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ABSTRACT

The mean ocean density field resembles the state of maximum entropy with given values for the upper
water mass, total energy and potential enstrophy. Numerical experiments confirm that the thermocline of
a freely evolving two-layer model spontaneously assumes the observed double-lobe shape.

1. Imtroduction

The large-scale density structure of the ocean has
not been adequately explained from first physical
_principles. This paper proposes an explanation for its
most salient characteristic: the double-lobed, equa-
torially symmetric shape of mean isopycnals in the
so-called “main thermocline,” the thin region of large
vertical density gradient that separates the lightest
surface waters from the denser waters that compose
most of the ocean volume. A century of oceano-
graphic observations has established that the main
thermocline has the shape shown schematically in
Fig. 1a, with a 400 m minimum in depth on the
equator and maxima of roughly 700 m at +30° lat-
itude. The thermocline intersects the ocean surface
at +50° latitude, and poleward of this intersection
the dense lower water contacts the atmosphere di-
rectly. Fig. 2 contains north-south density sections
based on 25 years of hydrographic data for the three
major oceans. These observations show that the two-
layer model is a considerable idealization,' but the
isopycnal shape described above is present in every
hemisphere of Fig. 2.

The present study addresses the dynamics of a fluid
system composed of two immiscible layers with dif-
ferent constant densities separated by a sharp bound-
ary, which represents the thermocline. The real ocean
has often been compared to such a fluid. My principal
conclusion concerns the behaviour of the two-layer
model in the absence of friction and external forcing:
I find that if a blob of low-density fluid is placed at
random on the surface of a higher density fluid in a
coordinate frame whose vertical rotation rate in-
creases in one direction, then the blob gradually as-
sumes a shape like one of those in Fig. 1, and that

! Note, however, that the contour interval in Fig. 2 varies con-
siderably. For a complete discussion of the observations shown,
refer to Lynn and Reid (1968).
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the shape is a “maximum likelihood configuration”
by the rules of equilibrium statistical mechanics. In
uniformly rotating coordinates, the equatorial mini-
mum in thermocline depth is always lacking. In non-
rotating coordinates, the blob spreads indefinitely.

While the complete theory relies on the machinery
of statistical mechanics, the equilibrium shape can be
understood heuristically as the state of most nearly
uniform average potential vorticity that total energy
conservation will allow. For simplicity, let the model
ocean be infinite in the x-direction so that statistical
averages are independent of x. If the motion is hy-
drostatic, then the potential vorticity

v du _
(5);—5;+By)h ! (1.1)

is conserved following the horizontal motions of the
fluid columns. Here (%, v) is the (east, north) velocity
in the blob, A the thermocline depth, and 8y models
the northward increase of planetary vorticity, with
8 a constant. This notation is standard, but it will be
explained more fully below. Now if the potential vor-
ticity mixes to a uniform average, and if the average
of the quotient can be approximated by the quotient
of averages, then

o)
~ =y T AV = Ouh), (1.2)
where O, is the constant value of average potential
vorticity. Finally, if the average motion is everywhere
geostrophic, and vanishingly small below the ther-
mocline, then

' dCh)
=487
(u 8y dy (1.3)
with g’ the “reduced gravity,” and (1.2) becomes
4 (gi ﬁ"l) -
2y \8y dy + By = Qo(h), (1.4)
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FiG. 1. The main thermocline, which separates warm water with
density p; from colder water with density p,, has the shape shown
schematically in (a). For explanation of (b) and (c), refer to the
text.

which is an ordinary differential equation for the av-
erage thermocline depth (/).

The object in this introductory section is not to
justify the assumptions leading up to (1.4), but to
examine their consequences. The general solution to
(1.4) is expansible in a power series about y = 0,
namely,

(hy = A + By* + ACy*/3 — (8%/88")y*
+ BCy’/15 + ACY%/72 + -+ -, (1.5)

where A and B are the two constants of integration
and C = QyB/g’. This solution is symmetric about
y = 0 only if @y = 0 in which case (1.5) reduces to
the simple quartic

Chy = hu[1 = (V* — yu?)?/8r4, (1.6)

where now A,, and y,,2 are the integration constants
and U

re = ghn)" .

e 62

The quartic solution (1.6) is single-lobed (Fig. 1b) if
Y2 < 0, double-lobed (Fig. 1a) with maximum depth
h,, at y = +y,, if ¥,,> > 0, and disconnected (Fig. 1¢)
if y,,2 > V8r.2. However, it is impossible to choose /,,

(1.7
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and y,.’ to fit the observations quoted in the first
paragraph of this paper. This is expected, because
(1.4) with Qy = 0 equates the magnitudes of the rel-
ative and planetary vorticity, whereas the observed
ratio of the former to the latter (the Rossby number)
is very small. This discrepancy does not by itself dis-
qualify the hypothesis of uniform average potential
vorticity, because the putative equilibrium shape
would be reached only after friction and external
forces have been turned off. A more serious difficulty
is that no choice of 4,, and y,* can simultaneously
give realistic values for the total mass and energy of
the blob. Then since the mass and energy are con-
stants of the motion, no realistic initial state can
evolve to the shape (1.6).

The impossibility of fitting realistic mass and en-
ergy with (1.6) is obvious without elaborate algebra.
According to (1.6), the latitudinal width of the blob
is of order of the equatorial deformation radius 7.,
which is only about 500 km for typical values of g/,
B and h,,. Thus the blob must be extremely deep to
accommodate a realistic mass, and the energy stored
in the steeply sloping thermocline of a narrow, rela-
tively deep blob is unrealistically large. (Of course the
ocean bottom puts an independent limit on the max-
imum depth of the blob.)

In this paper, I suggest that the observed main ther-
mocline shape is actually a compromise between the
tendency toward complete mixing of potential vor-
ticity and the constraints to conserve mass and en-
ergy. The energy conservation strongly resists com-
plete mixing of potential vorticity, but the mixing
proceeds far enough to produce a bimodal thermo-
cline shape. The result is a greatly “subdued” version
of (1.6) which retains the bimodality of the quartic
solution, but whose latitudinal width is far greater
than an equatorial deformation radius.

I support the foregoing interpretation with results
from two quite independent investigations. The first
is a calculation of the equilibrium thermocline shape
using the methods of statistical mechanics. In a suit-
able phase space for the system, I show that Liouville’s
theorem holds. Then the equilibrium thermocline
configuration is the average over the intersection of
phase space manifolds corresponding to fixed values
of selected constants of the motion. If the mass and
potential enstrophy? are the only constants of motion
considered, then the equilibrium state has a nearly
uniform potential vorticity and the average thermo-
cline shape is close to the quartic solution (1.6) with
h,, and y,,2 chosen to match the prescribed mass and
enstrophy. If, more realistically, the mass, potential
enstrophy and the total energy are used as constants
of the motion, then the equilibrium thermocline is
like that described in the preceding paragraph.

2 The space-average squared potential vorticity.
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The second investigation uses a finite-element nu-
merical model of the blob. The model dynamics are
entirely equivalent to the familiar *“shallow water”
equations of motion, but they are based upon the
appropriate form of Hamilton’s principle, and the
Rayleigh-Ritz procedure. The numerical experiments
confirm that a frecly evolving blob spontaneously
assumes the double-lobe shape, and that, in partic-
ular, wind forcing is unnecessary to explain the deep-
ening of the thermocline in mid-latitude.

This paper assumes no special knowledge of ocean-
ography or statistical mechanics. Section 2 defines the
two-fluid system and derives its conservation laws.
The derivation is nonstandard in that Hamilton’s
principle provides the dynamical equations, and the
conservation of potential vorticity is obtained from
Noether’s theorem and a symmetry property of the
Lagrangian. The Hamiltonian formulation of the dy-
namics is the basis for the numerical model in Section
5, but readers who are familiar with potential vorticity
conservation can skip Section 2 at first reading. Sec-
tion 3 reviews the basic principles of statistical me-
chanics in the form required for application to a con-
tinuum. Readers who are acquainted with the pre-
vious applications of equilibrium statistical mechanics
to the macroscopic motions of fluids can skip Section
3. Section 4 extends the statistical theory to cover the
blob. The extension is nontrivial, and it reveals an
interesting analogy between the variable free surface
area of the blob and the variable number of particles
in a thermodynamical system with permeable bound-
aries. The equations determining the “exact” equi-
librium state are mathematically well-posed but in-
tractible because the invariants of motion depend
nonquadratically on the phase coordinates. Progress
unfortunately requires strong (but physically moti-
vated) assumptions about the nature of the equilib-
rium state. Section 5 describes the numerical exper-
iments.

2. Dynamical background

Consider first a single nonrotating layer of ho-
mogeneous fluid in which the horizontal length scales
of the flow are large compared to the fluid depth.
Then the horizontal velocity u = (u, v) in the (east,
north) direction is invariant with depth and is much
larger than the vertical velocity. The fluid motion is
columnar. Let the positions x = (x, ) of marked fluid’
columns be considered as functions of curvilinear la-
beling coordinates (a, b), which remain constant fol-
lowing particles, and the time 7. The flow itself is a
time-dependent map,

= x(a, b, 7)

{x @1
y=ya, b, 1) ’
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from the (a, b) coordinates to the (x, y) coordinates. '
Each forward map of type (2.1) uniquely determines
an inverse map

{a = a(x, y, ) 22

b=bx,y,1)

from the (x, y) coordinates to the (a, b) coordinates.
Here ¢t = 7, but d/dr implies that (a, b) are held con-
stant while d/d¢ implies constant (x, y). It is conve-
nient to define (a, b) so that equal areas in (a, b) space
contain equal masses, that is,

hdxdy = dadb, (2.3)
where aa. b)
a
=2 2.4
a(x, y) 4

is the depth of the fluid. Then the kinetic energy
(omitting the contribution of vertical velocity) is

T= f f dxdy Y2pohu-u

o [ a2 - 2], e

where the integration extends over the domain of the
fluid and p, is the constant fluid density. The potential
energy 1s

V= f f dxdy Yapogh?

a(a, b)]
=1
/2p0 ff dadb[ (x. 7) (2.6)
and the Lagrangian of the fluid is therefore
L=T-V
dx <'~)y)2 Xa, b)]
=1 — g —7
e f f d“db[(ar) (61 o, »d-
2.7

It follows directly from the definition (2.4) that
oh (au av)
+
ar h ax + d 0.
which is the usual equation of mass conservation.

The momentum equations come from Hamilton’s
principle, which states that

6deT=0

where 6 denotes an arbitrary variation of the time-
dependent map (2.1) or, equivalently, (2.2). If éx(a,
b, 7), 8y(a, b, 7) vanish for large |al, |b} and |7|, then,
by the usual rules of variational calculus,

(2.8)

(2.9)

FIG. 2. The potential density sigma parameter referred to sea level, 2000 m and 4000 m in the (a) Atlantic, (b) Pacific and
(c) Indian Oceans. These sections were drawn by Lynn and Reid (1968) from 25 years of hydrographic measurements.
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ox:
6 f Ldr = pg f dr ff dadb

x [a_x 9 o gh2 a(ox, y)]
or or 2 da b)
' F*x go, y)]
= P - T, T X 2 1
””fdfffdadb[ a7 2 9 by )X #10
implies that ‘
o*x g, y) a(h, y)
S=- = - 2.
- 2uab) - faxy WD
which is equivalent t0 the more familiar form,
8u oh
o g Pyl (2.12)
~ Similarly, of course,
oy
o oh
—=—g—. 2.1
o Loy 2.13)

The Lagrangian formalism extends easily to in-
clude rotating coordinate systems and stratified flows.
The Lagrangian for a single layer of uniformly ro-
tating fluid is

o [l -

9y  dx )_ a(a,b)]
+29(61x aTy g———a(x, ik (2.14)
or less symmetrically,
2
L = Yp, ff dadb[(ax) (ay)
or
_ a_x a(a b)]
4 3 Qy — 8( 7 (2.15)

where (1 is the rotation rate of the coordinate system.
If Q is nonconstant, but varies only in the y-coordi-
nate direction, then the appropriate Lagrangian is

= Yao f f dadb[(gf) ( )

4 J‘y(abr)Q N
B a7 Jyy O )

d(a, b)
O(x, )

where y, is arbitrary. The Lagrangian for the two-
layer system introduced in section 1 turns out to be
(with 2Q = By)

L= P1 ff da,db1£l + P2 ff dazdbz-Cz

j', (2.16)

+ f f da,db, f f daydb, L5, (2.17)
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where
1fox\ 1 ay,')2
L=
=56y (3
. ax: f 'd -1 d(a;, b)
byd 28(x;, v)’ (2-18)
L = —gd(x; — Xp), (2.19)

where the subscripts refer to the top (i = 1) and bot-

tom (i = 2) layer, and &( ) is Dirac’s delta function.
Independent variations dx,, éx, yield
ox 1+
aul
e + By k Xu, = —gV(h, + k), (2.20)
0X;: 3
2 4 Byk X up = 2P Vh, — gVh,, (221)
ar P2
where Kk is the vertical unit vector and
d(a;, b)
hj=_—= 2.22
a(x;, ) ( )

is the vertical thickness of the i-th layer.

In all cases, an important conservation law called
Ertel’s theorem results from the symmetry property
that the Lagrangian is unchanged by any transfor-
mation of the labeling coordinates (a, b) which leaves
the Jacobians (2.4), and (2.22) unchanged. Consider,
for example, the Langrangian (2.7) for the nonrotat-

ing single layer, and let da(x, y, 1), 6b(x, y, t) be vari-
ations in the labeling coordinates which satisfy
d(a, b)
= (2.23
a(x, y) @2
This implies that
d
—_ + —_— .
Y ) 3b 6b 0, (2.24)
and hence .
éa = —iéw and 6b—-‘9—6\0 (2.25)
“ ab ' da )

for some &y. For such a variation,

s [ Lar = thps f ar | f dadb 5[(‘9") + (a_y)]

_ dx dx 8y ay) dda
= ”°f dr f f d"db[(af 3a " araa)

oxox 037 o]
(31' 3b+a7' ab) ar 1’ (2.26)

since it can easily be shown that
5(@5) dx ddéa dx 66b
or

da ar  db or 2.27)
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and similarly for 6(dy/d7). Substitution from (2.25)
and integrations by parts bring (2.26) into the final
form

b= o [ a2 2254

(2.28)
where ca oo
L oXox  oydy
drda drda’ (2.29)
dxdx , dydy
B= ar 9b *or drdb’ (2.30)

But &y is arbitrary and é [ Ldr must vanish by Ham-
ilton’s principle. Hence

o (e o),
or\da b ’

" The quantity in parentheses, which is conserved fol-
lowing particles, can be rewritten in a more familiar
form as
9B O_A; Au, x) v, y) dx,y)
da  ob da, b)  da, b) &a,b)

[a(u, x) + (v, y)] (av
ax,y) d(x,) dx 4

The last expression is the usual form for the potential
vorticity. Completely analogous procedures applied
to the Lagrangians (2.15) and (2.17) lead to the re-
spective forms of Ertel’s theorem

(2.31)

)h . (2.32)

9 [(ov_ou _,] _
or I:(é‘x dy + By )h 0, (2.33)
3 31),- au{ _ . :

a_r,-[(ax ay P ) ] =0, i=1,2. (234)

The foregoing procedure readily extends to contin-
vously stratified, compressible flows (Ripa, 1981;
Salmon, 1982). It provides an elegant unification for
all forms of Ertel’s theorem which is lacking in the
conventional derivations: For any continuum system,
Ertel’s theorem is simply the conservation law which
results from the most general transformation of la-
beling coordinates that leaves every term in the La-
grangian unchanged. This approach also provides a
motivation for Ertel’s theorem: The conservation law
is known to exist as soon as an inspection of the
Lagrangian reveals the symmetry property. One need
not depend on unguided manipulations.?

3 Eckart (1960) derived the conservation law (2.31) using the
energy-momentum tensor formalism, which is closely related to
the procedure followed here, but he did not notice the connection
with Ertel’s theorem. See also Bretherton (1970) for a closely related
result.
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3. Statistical mechanical background

The methods of equilibrium statistical mechanics
predict the final macroscopic states toward which fi-
nite-resolution classical fluid models would evolve in
the absence of external forcing and viscosity. These
ideal equilibrium states anticipate the role of fluid
self-interactions in realistic nonconservative flow.
The pioneering papers were written by Onsager
(1949), Hopf (1952) and Lee (1952). The equilibrium
theory has frequently been used in the study of ho-
mogeneous turbulence, where it provides an impor-
tant consistency check on non-equilibrium (closure)
theories. However, the equilibrium theory seems
most valuable when applied to even more compli-
cated systems. For the more complicated systems, the
closure theories are often prohibitively complex.

This section reviews the fundamental algorithm of
equilibrium statistical mechanics from the informa-
tion theory viewpoint (Jaynes, 1957). I illustrate the
general method by application to ordinary two-di-
mensional turbulence. The equilibrium statistical
mechanics of two-dimensional turbulence has been
thoroughly discussed by Kraichnan and Mont-
gomery (1980). Previous applications to geophysical
fluid dynamics are reviewed by Salmon (1982). These
include the locking of rotating flow to bottom to-
pography, the barotropization of stratified rotating
flow on length scales larger than the internal defor-
mation radius, and the funneling of energy toward
the equator and into high vertical modes.

Consider first a general mechanical system whose
precise state is specified by the value of N real num-
bers [w;, w;, ..., wy] and whose dynamics is gov-
erned by N first-order ordinary differential equations
of the form

W= W= Gi(wh w2, ..

dt
The N-dimensional space spanned by the w; is called
phase space, and each point in phase represents a
possible state of the system as a whole. Every real-
ization of (3.1) traces out a trajectory in phase space.
Let the joint probability density of the w, in an ensem-
ble of realizations of (3.1) be

3.1)

.y (-ON).

3.2)

Since the moving phase points that represent indi-
vidual realizations of (3.1) can neither be created nor
destroyed,

f(wl,w2s  oey Wy, t)‘

of d . A _
o + El: da, (wf)=0 3.3)
where «; is given by (3.1). If (3.1) is such that
dw;
z>i=0, (3.4)
i Ow;

then (3.3) reduces to
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time 1'1

FIG. 3. The mixing of probability density in a two-dimensional phase space.

at 6w,- i (3'5)

91 + 2 (;)i ﬂ = 0
1]

which is called Liouville’s theorem. Canonical vari-

ables satisfy (3.4) automatically, but so too do many

noncanonical variables, and the latter are frequently

of greater interest.

Eq. (3.5) implies that the phase space volume oc-
cupied by a collection of phase particles always con-
taining ‘the same particles remains constant in time.
This constraint, while important, is not confining.
Consider, for example, a two-dimensional phase
space in which f is initially constant within a compact
region and zero outside (Fig. 3). In a wide class of
systems, which are said to “mix,” the initially com-
pact region spreads out by developing filamentous
arms which gradually “fill up” the accessible parts of
phase space. Now f is typically sought for computing
the statistical average of phase functions F{w;, w,

., Wy, 1), namely

=[] [ Eataw.

Suppose that f does indeed evolve from time 7, to ¢,
as shown in Fig. 3. In practice, it is impossible to
calculate f(¢,) accurately from (3.5) for use in (3.6).
However, it is obvious that, for any F which depends
smoothly on its arguments, () at ¢, can be calculated
to good accuracy by replacing f(z;) with a density
function which is constant over the circular_region
of Fig. 3. We therefore distinguish between f(¢), the
probability density obtained from (3.5) by solution
of (3.1) for an entire ensemble of systems, and f(¢),
the “phenomenological” or practical density, which
can be considered a smoothed version of f(¢). Statis-
tical mechanics seeks f(#) without first calculating
f(®. The mixing property of the dynamics motivates
the concept of f(z), but it also imposes the consistency
requirement that f(z) ought to be progressively more
spread out at successively later times. This is a qual-

(3.6)

itative statement of the second law of thermody-
namics. '

The entropy S measures the spread of f and the
corresponding uncertainty in precise system state. A
simple requirement on additivity, and the Liouville
property (3.4), motivate the definition*

| =—fff--offlnf(1:[dw,-). 3.7

Now suppose that, at some fixed time f,, it is known
only that M dynamical quantities R; take the average
values R?. The least-biased estimate for f(f) is that
which maximizes (3.7) subject to the M constraints

fff T ijf(IiI dw;) = RP,

j=1..., M (3.8)

With f so determined, the least-biased estimate of
(F) at time f, is just

IS forran

where F is any quantity, whatsoever. If the set {R;}
includes only integral constants of motion, then f
describes absolute equilibrium, which is pertinent at
times so large that all vestiges of the initial conditions,
except constants of the motion, have disappeared.
Realistic dissipative systems have no conserved
quantities and cannot therefore reach this type of
equilibrium. However, if the “mixing time” is short
compared to the time for nonconservative forcing to
alter the values of these quantities, then qualitative
features of absolute equilibrium can appear in real-
istic systems.

I iltustrate the general procedure by application to

(3.9)

4 See, for example, Katz (1967).
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inviscid incompressible two-dimensional flow within
closed boundaries, governed by

N vy Veu=o, (3.10)
81'
or, equivalently, by
9 V) =0 3.11)
or
where 5
9
=k XV V= —
" v and (ax 8y)
It is convenient to expand
wx, 3, ) = 2 w(0%:x, Wk,  (3.12) -

i
where ¥,(x) is a normalized eigenfunction satisfying
VI, + k%, =0
¢, = 0 on the boundary
P2=1

(3.13)

Here the overbar denotes the spatial average over the

flow domain. The transform of (3.11) is
b= 2 Aywjw, (3.14)
il

where
Ayt = (ki kik)P: J(P), ¥)). (3.15)

Eqgs. (3.4) and (3.5) are satisfied because A;; vanishes
whenever two of its subscripts are equal. The con-
stants of the motion include the energy

E=WW=3w?< ZE (.16
and enstrophy
Z=(VP=2k? < 22z, @G17)

Absolute equilibrium is discovered by maximizing
(3.7) subject to the normalization requirement

(y=1 (3.18)
(E)=Eo, (Z)= 20,

where Ey and Z, are known initial values. The result
is

and
(3.19)

f = Kexp(—aE — bZ), (3.20)

where a, b, K are multipliers determined from (3.18)
and (3.19). From (3.20) it follows that

<w,-2> = (g + bk,

which shows that the quantity aE; + bZ; is equi-par-
titioned among the modes in equilibrium.

(3.21)

RICK SALMON

1465

Eq. (3.21) implies an energy spectrum proportional
to
k/(a + bk?), 3.22)

which corresponds to infinite total energy and en-
strophy, because the integrals of (3.22) diverge at large
wavenumber k. The absolute equilibrium state is
therefore realizable only if the sums in (3.14)-(3.17)
are truncated to a finite number of terms, as if, for
example, all modes with wavenumber k greater than
some arbitrarily chosen cut-off k. were excluded from
the dynamics. The truncated system still satisfies
(3.4). A thought experiment in which k, is raised by
finite increments, with the system allowed to re-
equilibrate at each new value of k. provides one
“proof” that nonlinear interactions in two-dimen-
sional turbulence pass energy to lower wavenumbers
and enstrophy to higher wavenumbers (Kraichnan,
1975).% The equilibrium spectrum (3.22) has been
verified in numerical experiments by many investi-
gators, including Fox and Orszag (1973), Kells and
Orszag (1978) and Carnevale (1982).

The objection can here be raised that the dynamics
(3.11) actually conserve an infinite number of quan-
tities of the form,

VA,

where 7 is any number for which the average exists.
These invariants constitute an infinite number of
(generally nonquadratic) constraints which, along
with (3.19), ought to determine the equilibrium state.
These extra invariants are, however, usually ne-
glected, because they lead to integrals which cannot
be performed. The justification is sometimes given
that, except for the case n = 2, the extra invariants
do not survive the truncation in modes. Unfortu-
nately, this argument does not so much strengthen
the case for (3.20) as it weakens the case for realistic
truncated models. I prefer the more pragmatic view-
point that 1) statistical mechanics is merely an al-
gorithm for guessing without bias, 2) not every known
invariant need necessarily be used, and 3) the simplest
invariants are frequently the most confining and
hence important.

The eigenfunction expansion (3.12) can be avoided.
Suppose that (3.11) is replaced directly by the trun-
cated form

— Y= Z By, (3.23)

where ; is the value of 1// at the ith gridpoint (x;, y,)

and the right side of (3.23) is a difference approxi-
mation to

5Tt is of course unnecessary to invoke absolute equilibrium to
explain the inverse energy transfer in two-dimensional flow. How-
ever, some form of averaging is required. Otherwise the time re-
versibility of (inviscid) mechanics provides a counter-example for
every example.
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- ég Jy, V&) (3.24)

within the given boundaries. The ; comprise a new
set of phase coordinates, and (3.4)-(3.5) hold with
w; replaced by y;. The truncated invariants become
E=—yV oc =2 Z ¥iLyy;  (3.25)

i

and

Z=(Vy < 2 (2 Ly,  (3:26)
i J

where 2 Lyiisa diﬁ'erenc¢ approximation to V3

J
at the ith gridpoint. The equilibrium probability den-
sity of the ¢; is then

f1 Y2 - 5 s ) = K expl—%2 Z ¢iMy¥), (3.27)
LJ

where

M,’j = "’2(1'L,‘j + 2b' E LliLIja (3'28)
1

and K, a’, b’ are determined from (3.18) and (3.19).
It follows directly from (3.27) that

Gy = My™', (3.29)
where M ! is the inverse of the matrix M. Thus

2 Mj<¢j¢k> = O, (3.30)
Jj

which is the difference form of
(—2a'7* + 2b'VPVAY(xWAX0)) = 3(x — Xo), (3.31)
corresponding to no truncation. The transform of
(3.31)is
(wiwy) =

which agrees with (3.21).

It is sometimes useful to apply the statl';tlcal me-
chanics algorithm in two stages, assuming first a de-
tailed knowledge of the distribution of energy and
other invariants among the components. Section 4
illustrates the advantages of this procedure, but the
idea is better introduced here, in the simpler context.
Suppose that the statistical information consists not
of (3.19), but rather

(wiwy) = Cy,

where C; are known constants at the given time. The
probability density f which maximizes S subject to
(3.18) and (3.33) is just

f = Kexp(—z a,-jw,-wj),
8]

Ya(a + bk?)'s;, (3.32)

all i and j, (3.33)

(3.34)

where K, a; are chosen to satisfy (3.18) and (3.33).
These requirements establish that

K = =)y MY(detC)™17, .(3.35)
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a7 =2C;, (3.36)
so that (3.34) may be rewritten
1 1
F = any Vaotwmy 337
X exp[—"2 E ww;w)) ], (3.37)

L)

where (w;w;)"! is the inverse of the known correlation
matrix {(w;w;). The entropy corresponding to (3.37)

is S=_fff..-fflnf(];[dwi)

= Y2 In(det{w;w;)) + constant. (3.38)

If the correlation matrix is diagonal (as in statistically
homogeneous flow) then the entropy simplifies to

=1 2 In{w?). (3.39)

The result (3.21) can now be obtained simply by

maximizing (3.39) subject to

2 (w,-2> = Eo, (340)

2 kXw?)y = Z,. (3.41)
This procedure works equally well if (3.40)-(3.41) are
replaced by any constraints involving only second
moments of the w;. But if (for example) constraints
involving the first moments (w;) need also be con-
sidered, then the {w;) must be added to the list (3.33)
of initial information.

The two-stage procedure has two advantages. First,
formulas like (3.39) frequently admit useful interpre-
tations. For example, a well-known class of turbu-
lence theories provides closed time-evolution equa-
tions for the second moments {w;w;). Carnevale et al.
(1981) have shown that these equations are consis-
tent with

as
- = .42
220 (3.42)

with S given by (3.38). Second, there sometimes exist
important but nonquadratic constraints which must
be replaced by approximations involving integrable
moments. Then the two-stage procedure greatly sim-
plifies the arithmetic. The following section is a good
illustration.

4. Statistical mgchanics of the blob.

For the remainder of this paper, I restrict attention
to the two-layer rotating system governed by (2.20)
and (2.21), with an additional assumption that the
lower layer velocity is everywhere small compared to
that within the blob. This assumption is valid if, for
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example, the initial excitation is confined to the blob
and the lower layer is infinitely deep. A vanishing
lower layer velocity implies from (2.21) that

Vh, = -2 wa, (4.1)
P2
so that the dynamics reduce to
u ,0h
5 Byv=—g-
Drpu=gl . @2
oh

du dv
+h—+—=]=0
or h(ax ay) ,
where g' = (p; — p))g/p, and (u, v) and h are the

horizontal velocity and vertical thickness of the blob.
The equations (4.2a, b) are equivalent to

0 6
gc s g}f Ldr =0, 4.3)
where
2 2
L = ap, f f dadb[(%}c) + (%f)
L20x  da, b):l
By FY 4 ik 4.4
_ d(a, b)
h= —~°—a(x, ) 4.5)

The Lagrangian (4.4) differs from the “barotropic”
Lagrangian (2.16) only in that the gravity gis replaced
by the reduced gravity g'. For this reason, (4.2) is
sometimes called the ““‘equivalent barotropic model”.
I offer that the basic resuits obtained below will extend
qualitatively to the unconstrained two-layer model.
A sequel paper will entertain an N-layer ocean.

In order to apply the methods of Section 3 to the
model (4.2), it is first necessary to discover a truncated
dynamics which satisfies Liouville’s theorem. Sup-
pose temporarily that the blob covers the lower layer
in the entire domain of interest, a region R,, of the
(x, y) plane bounded by rigid vertical walls. Let R,,
be subdivided into N square grids of side A. The ith
gridbox is that centered on (x;, yx) where i < (j, k)
is an integer index which runs from 1 to N. It is
convenient to have

X =x;+ A and  Yeor =yt A
Replace (4.2) by the difference equations
Ui = BV — (Ajrr1p — Aim10)/28
Vi= =By U; — (Biser1 — Bjp-1)/2A
bi = —~(Cpix — C1,0/24
= (Djk+1 — Djp-1)/28

, (4.6)
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where
U = u(x;, yh(x;, Yo,
Vi = 0(x;, yoh(x;, yi),
hi = h(-x:U J’k),

and

Ajx = U h; + UVih; + ghi)2,
By = Vi /h + UVi/h; + ghi/2,

Cj,k = U
Dj,k =V.
It follows at once that
au;, 9v; ok
au;, oV, oh @.7)

so that the 3N-dimensional phase space spanned by
{Ul, V\, hl, cees UN, VN’ hN) satisfies Liouville’s
theorem. The probability density function

f(Ul, Vl’ hl’ LRI UNs VN9 hN) (4'8)

may now be introduced and manipulated as in Sec-
tion 3.

Suppose next that the blob covers only a subset of
the N gridboxes in R,,. Each possible subset of grid-
boxes, which need not be contiguous in the (x, y)
plane, will be called a configuration of the system (Fig.
4). The number of possible different configurations

1S
N

N!
,Z:, n(N — n)!’

4.9)
Let v be an integer index that specifies the configu-
ration, and N, be the number of gridboxes in con-
figuration v. The precise system state is specified by
a value for v and by the location of a point in the
corresponding 3N,-dimensional phase space. Let f,
be the probability density function in this y-space and
let

def

) [ ]« )ﬁ(dv.-dv,-dh,-) (@.10)

denote an integration over the entire y-space. Then .
def
P, = T.(f,) 4.11)

is just the probability that the system finds itself in
configuration v. The normalization requirement

2P, =1 (4.12)

obtains because the system is always in precisely one
configuration. Now let F, be any function that de-
pends only on the 3N, phase coordinates of config-
uration v. The average of F,, conditional on config-
uration v, is by definition
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RG. 4. The surface of the blob covers a subset of gridboxes.

(Fyy £ TAEL)P,.

For example, the average total volume, given the blob
in configuration v, is (M, ),, where

1‘4.y = Az 2 hi,
icy

(4.13)

(4.14)

and the sum runs only over gridboxes in the config-
uration vy. The “grand average” total volume is

def

(M) = E PAM>, = 2 T (M.f,), (4.15)
Y

where M, stnctly speaking, is a sequence of phase

functions {M,} defined by (4.14). Note that this def-

inition of the angle braces gives a finite value to -
(%)

hil °
the grand average of 1/4 at the ith gridbox. Absolute
- equilibrium is discovered by maximizing the appro-
priate entropy (derived below) subject to the nor-
malization requirement (4.12) and constraints on the
invariants of motion, expressed as grand averages.
The integral invariants of the system (4.2) include the

total mass, total energy, and every quantity of the
form

(4.16)

f f dxdyhF(q), 4.17)
where 3 5
v u -
q= (&—5; ﬂy)h ! (4-'18)

" is the potential vorticity and F is any function for
which the integral (4.17) exists at the initial time. The
total potential vorticity and potential enstrophy are
cases of (4.17), corresponding to F = g and F = ¢?,
respectively.

It is now convenient to restrict the phase space
averages to be averages on the geostrophic manifold,
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which is defined by difference analogs to the geo-
strophic relations, for example

U =- K [A2(x;, yi + D)

= B0Og, v — D28, (4.19)
Eq. (4.19) and its counterpart for V; are used to elim-
inate U; and V; from every expression in which they

occur, and the definition (4.10) is replaced by

RO

The geostrophic average can be interpreted-as the
average over the low-frequency part of the flow. The
total mass, energy, potential vorticity and potential
enstrophy are now written in terms of the depth vari-
ables only, as

N‘Y
( )H dh;. (4.20)

M, = > h h
i€y
E, = 2 hl(Z X;h)P + (2 Yih) + g'hl
ey jey jey > ,(4.21)
V,= 2 L;h; + By)
ey jey
- Z,= 2 (2 Lyhi + By)*/h _
ey jey

where Xj;, Y; and L; are difference forms for the
differential operators
“and V-(g— V) s

£9 g9
By

Byax’ - By dy

respectively.® The invariant constraints then take the
form,

M) =M, (E)= E"} , (4.22)

Iy =Vo, (Z)=2

where M,, Eqy, Vo, Zy are the known initial values.
A more detailed (and correct) statement would re-
place the angle braces in (4.22) with { ),, thereby
demanding that the mass, energy, etc., be the same
in each separate configuration. However, this alter-
native requires more calculation, and the change in
the results should be slight, if, as is usually the case,
the probability P, of configurations is sharply peaked
at the most probable . If, as is henceforth assumed,
the statistics have cross-equatorial symmetry between
the hemispheres, then ¥, = 0 and (V) = 0 automat-
ically. The third of (4.22) can therefore be dropped.

¢ Again one can inquire whether the truncated dynamics actually
conserve (4.21), and, if not, whether suitable replacements could
be found. In the information theory viewpoint, however, consis-
tency demands only that the invariants remain constant over times
long enough for the system to sample many independent states.



DECEMBER 1982

Unfortunately, direct use of (4.22) demands inte-
grals like

fm fm coe fw exp(—constant X E,) I] dh;,
o Yo 0 !

(4.23)

which cannot be performed. My recourse is to replace
(4.22) with the approximate constraints

N

2 P, 2 (hiyy = Mo,
S PE S 3P, T (W2 Xylh) )
¥ v icy €y

+(Z Yyl + ghiy) = By |, (4.24)
&y

def
>PZI= 3P 3T
Y

¥ iey

X[Z Lk + ByliChy = Zo |

in which, unlike (4.22), only first moments of the
depth appear. This approximation is justified if, at
the large length and time scales considered, the fluc-
tuations in thermocline depth are small compared to
{h),, in each configuration ¥.

Now suppose that each y-space is divided into hy-
percubes of side d and volume d™. The probability
that the system is in a configuration v and a particular
hypercube in the corresponding +y-space is by defi-

nition
D= f ¥ dN" ’

where f, is evaluated at the cube, and

(4.25)

J < (v, cube)

is an index which denotes both the space and cube.
The total entropy is

S=-2 p;lnp;
j

-2 2 (f,d™) In(f,d™)

« cubes

- 2 z (f'y lnf 'y)(dN7)

v cubes

- 22 (f,N, Ind)(d™). (4.26)

v cubes
In the limit d — O,
S — -2 T,(f,Inf,) — = N,T,(f,) Ind. (4.27)
¥ ¥

The entropy depends on the depth resolution d, which
must be nonzero, and is entirelv analogous to the
horizontal resolution A. The choice of d affects equi-
librium, because the second term in (4.27) also con-
tains f,. This situation is quite unlike the example
of Section 3 in which the resolution on each y; was
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unlimited. It is interesting, however, that the present
dependence of the equilibrium on d would disappear
if the blob could assume only one configuration. To
see this, suppose P,, = 1 for some 7o, and P, = 0 for
all other v. Then (4.27) reduces to

S = —T,(fy, Inf,;) — N, Ind, (4.28)
because (4.12) becomes
T, (f) = 1. (4.29)

The second term of (4.28) has no variation with
f+» and hence is irrelevant. However, this is not true
for the second term in (4.27).

There exists an interesting but incomplete analogy
between the fluid blob and a classical gas composed
of an indefinite number of particles (the grand ca-
nonical ensemble). In the gas system, the dimen-

" sionality of phase space varies with the number of

particles present, and the calculation follows the same
line as here. However, no artificial parameter like d
appears because the average number of particles is
fixed as a constraint. There are of course no physical
grounds for constraining the analogous surface area
of the blob. Also, in the gas calculation the counter-
part of (4.13) contains a factor 1/N,! to prevent the
overcounting of states corresponding to the permu-
tations of identical particles. This factor is absent
from the blob calculation because the gridboxes are
non-identical; each is distinguished by its horizontal
location.

The remaining task is to obtain the equilibrium f,
by maximizing the entropy (4.27) subject to the nor-
malization requirement (4.12) and the constraints
(4.24). As remarked in Section 3, this labor is best
divided into two stages. First, Eq. (4.27) is maximized
subject to the constraints

T,(f,) = P,,

T, (hf,) = (hdy Py, ally, (4.31)

where the P, and (h;), are here treated as known
constants. The result is

fv=Cyd™ exp[—2 Nhi],

icy

all v, (4.30)

and
alli € v,

(4.32)

where the C,, and ] are determined from (4.30) and
(4.31). After such determination,

1 (hx - <hl>‘y) ’
fu =P T {ok enp - P S asy
T Khey Chidy
Substitution of (4.33) into (4.27) yields
S=-2 P, InP,+ 2 P,N,
Y Y

+>P 3 ln(@). (4.34)

¥ ey d
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The equilibrium values for P, and (4;), may now be
found by maximizing (4.34) subject to (4.24). The
first two terms in (4.34) represent the entropy asso-
ciated with the uncertainty in the configuration of the
blob. The first term, if present alone, would make all
configurations equally probable. The second term
adds a bias favoring configurations with large surface
area (large N,). The third term in (4.34) represents
the entropy associated with the distribution of mass
within each configuration. If only one fixed config-
uration were allowed, as if the blob always covered
the bottom layer completely, then (4.34) would re-
duce to

S = 2 In{h;) + irrelevant constants, (4.35)

which is similar to (3.39).

Now suppose, for illustration, that mass conser-
vation (4.24a) is the only equilibrium constraint be-
sides the normalization (4.12). Maximizing

S - A[ZP —1]—a[2P Z Chiyy — Mo] - (4.36)
yields

oP,:
» Chi >7)

—InP, ~ 1 + N, In

+ +,e27 ( 1
~A—a 2 (hy,=0, (4.37)

o h,‘ ye

® Py - aP, =0, (4.38)

Chipy '

for all v and all / € v, where a and A are the Lagrange
multipliers. From (4.38) it follows that the thermo-
cline depth

1
iy =5 (4.39)
is the same in all configurations and at all locations,
whereupon (4.37) simplifies to

p- ()

The constants a and K are determined from (4.24a)
and (4.12). Now since (), > d, P, increases with
N,, and the most probable configurations are those
in which no more than one “fluid brick” of volume
dA? occupies each gridbox. Thus the equilibrium state
with only mass conserved has the blob spread out to
the minimum thickness that the vertical resolution
will allow.

Consider next a more realistic case in which the
recognized invariants of motion include the mass
(4.24a) and an approximation to the potential en-
strophy (4.24c¢) in the form

(4.40)
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Z P z 62y12/<h>7 = ZO

1 =%

(4.41)

The approximation (4.41) is reasonable if the relative
vorticity is much smaller than the planetary vorticity
By. This condition is satisfied by the real ocean at all
latitudes more than a few degrees from the equator.
However, (4.41) is still suspect in the present context,
because the equilibrium state, which is reached after
friction has been turned off, could plausibly have large
relative vorticity. Maximizing

S - )\[2 P, —1] —a[E P, 2 (hiy, ~ M)

= b2 P, Z By hiyy, — Zo]  (4.42)

Y icy
leads to
opP,:
P, = Ke™ ]I {< 2al exp[—a Z (hi)y
—-b Z ﬂz i2/<hi>1]} ’ (4-43)
iy

8(hiy,:

1= 0<hi>~, - bﬁz,Viz/ <hi>-n (4-44)

where the constants K, a, b are determined from
(4.12) (4.24a) and (4.41). Eq. (4.44) states that a
weighted diﬁ"erence between the mass and potential
enstrophy is equipartitioned among the gridboxes.
Apply Z to (4.44) and use the result to simplify

(4.43). ’I‘hen (4.43) becomes

P,=K _H [< d>* exp(—2b 2 B2y /(M >,)] (4.45)

The previous case with only mass conserved is re-
covered when b = 0. The solution to (4.44) is

Chidy =

which depends only on the latitude y;. Since this so-
lution applies to all configurations v, including those
contammg arbitrarily many of the gridboxes, and
since {/;), > 0 within each configuration, it follows
that a, b must be positive and that only the positive
branch of (4.46) has meaning. The simple quadratic
(4.46) has a nearly constant depth,

2_1a [1 + (1 + 4abB?>y»'?], (4.46)

1 def
(hyy ~ = = (4.47)
in the equatorial region,
M<y € —= (4.48)
y yL‘ 6Va_b b »
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regions of constant

potential vorticity

FG. 5. The most probable thermocline shape with only mass and
the simplified enstrophy (8y/h)? conserved.

and a nearly constant potential vorticity correspond-

ing to
(hYy =~ hoylye (4.49)

in the regions [y| > y.. Refer to Fig. 5. To determine
the most probable configuration, substitute (4.46)
into (4.45) and maximize the result with respect to
«v. This is in general a difficult exercise. Suppose, how-
ever, that only the subset of configurations describ-
able by

n <<y (4.50)

is considered. The pair (3, y») replaces v as the con-
figuration index. The most probable of these config-
urations is that for which

h
InP, o f & ln(-&)a’y
» d
—-2b f . B*y*/{h),dy + constant (4.51)
1

is maximized, where (%), is given by (4.46). For any
a, b (or equivalently Ay, y.) the maximum of (4.51)
occurs when y; = 0 and y, is given by

m(ﬁ’i";ﬁ*) = 2682 D))y, (4.52)

The blob thus covers the equator. But if y, > y,, then
(h(y2))y = hoy»/y. and (4.52) implies that

1/2
V2=, ln(@) .
d

The most probable thermocline is vertical at y
= +y,. It remains to choose 4y and y, to satisfy (4.24a)
and (4.41). However, if the most probable configu-

(4.53)

ration is sufficiently representative of the ensemble
average, then (4.46) can be fit directly. Since the
major contributions to the mass and potential en-
strophy of (4.46) come from high latitude, I would
determine Ay, y. from (4.49) at the latitudinal edge
(4.53) by setting

hemax = BoYenax/Ve
Ymax = Ve ln(hO/d)llzy (455)

where Aya and Yma are realistic values for the max-
imum thermocline depth and latitude. Then as the
vertical resolution increases (d — 0) the ratio y./Vmax
decreases and the equatorial region of constant depth
shrinks. In this limit, the entire blob has a constant
potential enstrophy 82y?/h? except for a narrow “tran-
sition region” on the equator. By filling the equatorial
gridboxes “first”, the blob occupies relatively many
horizontal gridboxes for given total mass and poten-
tial enstrophy. The high-latitude gridboxes require a
large expenditure of either % or §%y%/h.

The above most probable state is unrealistic in that
the thermocline attains its maximum depth at its lat-
itudinal boundaries. As shown below, this feature
disappears when the relative vorticity and total energy
are properly included. However, the discontinuity in
(h), is anyway absent from the corresponding grand
average (h), because the angle braces average over
configurations with different y,. The grand average
is the more comparable to the nonsynoptic obser-
vations shown in Fig. 2.

I finally consider equilibrium with all three con-
stants of motion, in the form (4.24). This calculation
is much more complicated than the previous, and
will be pursued only up to a point. I write A; for

4.54)
and
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{h;)y when no confusion can result. Again assuming

that (8/0x){ ) = 0, the results of maximizing

S-NZP,—1]1-alZ P, 2 hi— M) - b[Z P,
4 k4 i Y

X 2 Z]—2Zo)— 2 P, 2 E] — Eg] (4.56)
i BY% i
are

5}1[:

1 = ah + b[2 2 q;Lyh; — ¢} + dh(2 Y;h)?
j J

+2g'h?+2 2 h,@ Yih)Y;hl, (4.57)
J
oP,:
P, = Ke™ T] {% exp[—ah; — bZ} — cE}']} , (4.58)
where

def
@ = (2 Lyhj+ Byph". (4.59)
J

The constants K, a, b, ¢ are determined from (4.12)
and (4.24). Multiply (4.57) by an arbitrary quantity
¢; and apply 2. The result is the difference analog

of i
f ¢dy = a f (he)dy

g d(¢h)) ) ]
+bf|: dy(ﬂy dy a°eh jdy
g’ dh ~s

te f [h¢(ﬁy dy) t2he

£ @)(& d(he 2)
+ Zh( o a\ay ay ]dy. (4.60)

Since (4.60) holds for any ¢, its variation with respect
to ¢ must vanish. After several integrations by parts,
this leads to

d (g dq g dh\?
e fon L (£90) ] [ )
? dy \By dy 1 ¢ By dy
d(.(g\ dh
2 -2 L ({E) 2], e
+ 2g 6y (4.61)

=[4(55) o]

Eq. (4.61) is a nonlinear fourth-order equation for
the average thermocline depth 4. The nonlinearity is
the penaity paid for replacing (4.22) with (4.24). If
however, I seek solutions to (4.61)-(4.62) in the re-
stricted form

where
(4.62)
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fe o]
q= z Q2n+ly2n-H ’
n=0

o0
h= 2 Hyy™, (4.63)

n=0
then direct substitution of (4.63) into (4.61)-(4.62)
formally determines the H,, for n > 1, and the Q,,,
for all n, in terms of H, and H,, which are the ar-
bitrary constants. The physical justification for (4.63b)
is that g is an approximation to a quantity that is
conserved on particles, and cannot therefore develop
singularities if none are present at the initial time.
The quartic truncation to (4.63a) turns out to be

2

h= Ho + H2y2 + [— 86_' + ; H02H2]y4 (4.64)
If ¢ = 0 (no energy constraint) then (4.64) is identical
to the quartic solution (1.6) of Section 1, and hence
corresponds to potential vorticity everywhere zero.
If however b, ¢, H, > 0, as expected, then the blob
reaches higher latitude, and (4.64) resembles the com-
promise described heuristically in Section 1 between
the tendency toward uniform g and the constraint to
conserve energy. This justifies the remarks made in
Section 1.

It is obvious that H,, H, and ¢/b can be chosen to
fit (4.64) to the general observations quoted at the
beginning of the paper. However, in the present con-
text a, b, c are to be fit to the mass, potential enstrophy
and energy; but H, and H, are determined by bound-
ary conditions on (4.61), which have yet to be stated.
Logical boundary conditions are

h=0 at y ==,
1(&’@
dy \By dy

where y, is the northern boundary of the blob (which
again replaces v as the configuration index). The con-
dition (4.66) keeps ¢ finite at the blob edge. Substi-
tution of (4.64) into (4.66) leads to ¢ = 0. Therefore,
the quartic truncation (4.64) of (4.63a) is in general
an insufficient approximation to the full solution, and
higher powers of y should be mcluded

Suppose then that terms up to y® are kept so ‘that

h ~ Ho + sz + H4y4 + H6y 5 (4.67)

(4.65)

) +B8y=0 at y==y, (4.66)

where H, is the same as in (4.64) and Hj is a lengthier
but well-determined expression depending on a, b,
¢, Hy and H,. Substltutlon of (4.67) into (4.66) leads
to

<0, (4.68)

so that (again assuming b, ¢, H, > 0) the last term
in (4.67) increases the thermocline slope near y, from
its value in the quartic truncation (4.64). The cor-
responding potential vorticity is
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q= Q0w+ 0sy°, (4.69)
where
2 '
o= ;c (%)Hon >0,
__¢(g'\[16H,H, 2]
o b(ﬁ)[ 0 + 2H,? | < 0.

If ¢ = 0 (no energy constraint), I still have g = 0.
However, if ¢ # 0, g varies linearly with latitude near
the equator y = 0, but then “flattens off” at higher
latitudes, because Q, and Q; have opposite signs.
Thus the higher truncations (4.67, 4.69) begin to re-
semble the simpler case of Fig. 5 in which only the
simplified potential vorticity 8y/2 was considered.
Apparently, a principle role of the energy constraint
is to keep the relative vorticity from becoming too
large. The energy constraint can perhaps sometimes
be dropped, but only if the relative vorticity is si-
multaneously dropped from the enstrophy. It is strik-
ing that the absurdly simple shape of Fig. 5 does, in
fact, resemble the deeper isopycnals (1-3 km) in
Fig. 2.

The principal results of this section can also be
derived—somewhat more simply—by the following
more heuristic approach. Suppose, a priori, that the
blob is divided into M identical rigid bricks which
can then be distributed arbitrarily over the network
of N horizontal gridboxes. Let »; be the number of
bricks at the ith gridbox. The thermocline depth at
the ith gridbox is proportional to m;. A macro-state
of the blob,

{my, my, ..., my}, (4.70)
is defined by specifying the number of bricks at each
of the N gridboxes. Adopt Boltzmann’s definition of

the entropy,

S=InW, 4.71)

where M'
W=—n«««77——- 4.72)
ml!mz! L mN!

is the number of ways to realize the state (4.70). The
numerator of (4.72) recognizes that each state (4.70)
is unaltered by the M! possible permutations of the
bricks. However, permutations of bricks within the
same gridbox should not be counted, because there
is no way to distinguish between identical bricks at
the same location. The denominator of (4.72) corrects
for this over-counting. Replacing’

ln(m,'!) ~ m; lnm,- (4.73)

" The approximation (4.73) is accurate for large m;, and may
therefore be inappropriate near the blob edges. It is however well-
behaved for all integers m;.
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and then maximizing S subject to the conservation
of mass,

2z m;i=M, 4.74)
and potential enstrophy,
Z Byiim; = Z, (4.75)
leads to the analog of (4.44), namely,
lnm,- =a-— bﬁzy,-z/m,-z. (476)

The solutions to (4.76) are qualitatively similar to
those of (4.44), and there is now no need to average
over «. I call this approach heuristic because it is not
obvious how to construct a truncated dynamics (pos-
sessing the Liouville property) in which massive fluid
parcels remain localized in physical space. The more
general method given above avoids this difficulty.
Moreover, since the general method addresses the full
probability distribution in phase space, it can (in prin-
ciple) furnish any equilibrium flow statistic.

5. Dynamics of the blob

Numerical experiments described in this section
confirm that the unforced blob assumes the double-
lobe shape spontaneously. The experiments also re-
veal the mechanism of adjustment, which absolute
equilibrium theory cannot address. No statistical hy-
potheses are required here, and in fact almost none
of the special assumptions of Section 4 are invoked.

I continue to consider the equivalent barotropic
model with Lagrangian (4.4). As previously stated,
independent variations éx(a, b, 7) and éy(a, b, 7) of
(4.4) yield the momentum equations (4.2ab). It is now
however convenient to define conjugate momenta

oL L
TP —x=pV, (5.1
or ar

and to invoke Hamilton’s principle in the “extended”
form,

= pou and

b6 8 6 3 f ] -
ox s 6y ’ ou ’ 5 [ LdT 0, (5.2)
where now
ox oy
L = Yap, fj dadb[u —+v=- %] (5.3)
ar or

and # is the Hamiltonian density (defined below).
It is also convenient, for reasons of computation, to
replace the mass labeling coordinates (a, b) with new
coordinates (xg, Jo) Which are the (x, y) position co-
ordinates of the fluid particles at some labeling time
79. Then Hamilton’s principle is just (5.2) with x, y,
u, v considered as functions of (xp, ¥y, 7), and
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AYo
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FI1G. 6. The finite element grid in labeling space.

L= ff dedyoho
Ox Oy L ,0x ]
X[u37+va‘r By 3 Zl, (5.4)
where
= o + 1?) + Yag'hO ;(°’y;’). (5.5)
Here @ b) ’
o 4f a,b) _ O
= ———= . 5.6
(X0, Vo) (o0, Yo) (5.6)

is the thermocline depth at the labeling time 7, and
p & o 9%, Yo) _
ax, y)

is the actual thermocline depth at time 7. The inde-
pendent variations éx, 6y, éu, 6v now yield (4.2ab)
and

h(-x()s Yo, T) (57)

ox_

= ——:v

or % ar

As before, the mass conservation equation (4.2¢) is
a direct consequence of the definitions (5.6) and (5.7).

The Lagrangian formulation is appropriate be-
cause the blob occupies a region of (x, yo) space
whose boundaries are fixed in time. Let. this region
be covered with triangular finite elements as shown
in Fig. 6. The triangle vertices are called nodes, and
the dependent variables of the numerical model are
just the values of x, y, u, v at each of the nodes.
Within each element, the variables #°, x, y, u, v are
assumed to be linear interpolates of the three nodal
values. Concisely,

X(xo, Yo, T) =

(5.8)

2 x{(1)Ni(xo, Yo) (5.9)
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(plus similar equations for #°, y, u, v) where x;(7) is
the value of x at the ith node and the summation
runs over all nodes. The “shape function” N;(x,, o)
is nonzero only within elements sharing the ith node,
and there it takes the value

Ni(xo, yo) = Aif(A; + A; + Ay, (5.10)

where A4;, A;, Ay are the areas of the regions shown
in Fig. 7. Substitution of (5.9) and its counterparts
brings the Lagrangian (5.4) into the form
L= Z [u,xj + vi,})j - 1/2u,-uj - l/20,‘0j]h2 ff dedyo
ij.k

B 2 yiyixihf ff dxodyo NiN; NN,

ikt

X NiN;N; —

— lhg' f f dxodyo[§ hOhONN/Z Xy 3((22 ii))]

(5.11)

The dxydy, integrals in (5.11) are easily computed
constant factors. [Note that (V;, N;)/9(xo, o) is piece-
wise constant over every element.] Thus (5.11) is any
ordinary function of the variables {x;(7), y;(7), ui(7),
vi(r)}. The numerical dynamics result from Hamil-
ton’s principle in the form

Al
6x,-’6y,-’6u,-’6v,-l: Ldr|=0, alli. (5.12)

The finite element form of
ff & hodX()dyo

is automatically conserved.

At the labeling time 74, (X, o) coincides with true
particle location (x, y) and the element boundaries
in (x, y) are, by design, nearly equilateral triangles.
As time increases, however, the fluid motion strains
the elements into long thin triangles in (x, y) space,
and numerical accuracy erodes. Occasionally, there-
fore, the fluid particles must be re-labeled and the
elements entirely redrawn, keeping the depth and

FIG. 7. A single element. For an explanation, sce the text.
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velocity fields and the blob boundary unchanged. The
new element grid consists of nearly equilateral tri-
angles of uniform size. In the experiments discussed,
particles were re-labeled about every 50 time steps.

I describe two experiments, corresponding to the
initial conditions shown in Figs. 8a and 9a. In ex-
periment A the initial blob is a lens of radius 5000
km and maximum depth 500 m centered on the
equator. In experiment B, the blob is initially a
skewed ellipse with maximum depth 500 m centered
500 km north of the equator. In Figs. 8 and 9, the
horizontal coordinates are “true location™ (x, y); the
nodes, shown as small circles, can be considered
marked fluid particles; the closed solid lines are 4
contours with 100 m interval; and the straight lines
emanating from particles are instantaneous velocity
vectors. In both experiments the blob is contained
between east and west “rubber coastlines,” which are
introduced by adding the potential

2
_ —1\2 X
Vx) = (0 cms™) (1000 km)

to the right side of (5.5). This potential provides a
restoring force which keeps the blob from spreading
out indefinitely along the equator. I have also added
a simple quadratic friction in the form

du

Pyl previous terms — (0.05 km™!)ju|u.

Although zero friction would better match the hy-
potheses of previous sections, the large kinetic energy
which results is difficult to handle numerically. Again,
the numerical experiments are not intended as a pre-
cise check on the absolute equilibrium theory. Rather,
the experiments show that the conclusions of the
equilibrium theory are qualitatively correct even
without the restrictive assumptions of Section 4.
Figs. 8 and 9 show the time evolution of the blob
in experiments A and B. In both experiments, geo-
strophic currents rapidly develop in the sense ex-
pected from the isopycnal slopes. The flow is strong
enough to carry particles all the way around the blob
in several months. The geostrophic currents cause
mass divergence in the western equatorial blob and
convergence in the eastern equatorial region. The
divergence reduces the thermocline depth, and this
shoaling gradually migrates from west to east along
the equator, dividing the blob into two deep extra-
tropical lobes. The initial asymmetry in experiment
B persists, but the blob still separates into two lobes.
Also as anticipated in Section 4, the thermocline slope
is maximal at the north and south blob boundaries.
Figs. 10 and 11 are scatter plots of the potential
vorticity ¢ and the “Rossby parameter” (relative vor-
ticity/planetary vorticity) for all elements in both ex-
periments at various times. The plots show that the
potential vorticity does indeed mix toward a uniform

(5.13)

(5.14)
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F1G. 10. The potential vorticity g (left, linear scale) and Rossby
ratio, relative vorticity/planetary vorticity, (right) for each element
in experiment A at (a) O days, (b) 35 days, (c) 50 days, (d) 157
days.

average outside a narrow equatorial transition region,
as the theory of Section 4 would predict. If the po-
tential vorticity were to become uniformly zero, then
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FIG. 11. As in Fig. 10 except for experiment B at (a) 0 days,
(b) 17 days, (c) 52 days, (d) 87 days.

the Rossby parameter would be minus unity. Both
the friction and energy conservation resist this, but
the plots definitely show a uniform tendency toward
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negative Rossby parameter. The overall adjustment
is rapid because the rms fluid velocity is large (20 cm
s™!). Smaller friction hastens the adjustment, but the
end state is qualitatively similar.

6. Remarks

I have argued that the observed mean ocean density
field resembles the state of maximum entropy for
given values of the mass, potential enstrophy and
energy. If the energy constraint is dropped, these
maximum entropy states exhibit hemispheric regions
of uniform potential vorticity. In this sense, the equi-
librium states may be understood heuristically as the
states of most uniform average potential vorticity that
energy conservation will allow. To the extent these
results apply to reality, the wind and thermal forcing
are important only as the sources of total energy,
potential enstrophy and water type. The gross iso-
pycnal shape would be the same if the winds reversed,
or if some agency other than wind were the source
of excitation. The simplicity of this viewpoint, which
rests on only the most elementary conservation laws
and the hypothesis of mixing in phase space, is the
most noteworthy result of this work.

Recently, Rhines and Young (1982a,b) have sug-
gested that down-gradient mixing of mean potential
vorticity by eddies is an important phenomenon
which explains large regions of uniform potential vor-
ticity in real and numerical oceans. They adopt quasi-
geostrophic dynamics, which take the mean stratifi-
cation as given. I suggest that the mean density field
itself is the result of potential vorticity mixing. The
mixing proceeds against the restraining effect of en-
ergy conservation.

The inviscid equilibrium flow of a single-layer
ocean in a rectangular beta-plane basin has been dis-
cussed by Salmon (1982). The mean streamfunction
obeys the same equation considered by Fofonoff
(1954), namely,

V2 + B(y — yo) = (a/b},

where a and b are the Lagrange multipliers corre-
sponding to the energy and potential enstrophy.
Again, if the energy constraint is dropped (a = 0), the
mean potential vorticity is uniform, but the equilib-
rium energy is unrealistically large. For realistically
small initial energy, / = (b/a)'/? is much smaller than
the basin size, and inertial boundary layers of thick-
ness / close a uniform westward interior flow. The
equilibrium mean flow in a multi-layer quasi-geo-
strophic ocean is nearly barotropic and substantially
the same: the strong inertial currents are still confined
to boundary layers. However, in the equilibria of this
paper, which are the analogs of Fofonoff’s solution
for a completely free upper layer, the strong inertial
currents occur at the blob boundary, in mid-ocean.
These results collectively suggest that a quasi-geo-
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strophic western boundary current will not readily
separate from the coast without essential help from
forcing and friction. However, if the thermocline is
free to surface, then boundary layer separation can
occur spontaneously.
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