate the entropy at time ¢
corresponding to a knowledge of all the Y,(¢), maximize 8 subject to the nor-
malization requirement and

(6.15) G =Y, all 4.
The result is

(6.16) P = exp [l-«Zo&iyﬁ] ,

wherao ‘

(6.17) A=14>1n (/)

and 1

(6.18) o =1/2F,.

The entropy is thus

. 1 o 1
(6.19) s=—33[m(%) + il

and we must, therefore, require
a

(6.20) =>InY¥Y,»0,
dt 4

where the tendencies are those resulting from the nonlinear terms in the
closure. Note that absolute equilibrium may be deduced directly by maxi-
mizing the sum in (6.20) subject to total-energy and enstrophy conservation,

To see that EDM satisfles these consistency properties, note that (6.9),
(6.10) can also be obtained by the following formal procedure. Let v, =0
and expand the exact dynamics in a Taylor series about {==0;

(6.21)  yilt) = u(0) ¢ 3 A y,(0)5,(0) - 22 E 2. A1 Aunny5(0)Yn(0) 4(0) 4
R}

1,1 myn
Let the y,(0) be Gaussian. Then squaring and averaging (6.21) gives
(6.22)  Yi(t) = Yi(0) + 202 3 (4,,)2 Y4(0) ¥, (0) +
. ’,1
+ 4‘7:224‘1:'”4‘1:”1 Yz(o) Y{(O) + 0(“) *
jll
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Truncate (6.22) after O(2), dilferentinte with respect to time, and then restoro
all argumoents to t. After these alterations (6.22) reads

((' 23) Y‘(t) \“t{-L(A_m)ﬂ Yl(t) :Y:(i) -+ 84‘1“14‘11:'1 Yt(t) ‘ri(t')} ’
1

which becomes identieal with (6.9), (6.10) if the factor ¢ is replaced by the
triad decorvelation time 0,5 'l‘h(s conservation and realizability properties
Tiold for (6.23), because the samoe properties hold term by term for the Taylor
geries expansion of the exact dynamics. The generalization to (6.9), (6.10)
is ousy. (Swm thoe contributions of individual triads.) The inequality (6.20)
can be verified diveetly, but also as follows. The difference between the entropy
at time £ and tine zero s ‘

(6.24) S(t) — S(0) = —f[f’(‘z) In A1) — P(o) In P(o)]
(by definition),

(6.25) - j [Pty In Pty — P(0) In P(0)]
(because the initial distribution is Gaussian by assumption),

(6.26) S J [P(t) In L(t) — P(t) In P(1)]
(by (5.9)). Thus
(6.27) S(t) — $(0)>0

beeanse (1) is, by definition, the distribution that maximizes S(f). As t =0,
(6.23) becomes exact. Therefore, (6.23) must be consistent with dS(#)/di=>0
It is useful to realize that the EDM closure is exact for the model equablon

e d
(6.28) (§ +2n)r= WO S Outebet,

Hhi

where %, is given by (6.10), W(t) is a white-noise process with
(6.29) (WE)YW)) =200t —1'),

and y% iy a Gaussian field with the same covariance as ;. Converscly, if (6.28)
is proposed a priori as a stochastic model for (6.1), then the only choice for
the nonrandom damping coefficient =, that satisfies the consxstency propcrtms
is that given by (6.10).

The derivation of (6.23) by expansion in time is very similar to Hassel-
inanun’s orviginal derivation of his weak wave equations. The difference is,
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loosely speaking, that the leftover factor of ¢ in (6.23) is «used up» by the
requirement that the interactions boe vesonant. In fact, waves incorporate
eagily into EDM [27]. Suppose, for example, that (6.1) is generalized to

(6.30) i+ V=T, =3 Ay, ©; = const .
FR 3

If the steps leading to (6.9)-(6.12) are repeated, (6.9), (6.10) are unchunged',
but (6.13) becomes

Mk g+

31 0,5
(6 ) o >(/~¢:+/41+Mz)2‘l“ {0+ W, + w}*

a8 t - oco.

If weak turbulence corresponds to tho limit u -0, then
(6.32) - 0in > md(w; + w; + w,)

and EDM roduces to the weak wave equations (assuming the possibility of
tertiary resonant interactions). However, it may be unrealistic to eliminate
off-resonant interactions completely. Tor example, particular dispersion rela-
tions might allow no pathway to absolute equilibrium.

The above closures can be viewed as abridgments of Kraichnan’s [28]
direct interaction approximation (DIA). The independent variables in the DIA
are the nonsimultancous covariances {y.(t)y,(¢)> and an averaged Green’s
function which measures the response of cach mode to an infinitesimal exei-
tation in the presence of all the other modes. Loosely speaking, this response
function replaces the decorrelation time factors 6,,, above. The DIA is entively
self-contained ; there are no unspecified parameters or undetermined constants.
Unfortunately, however, the DIA demands integrations back over the lag
times and these greatly increase computing requirements. Additionally, tho
decorrelation time implied by the DTA response functions eonfuses the memory
time scale for true flow distortion with the advective time scale for sweeping
of small structures past a fixed point by larger eddies in the flow. This defect
is sometimes described by the statement that «the DIA is not invariant with
respect to random Galilean transformations ». Because of Galilean noninvariance,
the DIA erroneously predicts a k-2 inertial-range power law instead of the
k—%/s Kolmogorov range. ‘

The Markovian closures require many fewer computations and storages
than DIA and the freedom to specify the decorrelation times u;* offers a way
to ensure Galilean invariance. The test field model [29] separates the effects
of random displacements from true distortion by relating the decorrelation
time to the time required for an initially incompressible flow to develop a
compressible component; if pressure forces (and the constraint to conserve mass)
are suddenly switched off. For a sufficiently steep spectrum the test field
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prescription reduces to (6.14). Unfortunately, the test field model has no clear
generalization to more complicated dynamics. However, many results are
rather insensitive to the precise form of 0,;.

Closure applications relevant to geostrophic mubul(snou include studies
of the two-dimensional inertial ranges [30], eddy wviscosity [31], predicta-
;bility [32,33], the decay of anisotropy [34], two-dimensional turbulence on
the beta-plane [20, 27] and over random topography [35, 36], decaying slrat-
ified quasi-geostrophic turbulence[37] and forced two-layer turbulence [10, 38].
The next section considers beta-plane turbulence in some detail.

7. — Beta-plane turbulence.

Consider two-dimensional turbulence on the beta-plane, governed by

9 m — WV
Where
(7.2) o=Vip.

These equations differ from. (3.1) only in the presence of the linear beta term,
which gives rise to Rossby waves. The Rossby-wave properties of dispersion
and anisotropy make beta-plane turbulence an ideal testing ground for general
ideas about waves in turbulence. Let the flow be infinitely periodic, that is

(7.3) Y@, y) =@+ L, y) = plz,y + L)

for all # and y and some L,. Then the integral invariants (encrgy and engtrophy)
and absolute-equilibrium. states are the same as for two-dimensional tur-
bulence, and are independent of beta. The nonequilibrium. flow is, however,
drastically affected by the Rossby waves. At the scales of motion at which
the wave steepness (the ratio of particle to phase speeds) falls below unity, wave
dispersion inhibits nonlinear interactions and the flow favors zonal (east-wost)
currents. The supposedly isotropic final state is thus approached via phase-
space pathways which exhibit considerable anisotropy.
The Fourier transform of (7.1) is

d

(7.4) a3 Tion) vt 3 (Date— Gu20) O/ h pp0a =0,
dt phg=k

‘where

(7.5) g = — B, [Re,
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In the small-amplitude limit, solutions to (7.4) are superposed Rossby waves
with the dispersion relation (7.5). These waves all have westward phase
velocities and wave periods which decrease as the wavelength increases (for
fixed direction of propagation). For fixed frequency, nondimensionalize k
by fjw. Then (7.5) is a circle on the (&, k )-plane with center at (—%, 0) and
unit diameter. The group velocity is

v

1.6) (E)w 8w)=w3(2702—1 :l:\/l—kz).

ke’ Ok, B 2 ? [

Thus long waves (k< 2-V2) carry energy westward at a speed that approaches
w*/fk? as k — 0. Short waves move energy eastward at a much slower speed.
The region affected by an initially concentrated disturbance, therefore, lies
principally to the west. This property explaing why intense boundary cur-
rents like the Gulf Stream are found at western boundaries.

For motions of length scale L and characteristic velocity U, the size ratio
of the beta term to the nonlinear terms in (7.1) is fL*/U. RmNes{9, 22] pro-
posed that the wave number ks =+/AJU typically separates a « wave regime »
at k< kg from a « turbulence regime » at k> ks. In the ocean, k'~ 70 km.
Suppose that the energy is initially concentrated at wave number k, > k5.
By the reasoning of sect. 3, which holds whether beta is present or not, the
energy moves steadily into lower wave numbers. When the energy reaches kg,
however, Rossby waves begin to propagate freely, as the wave period becomes
gshorter than an eddy turn-over time. The transition is abrupt because the
Rossby-wave dispersion relation (7.5) and the « dispersion relation » for the
turbulence, @ = Uk, have opposite slopes. The analog of (6.8) for (7.4) is

[

an Lo 3 EXPE o oxn e (ug o s+ m— o))

ds pig=n K*p*q?
0

¢08 [(cwy + wp + w-p)(t—8)]-
{(?— ¢2)2 Up(s) Ug(s) — 2(g* — p*) (2 — p?) Uils) Up(8)} ,
where U, is the energy in wave number k and ;' is the time for the turbulence

to deform an eddy of size k2. In the wave regime, w > u and the oscillating
factor in (7.7) greatly reduces energy transfer unless

(7.8) W, + @, = g,
which is the condition for resonance. We thus expect energy transfer to lower

wave numbers to proceed much more slowly in the wave regime. Nondispersive
waves would satigfy (7.8) automatically.
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Markovization of (7.7) gives the analog of (6.9), namely

d. .. |k xp| (oo ‘
(7.9) 0 Up= p_%mk kngqaﬂkmpsa,me as (1.7)},
where
prt p - pg
Okpg= .

(7:10) 0 Gan T g F g+ (@0 F g T a]
Again,

(7.11) Oxpg — 70(0, + 0y + w_y)

in the limit of weak turbulence (u/w — 0). The resonance condition (7.8) can
be viewed as a selection rule on frequencies analogous to

for wave numbers. The two together are a formidable constraint on triads
that can transfer energy [39]. However, perfect resonance is too stringent a
requirement. Instead, (7.10) shows that, if (7.8) is satisfied to within O(u),
then the interaction is as good as resonant. In the turbulence regime (u > w)
the officiency of energy transfer decreases with increasing u, but in the wave
regime (u< w) the efficiency can inerease with y, because the turbulence allows
energy transter in slightly off-resonant triads.

The appearance of anisotropy at low wave numbers is also expected.
Congider a triad of wave vectors satisfying (7.12) with p>g¢>=%. We continue
to be interested in the case in which average energy transfer is into the lowest
wave number k. Let ¢ =k/p be small. Then

(1.13) - q=—p(1+ 0(e))
and
(7.14) wp+ g + w_p= _1730 (% + 0(6“)) .

The w,, o, terms are of minor importance for two reasons. First, they cancel
in sign. Second, the wave frequency is inversely proportional to wave number.
If % lies within the wave regime, then this reasoning suggest dominant transfer
into wave vectors k with k,/k, = O(s?). Weak wave theory predicts that only
the highest-frequency component is unstable to infinitesimal perturbations in
an igolated triad [40]. REINES [22] thus notes that zonal anisotropy can also
be anticipated as the necessary consequence of energy transfer to low wave
numbers and low frequencies.
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Numerical experimental [9, 20, 22, 27] confirm these qualitative predictions.
Tigure 11 shows the enstrophy gpectra after six turn-over times in three
independent experiments with zero (kg == 0), moderate {ks~s2) and strong
beta (kp~ 4). The common initial condition is a narrow spectral peak atb
k= 10. Zonal anisotropy is apparent in both the gtreamfunction and vorticity

. 100
ulk)
. 10—1
- 10-2
I 1072
1 10 Yo
k ky

Tig. 11, — Enstrophy spectra after six turn-overs of beta-plane turbulence with zero
(short dashes), moderate (= 12.5) (long dashes) and strong (=25) (solid) heta.
Courtesy of G. HoLLOWAY.

fields in the beta cases (fig. 12). HOLLOWAY [27] examines these experiments
using the clogure (7.9) with s, given by the test field model. He approximates
the modal enstrophy spectrum {g,0_x> With the truncated angular expansion

(7.15) 2k {gy 0y = Z(I6) (1 — L(k) cos 204) »
where g, is the angle between k and the k-axis. Positive R(k) corresponds

o zonal flow. Figure 18 shows R(k) for the experiment with moderate beta
along with closure estimates of R(k) for three values of the adjustable para-
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Tig. 12. — Streamfunction (a)) and vorticity (b)) fields after six turn.overs in the
experiments with zero (top) and strong (= 25) beta (bottom). Courtesy of G HoLLoOWAY.

meter in the test field model. Ag expected, zonal anisotropy is largest for
k << kg, but R(%) has a secondary maximum at large k. Closure theory traces
the high-wave-number anigsotropy to the indirect effect of straining of the
small-scale eddies by the large-scale zonal motion. The importance of this
phenomenon is anticipated by Herring’s [34] study of the decay of anisotropy
in two-dimensional turbulence.

An isolated energetic patch within a broad quiescent region of fluid offers
maximum, contrast to the initially narrow spectral peak. Numerical exXperi-
ments without beta confirm that both the patch diameter and dominant eddy
size increase until the patch holds too few eddies to maintain turbulence [9].
Noting that the westward group velocity of large Rossby waves is proportional
to the square of the wavelength, RHEINES [22] conjectures that a turbulent
Patch on the beta-plane would, after an initial period of possibly slow growth,
radiate energy quickly over a wide area. Turbulence would cease ag particle
gpeeds decreagse within the growing patch. Approximately the maxim holds:
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anisotropy R{k)

0 10 20 30 40 50 60

Fig. 13. — The simulated (heavy curve) and theoretical anisotropy spectrum R(k)
for beta-plane turbulence. The theorctical curves corresponds to three values of the
adjustable paramector in the test field model: 1) 2=0.6, 2) i==0.7, 3) i=10.
Courtesy of G. HornrLoway,

Waves move energy rapidly through physical space, but inhibit energy transfer
in wave number gpace. Turbulence the opposite.

The end state of beta-plane turbulence is controversial. (The question
may be well be irrelevant to the relatively highly damped geophysical fluids,
but not perhaps to the circulation on Jupiter [41].) The absolute-equilibrium
state is a «bost guess» by the criteria in sect. 5, but it could be misleading
if « mixing » in phase space ceages after the fluid enters the wave regime.
Runes [22] suggests steady zonal currents with alternating flow directions
and length scale k;‘ that would satisfy the linear-gtability criterion

f—u,, #0.

Rossby wave solitons are another, intriguing possibility,

8. — Comments.

Two themes pervade these lectures. The first is that weak, integral state-
‘ments of fundamental congervation principles can. anticipate distinctive flow
-characteristics. The idea succeeds because potential- enstrophy congervation
is a strong constraint on quasi- geostrophlc flow, and because higher-order
invariants (ultlma.tely, potential-vorticity conservation on particles) have ap-
parently spotty projections on the phase- space manifolds couespondmg to
fixed values of the energy. and enstrophy. :-

The gecond theme is the common tende.ncy for naﬂ,ura.l systems Lo seek %
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state of maximum disorder, This principle erept almost nunnoticed into the:
discussion of seet. 8 in tho suppositions that o narrow speetral peak would.
broaden, and that material lines and wave voetors lengthen on the average, It
attained the status of a mathematienl inequality (the second law) in sect. 5,
and in seet. 6 combined with the weak-conservation prineiple to form the basis
for closure.

Tho statistical-moment hievarchy was closed at the conside able price of
replacing the ensemble of vealizations of the exaet dynamics by an ensemble.
of realizations of a stochastic model equation which consorves squared vorticity
only in the spatial and ensemble average, but respocts the iden of confinuous.
mixing in phase space. The trade-off is betwoen resemblance to the true dynam-
ics and the possibility of getting simple closad equations for the statistics. Troni-
cally, these closures seom better suited to address the 1'(‘.1dtiV(zly broad issues.
that arvise in the rich quasi-geostrophic dynamics than 'mom esoteric questions.

Plate 4.,
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about pure Navier-Stokes turbulence, Howover, applications te still more
complicated, particularly inhomogencous situations will require even further
simplifications in the theory. The model viewpoint suggests & course: Rotain
the idea of a stochastic model, but relax even furtlier the imposed requirements.

The broad goal of the theory iy to deduce the major features of the observed
cireulation qualitatively bub exclusively from first physical principles. 1’1‘0gfess
toward this end has been exerueiatingly slow, consistently lagging the obser-
ations themselves. Modern observations show that the ocean is o perplexing
nmixture of order atidl’ apparent chaos. An infra-red photo of sea surfpce tem-
perature offers o striking illastration (plate 4). The ploto eovers an area
560 ki square centered on 29° N, 144° W in the Pacifie. The maximum tem-
perature contrast iy about 1.6 °C. The photo was obtained by M. VAN WOERT
of Scripps. It shows the subtropical front, a long semi-permanent boundary
botween cool (light-colored) novthern water and warm (dark) water to the
south. (The small,white spots are clouds.) The oxplanation for the front may
well lie within the realm of the linear quasi-laminar theories of basinseale
wind-driven circulation, but the photo shows how the frontal boundary is
broken up by turbulence. The large whorls have deformation seale.
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