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INTRODUCTION

This paper reviews the relatively recent application of the methods of
Hamiltonian mechanics to problems in fluid dynamics. By Hamiltonian
mechanics 1 mean all of what is often called classical mechanics—the
subject of the textbooks by Lanczos (1970), Goldstein (1980), and Armol’d
(1978). Since the advent of quantum mechanics, Hamiltonian methods
have played an increasingly important role in both the classical and quan-
tum mechanics of particles and fields. By comparison, the introduction of
Hamiltonian methods into fluid mechanics has been tardy. Why is this so?

In general mechanical systems, the Lagrangian or Hamiltonian equa-
tions of motion are coupled equations governing the locations and veloc-
ities of massive particles or rigid bodies. These coupled equations cannot
generally be solved for any subset of the dependent variables without also
finding all of the other dependent variables. By contrast, the conventional
Eulerian fluid equations are closed equations in the velocity, density, and
entropy (regarding pressure as a prescribed function of the density and
entropy) that can (in principle) be solved without also finding the trajectory
of every fluid particle. Once the velocity field is known, the particle tra-
jectories can always be reconstructed by solving the equations for three
independent, passively advected tracers (such as the initial Cartesian com-
ponents), but these extra computations are not required if only the Eulerian
fields are sought. In the special case of constant-density flow, the Eulerian
equations are dramatically simpler than the general Lagrangian or Hamil-
tonian equations for the fluid.

From the Hamiltonian perspective, the extraordinary simplicity of the
Fulerian description derives from a symmetry property of the fluid
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Hamiltonian, which is not affected by a relabeling of fluid particles with
the same density and entropy. The particle-relabeling symmetry property
motivates the transformation to Eulerian variables, but the Eulerian vari-
ables turn out to be noncanonical. This fact and the heavy emphasis on
canonical variables in the older literature are the probable reasons why
the Hamiltonian formulation of fluid mechanics went so long unexplored.
The relationship between Hamiltonian mechanics and the Eulerian fluid
equations is now well understood, thanks primarily to a relatively new
(post-nineteenth century!) geometric view of mechanics that sharply dis-
tinguishes between the existence of Hamiltonian structure and the use of
canonical variables. From the geometric viewpoint, the statement that
noncanonical (e.g. Eulerian) variables are sometimes useful even though the
underlying dynamics is Hamiltonian is closely analogous to the more
obvious statement that non-Cartesian (e.g. spherical) coordinates are
sometimes useful even though the underlying geometry is Euclidean.

The particle-relabeling symmetry property corresponds, by Noether’s
theorem, to a conservation law that turns out to be the most general
statement of vorticity conservation. All of the well-known vorticity the-
orems are direct consequences of this law. Thus the two most distinctive
characteristics of fluid mechanics—the existence of an abridged Eulerian
description, and the central role played by vorticity (or the lack of it)—
can be elegantly traced to a common origin. However, the general vorticity
law cannot be stated without referring to the locations of marked fluid
particles. This is but one of several important examples in which the
greatest simplicity and generality are achieved only by considering the
complete set of Lagrangian fluid variables. These examples suggest that
the primitive picture of a fluid as a continuous distribution of massive
particles is in some sense the more fundamental, and that the simplicity of
the conventional Eulerian description has been purchased at a definite
price.

If Hamiltonian methods merely offered a new perspective on familiar
results, they would deserve little attention. However, evidence accumulates
that the methods of classical mechanics comprise a powerful tool in fluid
mechanics. Asymptotic approximations, conservation laws, stability the-
orems, and useful variable transformations all acquire a transparency and
motivation that is often lacking when the corresponding manipulations
are applied directly to the Eulerian equations of motion.

The utility of Hamiltonian methods seems to originate from several
factors. First, Hamilton’s principle is a remarkably succinct statement of
dynamics, and this succinctness is itself a source of economy, as when an
asymptotic expansion is substituted into the Lagrangian functional and
terms are cancelled before Hamilton’s principle is invoked to obtain the




HAMILTONIAN FLUID MECHANICS 227

approximate equations. Second, there exists a well-known connection
between the symmetry properties of the Hamiltonian and the conservation
laws of the corresponding dynamical equations. This connection makes it
easy to construct approximations that conserve analogues of the exact
constants of motion. Similarly, it is often easy to identify new conservation
laws (like conservation of wave action) that arise from approximations.
Third, Hamiltonian methods are not tied to a particular choice of coor-
dinates. In Hamiltonian perturbation theory, for example, dynamical
approximations arc always conjoined to transformations of the dependent
variables. The freedom to simultaneously adjust both the physics and the
variables used to describe it leads to final equations of maximal simplicity.

However, despite all of the above, the existence of a Hamiltonian struc-
ture is, by itself, meaningless because any set of evolution equations can
be written in canonical form. To appreciate this point, consider the heat
equation

T, =Ty (0.1)
with periodic boundary conditions
T(x+2mr, 1) = T(x,1). 0.2)

By anyone’s definition, (0.1) is non-Hamiltonian. But (0.1) is the Euler-
Lagrange equation corresponding to

d jj dt dx[aT,+xT, ] =0 (0.3)

for variations 87(x,t) and da(x, ¢). The conjugate variable o obeys the
adjoint equation

PR (0.4)

The construction (0.3) is open to criticism in that « is an “artificial
variable,” or that

jdx kT .o, (0.5)

is not the “physical energy.” However, these objections are semantic, and
variational principles like (0.3) have been seriously proposed as a way to
handle dissipative systems. Moreover, the recent literature on Hamiltonian
fluid mechanics contains variables that are from a certain viewpoint as
artificial as o, and new conserved quantities that are surely as silly as (0.5).
Without venturing further, let us simply agree that, while the beauty of
Hamiltonian theory may reside in its formal mathematical structure, its
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real importance depends very much on the physical meaning attached to
the mathematical symbols.

FUNDAMENTALS
1.  The Geometric View of Mechanics

The geometric approach to classical mechanics is the subject of an increas-
ing number of monographs, including Abraham & Marsden (1978),
Arnol’d (1978), and Dubrovin et al. (1984). The following discussion is
patterned after the short review by Greene (1982).

To establish essential ideas, we consider first a mechanical system com-
posed of N discrete particles. Let m2; and x,{t) be the mass and Cartesian
location of the ith particle at time 7. Let V(x,,...,xy) be the potential
energy of the system. The Lagrangian is

L(x,x) =Zl/zmiﬁt'ﬁz‘”V(xla---ny), (1.1
and the dynamical equations result from Hamilton’s principle in the form
5[Ldr=0, (1.2)

where J corresponds to arbitrary variations éx,(7) in the particle trajec-
tories, with dx; = 0 at the endpoints in 7. Alternatively, we can define the
conjugate momenta

p; = 0L/o%, (1.3)

and invoke Hamilton’s principle in the modified form

P fdr {Zpi'ﬁ,——H} =0, (1.4)
where
H(p,x) = 3 p;" %,— L(p, X) (1.5)

is the Hamiltonian and J now stands for arbitrary independent variations
dp,(7), 6x,(7) in the momenta and locations of the particles. The variation
(1.4) yields the canonical equations,

X, = 0H/op, P, = —0H/dx, (1.6)

Now define the Poisson bracker
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{F,G} = Z(@F/axi'aG/api—aF/apy6G/6xi) (1.7)
for any two flunctions F(p, x) and G(p, x). Then Equations (1 .6) imply that
djdt F(p,x) = {F,H}. (1.8)

It follows from (1.7) that the Poisson bracket is antisymmetric,

{F,.G} = —{G.F}, (1.9)
obeys the Jacobi identity,
{E, F},G}+{{F,G},E} +{{G,E},F} =0 (1.10)

(for any E, F, G), and is nonsingular in the sense that if {F,G} = 0 for
any choice of G, then F = constant.

The variational principle (1.4), the ray equations (1 .6), and the statement
(1.8) containing the Poisson bracket are alternative beginning points for
an axiomatic theory of classical mechanics. In the older literature, the
variational principle was usually regarded as the fundamental state-
ment. However, modern treatments favor (1.8) for reasons that are next
explained.

Let

(Zl"“sZM)=(xla'--9xNapla~-’9pN) (111)

with M = 6N and note that each z' is one Cartesian component of the
location or momentum of one particular particle. In a new notation, (1.7
becomes

(F,G) = 0F|oz']7 0G/oz', (1.12)
where '
0 I

I={_, o) (1.13)

Jis the 3N-dimensional unit matrix, and repeated indices are summed. The
significance of (1.12) is that (1.8-1.10) are all covariant under arbitrary
transformations of the phase coordinates z'. That is, if

' = Z'(2) (1.14)

are new coordinates, F(Z) is the function F(z) expressed in the new coor-
dinates, and

Ji = 97')0zm Jm™ 820" (1.15)

transforms as a rank-two contravariant tensor, then (1.8-1.10, 1.12) hold
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with all dependent and independent variables v replaced by 5. The prop-
erties (1.9, 1.10) can also be written in terms of J? in the covariant forms

Ji= i (1.16)
and
J™ 8oz 4 I oz + TFm 816z = 0. (1.17)

The complete specification of a Hamiltonian system is therefore equivalent
to the choice of a scalar Hamiltonian H(z) and a contravariant tensor
J¥(z) with the properties (1.16, 1.17). All the general results of classical
mechanics then follow from (1.8, 1.12, 1.16, 1.17) as an exercise in tensor
analysis, in which the special properties (1.16, 1.17) of J? play a critical
role. The theory of skew-symmetric tensors is very special and is most
naturally stated in the language of differential forms (e.g. Arnol’d 1978).
However, the present review uses nothing beyond ““old-fashioned” tensor
analysis.

If the coordinates z’ are canonical, then J? takes the special form (1.13).
However, by Darboux’s theorem any nonsingular J¥ with the properties
(1.16, 1.17) can be brought into the form (1.13) by a transformation to
canonical coordinates. For such a J7, there are in fact infinitely many sets
of canonical coordinates, interrclated by canonical transformations.

There exists a close and illuminating analogy between the geometry of
J7 (called symplectic geometry) and ordinary Euclidean geometry with
metric tensor g”. The condition (1.17) is analogous to the vanishing of the
curvature tensor. Any nonsingular symmetric g7 with zero curvature can
be brought into the special form

g=1 (1.18)

by a transformation to Cartesian coordinates. Equation (1.18)is analogous
to (1.13). There are infinitely many sets of Cartesian coordinates, inter-
related by unitary transformations. Thus canonical transformations in
phase space are the analogues of rigid rotations in ordinary Euclidean
space. Just as any non-Euclidean manifold can be made Euclidean by
embedding it in a higher dimensional space, any non-Hamiltonian dynam-
ics can be made Hamiltonian by introducing auxiliary variables, as in
example (0.3). However, these facts evidently do not diminish the impor-
tance of either Euclidean geometry or Hamiltonian mechanics.

It can happen that J7is singular but still satisfies (1.16) and (1.17). This
situation typically occurs after a transformation from canonical coor-
dinates to a reduced set of fewer coordinates, as in the transformation
from Lagrangian to Eulerian fluid variables. In the reduced phase space,
canonical coordinates do not exist, but all the results of (1.8, 1.12, 1.16,
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1.17) still apply. If J7 is singular with corank K, then it follows from the
Frobenius theorem and the property (1.17) that there exist K independent
functions Cy(2), called Casimirs, for which {C, F} = 0 for any F(z), and
therefore dC,/dt = 0 for any Hamiltonian H(z). The reduced equations
are complete, provided that J? depends only on the noncanonical variables.
This can occur if the Hamiltonian, written in the original canonical coor-
dinates, has symmetry properties that permit the reduction. Then the
Casimirs C,(z) are the conserved quantities corresponding to these sym-
metries. For a lucid discussion of singular Poisson tensors and Casimirs,
refer to Littlejohn (1982).

2. The Particle-Mechanics Form of Hamilton’s Principle

The simplest form of Hamilton’s principle for a perfect fluid is a straight-
forward generalization of (1.1) to the case of marked particles distributed
continuously in space. This particle-mechanics version of Hamilton’s prin-
ciple was given by Herivel (1955) for the special case of incompressible
flow, and by Serrin (1959) and Eckart (1960) for general compressible,
nonhomentropic flow. For earlier references, see Truesdell & Toupin
(1960, pp. 603-5).

Let x(a, b, ¢, 7) be the location of the fluid particle identified by curvi-
linear labeling coordinates a = (a, b, ¢) = (a,, a», a;) at time 7. The labeling
coordinates remain constant following the motion of the fiuid particles,
and they are analogous to the subscript i in Section 1. It is convenient to
assign these labeling coordinates so that

d(mass) = da db dc. 2.1
Then
p = d(a,b,c)/d(x,y,z) = d(a)/0(x) (2.2)

is the mass-density of the fluid. Since the labeling coordinates follow the
motion, (2.2) holds at all times. A direct application of ¢/t to (2.2) then
yields

dplot+pV-u =0, (2.3
where

u = (u,v,w) = 0x/01 2.4)
and

V =(0.,0,,0,) (2.9

is the gradient operator in x-space. Thus mass conservation is implicit in
the labeling of coordinates. Note that d/dt is the same as D/Dt in con-
ventional notation.
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The Lagrangian analogous to (1.1) is

L= JTJ da {1/2(0x/01)* — E(0(x)/0(a), S(a, b, ¢)) — D(x)}, (2.6)
where @ is the potential for external forces, and the specific internal energy

E = E(o,5) 2.7
is a prescribed thermodynamic function of the specific volume

w=p '=a(x,y 2)/Ha,b,c) (2.8)

and the specific entropy S. The entropy depends only on the labeling co-
ordinates, in a manner determined by initial conditions. Thus

as/ot = 0. (2.9)

The essence of the perfect-fluid approximation is that the fluid-particle
locations x(a, T) enter the potential energy in (2.6) only in undifferentiated
form through @ and through the Jacobian (2.8) in E. Hamilton’s principle
states that

o IL dr =0, (2.10)

where § stands for arbitrary independent variations dx(a, b, ¢, 1) in the
particle locations. The statement (2.10) implies that

ox: 0%x/0t* = —aVp—VO (2.11)
and that p = 0 at the (free) boundaries of the fluid, where
= —0F(x, S)/0a. (2.12)

Note that (2.12) is the usual thermodynamic equation relating pressure
and internal energy, and it may be considered the equation of state. If
rigid boundaries are present, they must appear as infinite potential barriers
in the function @(x). In most of what follows, we assume for convenience
that the fluid is unbounded and let all variations vanish at infinite distances.
However, boundaries present no essential difficulties to any of these
methods.

Equations (2.3, 2.9, 2.11, 2.12) are the complete equations for a perfect
fluid. The total differential of (2.7) is

dE = 0FE{da du+0E[2S dS. (2.13)
By (2.12) and the definition
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T = JE[dS, (2.14)
(2.13) is equivalent to

T dS = dE+p do. (2.19)

All of Maxwell’s thermodynamic relations follow from (2.12) and (2.14).
Thus the complete dynamics and reversible thermodynamics of the perfect
fluid are determined by (2.10) and the choice of E(x, S). Since the pre-
scribed function E(a, S) is the internal energy in exact thermodynamic
equilibrium, its use in the Lagrangian (2.6) for a moving fluid is really an
approximation. This approximation is equivalent to the assumption of
local thermodynamic equilibrium in the more conventional derivation of
the perfect-fluid equations.
For future use, we note that the analogues of (1.3, 1.4) are

u(a, 7) = SL/5(dx/7) (2.16)

and ,
5JdrU”dau-ax/ar~H}=o, ‘ 2.17)

where '
H[u,x]=dea{1/zu-u+E+c1>}, (2.18)

and ¢ stands for independent variations du(a, t) and 6x(a, 7). The Poisson
bracket analogous to (1.7) is

{F,G} = J‘J‘J da {5F/dx(a)- 6G/Su(a)— 6F/du(a) - 6G/ox(a)}, (2.19)

where functional derivatives have replaced the ordinary derivativesin (1.7).
3. Eulerian Forms of Hamilton’s Principle
The fluid motion is a time-dependent map

x = x(a, 1) (3.1

from a-space into x-space, and Hamilton’s principle requires that the
action (2.10) be stationary for arbitrary variations in this map. Since each
forward map (3.1) uniquely determines an inverse map

a=a(xt) (3.2)

from x-space into a-space, Hamilton’s principle is obviously equivalent to
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the statement that the action be stationary for arbitrary variations da(x, 1)
in the inverse map (3.2). Here 7 = 7, but (x, y, z,¢) are independent coor-
dinates. This simple interchange between dependent and independent vari-
ables leads to the various Eulerian forms of Hamilton’s principle, in which
the dependent variables are varied at fixed locations x.

The early attempts to formulate an Eulerian version of Hamilton’s
principle (e.g. Clebsch 1859, Bateman 1929, Eckart 1938) were ad hoc and
only partly successful in that they yiclded dynamical equations whose
solutions are only a subset of the solutions to the perfect-fluid equations.
The first general Eulerian versions of Hamilton’s principle were those of
Lin (1963) and Seliger & Whitham (1968). For a thorough review of
the early literature, see Finlayson (1972). Lin’s key contribution was the
introduction of new constraints, which, as explained by Bretherton (1970),
force an equivalence between the Eulerian and particle-mechanics versions
of Hamilton’s principle. However, it is still widely unappreciated that these
two versions are really the same principle, and the following discussion is
designed to emphasize this point. When the Eulerian version is derived
from the particle-mechanics version (as here), then Lin’s constraints ap-
pear as automatic requirements and not as a step requiring extraordinary
ingenuity.

By (2.6, 2.10) and the reasoning given above, Hamilton’s principle must
be equivalent to the statement that

P m dt dx 8(a)/e(x) {1/2u-u— E(@(x)/2(a), S(@))—®(x)} =0 (3.3)

for arbitrary variations da(x, 7). To carry out this variation, we must
express the entire integrand of (3.3) in terms of a(x, 7) and its derivatives.
To express the velocity u as derivatives of a, we solve the three identities

da/ot = 0 = da/dt+(u-V)a 3.4

for the three components of u and substitute the results back into (3.3).
Equivalently, we can append the three equations (3.4) as constraints on
(3.3) and then vary both a(x, 1) and u(x, r). Thus Hamilton’s principle is
equivalent to

0 '”JVJ dt dx 8(a)/d(x) {1/2u-u— E(8(x)/0(a), S(a))

—®(x)—A-Da/Dt} =0 (3.5)

for variations ou, da, and SA(x, ). Here A =(4,B,C) = (A, Ay, A3) 18
the set of Lagrange multipliers corresponding to the Lin constraints (3.4).
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The statement (3.5) is one of many forms of Hamilton’s principle that
use (x, y, z, ) as independent variables. These variational principles differ
from one another in the integrand of the Lagrangian and in the quantities
to be varied, but their mathematical equivalence is usually easy to establish.
The velocity variation of (3.5) yields

ou: u = AVa+BVb+CVe = AVa, (3.6)

where repeated indices are summed. Equation (3.6) can be used to com-
pletely eliminate the velocity u from (3.5), which, after some cancellations,
becomes

5 ”ﬂ dr dx 0(a)/a(x) {A - da/dt+1/2(AVa)*+ E+®) = 0 3.7

for variations A and da(x,?). Note that pA4; and a; form canonically
conjugate pairs in (3.7). It is straightforward to verify that the equations
resulting from (3.7) are equivalent to the perfect-fluid equations.

The variational principle (3.7) is one of many obtained by Seliger &
Whitham (1968) using a rather different approach. The present derivation
emphasizes the close connection between (3.7) and the particle-mechanics
form of Hamilton’s principle, and it puts a clear physical interpretation
on the “potentials” a and A. The a are labeling coordinates that can be
assigned in numerous ways to satisfy (2.2). But once the a; have been
chosen, the A, are uniquely determined from (3.6) as the projections of u
on the curvilinear basis vectors Va,. The Vg, form a basis provided only
that the density p is nonzero.

Now if either (2.2) or its time derivative (2.3) is appended as a constraint
on (3.5), then we can replace d(a)/3(x) by p and vary a(x, t), u(x, ), and
p(x, 1) independently. Thus, we have

8 jfjjdt dx {p[1/2u-u—E(p~ ', S(a)) — ®(x)

—{ - Da/Di]+¢[op/oi+V - (pw)]} =0 (3.8)

for independent variations dp, ou, da, 6, and S¢(x,1). Here { =
(£1,04,¢3) = ({,n,0) and ¢ are the Lagrange multipliers corresponding to
(3.4) and (2.3). The velocity variation of (3.8) yields

Su: u = {Va+nVb+6Ve+Ve, (3.9)

which can again be used to eliminate u from (3.8). After some cancellations
and an integration by parts, (3.8) becomes
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o jfjj dt dx p{(0ajot+ndb/ot+ 0éc/0t+d¢/ot

+12u u+E(p~", S@)+®} =0 (3.10)

for variations da, 6, 5p, and ¢ (x, 1). In (3.10), uis simply an abbreviation
for (3.9). The variations yield the equations

8C: DajDt =0,  da; DLJDt = (3E/8S)(3S/0a),
5¢: 8plet+V - (pu) =0, (3.11)
dp: C-Pa)dt+0¢/dt+1/2u-u+d+E+ Plp = 0.

Now (3.11) are eight evolution equations for the eight scalar dependent
variables. However, (2.17) and (3.7) both yield six evolution equations for
six dependent variables. This suggests that (3.11) can be simplified with
no loss in generality. First suppose that the fluid is homentropic (i.e. that
the entropy is everywhere constant). As explained below, we can assign
(a,b,¢) and ¢ so that § =0 in (3.9) for any initial velocity u. Then ¢
remains zero by (3.11) (with S = constant). This means that

é .U-U dt dx p{{da/dt+ndbjot+o¢/ot+1/2u-u+E(p~ ) +®} =0
(3.12)
for variations 8¢, da, 61, 6b, 6p, and dd(x, 1), where u stands for
u={Va+yVb+Veo. (3.13)

The variations yield (3.11) with § and ¢ set formally to zero. Further
abridgments of (3.13) are possible, but these correspond to special solu-
tions of the perfect-fluid equations (Section 5).

Boozer (1985) gives a transparent proof that any u(x) can be represented
as in (3.13). First, by the interpretation of (a, b, ¢) as labeling coordinates,
any u has the representation (3.6). The a; and A, are always single-valued
functions of x. Now let ¢(x(a)) be the solution to

d¢/dclap = C(x(a)). (3.14)
Then (3.6) takes the form of (3.13) with
{=A—-0d/a and n = B—0¢/db. (3.15)

The function ¢(a, b, ¢) (and hence { and ) will be single valued if the labels
(a, b, ¢) are assigned so that there are no closed surfaces of constant a, b,
or c. This is always possible. In particular, (a, b, ¢) can always be chosen
to have the same topology as Cartesian coordinates.

For general nonhomentropic flow, it is often possible to choose the
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entropy itself as one of the labeling coordinates. Suppose that V.S is nowhere
initially zero. Then we can always assign (a, b, ¢) to satisfy both (2.2) and
(say) S = b. By the same reasoning as above, the initial velocity has the
representation (3.9) with 8 = 0 and b = S. (There are no closed surfaces
of constant entropy if VS # 0.) Again, (3.11) implies that DO/Dt = 0.
Thus, we have

é J‘JJ‘J‘ dt dx p{{0a/ot+noS/ot+0¢ /ot

+12uru+E(p 1, S$)+P(x)} =0 (3.16)

for variations d{, da, Jy, 68, 5b, and d¢(x, t), where

u={_{Va+nVS+Vep. (3.17)
The variations yield the following equations:

of: Da/Dt = 0, da: D{/Dt = 0,

on: DS/Dr =0, 6S: Dy/Dt = T, (3.18)

o¢: Op/ét+V - (pu) =0,

ép: {6ajot+ndS|ot+0¢[/0t+1/2n-u+D+ E+ Plp = 0,

where the temperature T is defined by (2.14).

The statement (3.16) (and slight modifications thereof) is the best-known
Eulerian version of Hamilton’s principle. It is straightforward to show
that (3.17, 3.18) are equivalent to the perfect-fluid equations, and van
Saarloos (1981) gives an explicit canonical transformation between the
canonical variables in (3.16) and those in (2.17). (See also Broer &
Kobussen 1974.) However, (3.16), unlike (3.7), becomes generally invalid
(as explained in Section 5) if the entropy is constant over even infinitesimal
volumes of the fluid. This failure occurs not for deep physical reasons, but
only because a locally constant entropy cannot serve as a particle label.

The primary reason why (3.16) has achieved such popularity seems to
be that it involves a minimal number of “nonphysical” dependent variables
(a,{,n). However, I believe that the distinction between “physical” and
“nonphysical” variables has been overdrawn. The “nonphysical” variables
are all either particle labels or closely related thereto. These labels would
acquire an indisputable physical significance if only the internal energy
were allowed to depend on solute concentrations that are conserved fol-
lowing the fluid particles. This is true whether or not the solute con-
centrations have topological properties that make them suitable themselves
as particle-labeling variables. '
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The variational principles given above are merely representative of an
infinite number of possibilities. Seliger & Whitham (1968) give many
more examples. Virasoro (1981) has given an interesting Hamiltonian
formulation of two-dimensional incompressible flow in which the vorticity
appears as the momentum coordinate. Griffa (1981) discusses the canonical
transformations relating the particle-mechanics and Eulerian versions of
Hamilton’s principle to Virasoro’s formulation.

4. The Particle-Relabeling Symmetry

The particle labels a(x, ) enter the Lagrangian (2.6) only through the
density d(a)/é(x) and the entropy S(a,b,c). Thus the potential energy
terms in the Lagrangian are unaffected by particle-label variations da(x, t)
that leave the density and entropy unchanged. By Noether’s theorem, this
symmetry properly corresponds to a conservation law. The conservation
law turns out to be the most general statement of vorticity conservation.
The connection between the particle-relabeling symmetry property and the
general vorticity conservation law has been discovered in various forms
by Calkin (1963), Bretherton (1970), Friedman & Schutz (1978), Ripa
(1981), Salmon (1982), Henyey (1982, 1983), and undoubtedly others.

First suppose that the fluid is homentropic. Then the particle labels enter
(2.6) only through the Jacobian (2.2). Let da(x, ) be such that

éd(a, b, c)jd(x,y,z) = 0. 4.1
This implies that

ddajba+ 00b/0b+ ddc/dc = 0. (4.2)
Thus

6a=V,xT (4.3)

for some T(a, 7), where
Va = (6a, 6179 ar) (44)

is the gradient operator in a-space. For such a variation, we have

P j L dt = J ” j dt da 8x,/0t 5(0x,/0)

S f H f dr da (0x,/07) (0x,/0a,) (8(3a,)/87)

— J‘-”j dt da A-0(6a)/er, (4.5
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where
A =uVx+ovV,y+wV,z (4.6)

is the “reciprocal” of (3.6). Substitution from (4.3) and an integration by
parts yields

0 JL dt = JIHA dv da T-0/0z[V, x Al @.7

But T is arbitrary and (4.7) must vanish by Hamilton’s principle. It follows
that

8jet(V, x A) = 0. (4.8)

The conservation law (4.8) was discovered by Eckart (1960), but he did
not notice the connection with the particle-relabeling symmetry property.

Equation (4.8) is a general statement of vorticity conservation. All the
well-known vorticity theorems for homentropic flow are consequences of
(4.8). Let 0(a, b, c) be any quantity that is conserved on fluid particles.
Then, by (4.8),

8/0T[(V. x A)*V,0] =0 (4.9)
is also conserved. By (4.6), we have

(V. x A)-V0 = p~ '(V x u)- V0. (4.10)
The statement

8/ot[p~ '(V x ) V] = 0 @.11)

expresses the conservation of potential vorticity. Since 0(a, b, ¢) 1s an
arbitrary tracer, (4.8) and (4.11) are actually equivalent.
Now consider any closed loop in a-space. By (4.8), it follows that

djot §A'da = 0. (4.12)
But
A-da=u"dx (4.13)

by (4.6). The statement

0jot 3€u'dx =0 (4.14)
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is Kelvin’s theorem. Bretherton (1970) derived (4.14) directly by con-
sidering the virtual displacement of fluid particles around a closed material
loop.

Next consider any fixed volume V in a-space with surface everywhere
tangent to V, x A. It follows easily from (4.8) that

djdt ”f da(V, x A)-A = 0. (4.15)

But we also have
(Vox Ay A=p " '(Vxu-u (4.16)
Thus, it follows that

djdt f” dx (V x u)-u=0, (4.17)

where V7, the corresponding volume in x-space, is a material volume of
closed vortex tubes. The statement (4.17) expresses the conservation of
helicity. Note that (4.9) and (4.15) follow immediately from (4.8), whereas
the original derivations of (4.11) and (4.17) [by Ertel (1942) and Moffatt
(1969)] required considerable ingenuity.

Now consider general nonhomentropic flow. It is again convenient to
let the entropy be one of the labeling coordinates. We therefore set ¢ = S
and consider particle-label variations satisfying

6d(a, b,S)é(x,y,z) =0 and 6S=0. (4.18)

These variations correspond to a relabeling of fluid particles within sur-
faces of constant entropy. Now (4.18) implies that

da = —dy|db, b = dyr/da (4.19)

for some y(a, b, S, 7). For such variations, we have

b f Ldt=— f f J f dt da  8/01[0A4)0b— 0B/da). (4.20)

Since i is arbitrary, it follows that

0/ot[(V, x A)-V,S]= 0. (4.21)
The analogue of (4.11) is therefore

dfotlp~'(V x u)+VS] = 0. (4.22)
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For nonhomentropic flow, (4.14) applies only within surfaces of constant
entropy.

The derivation of the general vorticity conservation law from the par-
ticle-relabeling symmetry property provides an elegant unification that is
lacking in conventional derivations. For any continuum, the general vor-
ticity law is simply that which results from the most general transformation
of labeling coordinates that leaves the “‘physical” variables unchanged.
The symmetry approach also provides an important motivation: The con-
servation law is known to exist as soon as an inspection of the Lagrangian
reveals the symmetry property. One need not rely on unguided manipu-
lations. Finally, the symmetry approach shows that vorticity conservation
is a consequence of the continuum approximation. It has no analogue in
particle mechanics, where the particle labels cannot be varied continuously.

5. Flows With Special Symmetry

We now consider abridgments of the Eulerian variational principle (3.9,
3.10) that are more drastic than (3.12, 3.13) or (3.16, 3.17). These further
abridgments yield dynamical equations whose solutions agree with the
perfect-fluid equations but have strongly constrained vorticities. These
special solutions represent “unbroken symmetries” of the general solution
to the perfect-fluid equations.

First suppose that the fluid is homentropic. If both Db/Dt =0 and
Dc/Dt = 0 are used to justify the restriction b = ¢ = constant in (3.9, 3.10)
(with § = constant), the resulting variational principle is

P U”dz dx p{ldajot+d¢/at+1/2u-u+E(p~)+®} =0 (5.1)

for variations 8, éa, dp, and é¢(x, 1), where
u={Va+Vo (5.2)

is the Clebsch representation of the velocity u. It is easy to verify that the
equations resulting from (5.1, 5.2) have solutions that also solve the perfect-
fluid equations. However, as shown by Bretherton (1970), it follows from
(5.2) that these solutions all have zero helicity, and therefore they represent
a special class of solutions to the perfect-fluid equations. Thus the well-
known proof (e.g. Lamb 1932, Article 167) that any vector field u has the
local representation (5.2) does not apply to volumes of arbitrary size.

If all three of the constraints Da/Dt = 0 are used to set a = constant
(still assuming constant entropy), then (3.9, 3. 10) reduces to the variational
principle for irrotational flow given by Broer (1974), namely
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é Ji”:[ dt dx p{0¢jot+12u-u+E(p~ H+P(x)} =0, (5.3)
where
u=Ve (5.4)

for variations dp and 8¢ (x, t). In this case the vorticity is everywhere zero.
A repetition of the steps leading up to (5.3, 5.4) for a flow with a free
surface and a constant density yields the important variational principle
discovered by Luke (1967). For a review of the Hamiltonian formulations
of surface gravity waves, see Miles (1981).

Now suppose that the flow is nonhomentropic. We again assume that
V.S # 0 and take the entropy as one of the labels (S = b). In this case the
restriction a = constant in (3.16, 3.17) yields the variational principle

5 HH dr dx p{ndS/or+ oo+ 1/2u-u+E(p~",8)+®} =0 (5.5

where
u=nyVS+Vo. (5.6)

The solutions resulting from (5.5, 5.6) are again solutions of the general
equations but always have vanishing circulation <§u » dX In isentropic sur-
faces (Milder 1982). A further abridgment of the variational principle for
general nonhomentropic flow is impossible because the internal energy E
must retain an arbitrary entropy dependence.

The above three restricted forms of Hamilton’s principle represent flows
with vanishing material vorticity invariants. Such flows arise in initially
quiescent regions into which disturbances propagate without a transfer of
fluid. It is logical that these restricted flows should correspond to abridg-
ments of Hamilton’s principle in which particle labels are set formally to
zero because, as shown in Section 4, the vorticity laws arise from the
particle-relabeling symmetry. Section 9 shows that these ideas extend to
other systems, with somewhat surprising consequences.

6. Poisson Brackets

The state of a perfect fluid at a fixed time 7 corresponds to a point in an
infinite-dimensional phase space in which each dimension represents the
value of one component of u(a) or x(a) at a fixed value of a. The six
Lagrangian fields
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{u(a), x(a)} 6.1)
uniquely determine the five Eulerian fields
{u(x), p(x), S(x)}. 6.2)

However, each choice of (6.2) corresponds to infinitely many choices of
(6.1). Thus (6.2) corresponds to a point in a reduced phase space for the
fluid.

Let F = Flu(a), x(a)] and G be arbitrary functionals of the exact state
(6.1) of the fluid. Then the Poisson bracket {F, G} is defined by (2.19).
This same bracket can be written in the general form

{F.G} = ” dy, H dy, 0F/ov(y1) {vy 1), vy2)} 6G/SvAy»), (6.3)

where

{vdy)} (6.4)

arc a new set of six dependent and three independent variables obtained
by arbitrary transformation of (6.1). The coefficient {v(y,), v(y.)} can be
calculated from (2.19). Note that (6.3) is simply the functional analogue
of (1.15).

Now it can happen that ¥ and G depend on (6.1) only through (6.2).
The Hamiltonian (2.18) written as

H:de p{1/2uu+E(p ', S)+ D} (6.5)

is one such Eulerian functional. Then {F,G} can be expressed as (6.3),
with (6.4) replaced by (6.2). A lengthy calculation of {u(x), p(x)}, etc.,
yields the FEulerian bracket discovered by Morrison & Greene (1980, 1982):

{F.G}, = — J J J dx {[0F/3pV - 8G/ou+SF|Su-V 8G/3p]

+[p 'V x u*(6G/du x SF/éu)]
+[p" 'VS*(3F/3S 6G/Su— 5G5S SF/du)]}. (6.6)

The corresponding brackets for a variety of examples from fluid dynamics,
plasma physics, and field theory are given by Morrison (1982) and Marsden
& Montgomery (1986). The bracket (6.6) inherits the covariant properties
(1.9, 1.10) of the canonical bracket (2.19). However, unlike (2.19), (6.6) is
singular in the sense that
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{F.C}.=0 (6.7)

for any functional F, where

C= ,[” dx pf(q), (6.8)

and f(g) is an arbitrary function of the potential vorticity
g=p '(Vxu-Vs. (6.9)

In the terminology of Section 1, C is a Casimir functional of the singular
bracket (6.6). Such Casimirs play an important role in the stability theory
discussed in Section 7.

The Eulerian bracket is significant because (6.5, 6.6) and

dFjdt = {F, H}. (6.10)

comprise a closed Hamiltonian dynamics that contains only the Eulerian
variables (6.2). No particle labels, Lin constraints, or velocity potentials
are required. The singularity (6.7) reflects the projective character of the
transformation from Lagrangian to Eulerian coordinates. The Casimir
invariants (6.8) correspond to the symmetry property that permits this
reduction. A group-theoretic picture of the reduction from Lagrangian to
Eulerian fluid variables has been given by Arnol’d (1966a) and Marsden
& Weinstein (1983).

SELECTED APPLICATIONS

We now turn to three broad applications of the fundamental ideas pre-
sented in Sections 1-6. The applications include nonlinear stability theory,
the theory of interactions between mean flows and superposed distur-
bances, and the derivation of approximate dynamical equations that retain
analogues of exact conservation laws. Each of these applications really
deserves (and two have received) a separate review. The very limited goal
of the following brief discussion is to explain the connection between these
applications and the fundamentals of Hamiltonian fluid mechanics.

7. Nonlinear Stability Theory

The Liapunov method of stability analysis seeks a constant of motion that
is an extremum at the state whose stability is in question. Arnol’d (1966,
1969) introduced a powerful version of the Liapunov method based upon
the Casimir invariants of Hamiltonian theory. Arnol’d’s method has since
been applied to a great many hydrodynamical stability problems. For
extensive reviews, see Holm et al. (1985) and Abarbanel et al. (1986). Here
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we focus on the relationship of Arnol’d’s method to the ideas developed
in Sections 1-6.

Consider first a mechanical system with discrete degrees of freedom in
the notation of Section 1. If the system is steady in coordinates z' at the
equilibrium point z.,, then by (1.8, 1.12) we have

0 =dz;/dt = J'0H[0z) at z=1z,. (7.1)

The summation convention is in effect. If J7 is nonsingular, then (7.1)
implies that

OH[0z/ =0 at z=1z,. (7.2)
q

If, however, JY is singular with corank K, then, as stated in Section 1, there
exist K independent Casimir functions C,(z) such that

J99C,/0z' =0 at every z. (7.3)

In this case, (7.1) implies only that

0H[0z/ 4+ 1,0C,[0z/ =0 at z =1z, (7.4
for K constants {/;}. In other words, z,, is a stationary point of
I(z) = H+A,C,. (7.5)

If z, is an extremum of 1(z), then z., is a stable equilibrium state because
1(z) is a constant of the motion. [Arnol’d’s method can also be generalized
to include non-Casimir invariants besides the Hamiltonian. See Holm et
al. (1985).]

Every equilibrium state z, is a stationary point of (7.5) for some choice
of constants {4,}. For any nearby state z,, + Az, we define

Al(Az;z.) = I(z.(+ Az)—I(z.,)
=1/20%1(z,,)[0z'0z/Az' Az + O(AZY). (7.6)

For finitely many degrees of freedom, z., is stable to finite size per-
turbations if the quadratic form in (7.6) is definite. For infinitely many
degrees of freedom (the continuum case), the definiteness of this form
guarantees only that z,, is stable in a linear approximation to (7.1). In
fact, the quadratic form in (7.6) is a Hamiltonian for the dynamics (7.1)
linearized about z.,. To prove nonlinear stability of z.,, we seek a definite
quadratic form in Az that is always between Al(Az; z.,) and zero.

Arnol’'d’s original example of two-dimensional inviscid flow provides
an illuminating illustration of his method. The governing equation is

0q/ot+0(Y, @lo(x, ) =0,  q=V, (7.7
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and iy = 0 at the simply connected boundary. The (reduced) phase space
is the space of stream functions (x) that are zero on the boundary of the
fluid. The general Casimir is

Cilyl = ” dx F(q), (7.8)

where F(g) is an arbitrary function of the vorticity ¢g. By analogy with
(7.5), the steady equilibrium solution ., (x) must be a stationary point of

) = J J dx {1/2V - Vi + F(g)}. (7.9)
Indeed,
oI = de [—y+F(q)}dg=0 (7.10)

implies that

'ﬁeq = F/(ch) = \P(qeq)- (71 l)

The arbitrary function F corresponds to the arbitrary constants 4, in (7.4).
Then we have

AI(AW> lpcq) = l(weq + ‘l’) - I(wcq)
= ‘H dx {(Au)*+1/2F"(q.) (Ag)*} + O(A®). (7.12)

Thus, i, is stable in a linear approximation if
¥Y(g.) >0, all x. (7.13)

A more thorough analysis (Arnol’d 1966b, Holm et al. 1985) slightly
generalizes Rayleigh’s classic stability theorem. If, more generally,

¥'(g.q) > const > 0, all x, (7.14)
then
0 < AI¥(AY;Y.,) = J dx {(Au)*+const(Ag)*} < Al (7.15)

" and ., is nonlinearly stable in the norm AZ*. Mclntyre & Shepherd (1987)
show that (7.9, 7.11) can be used to rewrite Al exactly in a form that
emphasizes its O(A?) size, namely
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AI(AY; Yeg) = H dx {1/2Au" Au+ B(AY; o)}, (7.16)
where
BAY; Yro) = L {W(geg+9)—¥(qe0)} dq’. (7.17)

The expression (7.16) and its analogues for quasi-geostrophic flow (MclIn-
tyre & Shepherd 1987) are the finite-amplitude generalization of a con-
served quantity discovered by Andrews (1983) for small disturbances to
steady basic flow.

8. Reference Flows and Disturbances

It is often useful to regard fluid motion as the sum of a reference flow,
defined mainly for convenience, and an arbitrary disturbance therefrom.,
Then interest attaches to the interactions between the reference flow and
the disturbance. The most useful statements about these interactions take
the form of conservation laws. When these conservation laws are derived
directly from the conventional Eulerian equations of motion, the manipu-
lations required are often tedious and unrevealing. However, the con-
servation laws reflect obvious symmetry properties of the fluid Hamil-
tonian. A Hamiltonian perspective therefore provides the physical
motivation for seeking conservation laws, and it leads naturally to their
most general formulation. The fundamental papers include those by Eckart
(1963), Sturrock (1962), Whitham (1965, 1967), Hayes (1970), Dewar
(1970), Bretherton (1971), and Andrews & Mclntyre (1978a,b, 1979).
However, the following discussion is very closely based on Bretherton
(1976). For a recent review, see Grimshaw (1984).
Let

x = x(a, 1) 8.1)
be the general fluid motion and set
x(a,7) = X(a,0)+EX, T), (3.2)

where X(a, 7) is the reference flow and &(X(a, 1), 7) is the displacement at

“time 7 of the fluid particle labeled by a from the position it would have if
it had moved with the reference flow. Here T = 7, but 0/8T will imply that
X is held fixed. Hamilton’s principle (2.10) requires that the action be
stationary for arbitrary variations in the map (8.1) from a-space into x-
space. Substitution of (8.2) into (2.6) yields an expression for the action
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jfjjdr da {1/2(0X/0t+ 0&/0T+ X /ot VE)?

—E(0(X)/0(ay a(X + §)/0(X))} (8.3)

that depends both on the reference-flow mapping from a-space into X-
space and on the disturbance mapping from X-space into &-space. We
have assumed for convenience that the fluid is homentropic.

First suppose that the reference flow is arbitrarily prescribed. In particu-
lar, X(a, 7) need not itself be a solution of the fluid equations, and in the
general case where it is not, it can best be regarded as a field of moving
observers. No approximation is involved because the mapping é(X, T) is
still completely general. The action (8.3) may be rewritten in the form

J j j J dT dX R(X, T) {1/2(U(X, T)+ 8&/0T+ U V&)>

— E(R™'2(X+8)/0(X))} = f f J J 11, dX, L(2&/0X), (8.4)

where (X, Xy, X5, X3) =(7,X,Y,7Z) are space-time coordinates, V =
(O, Oy, ), and

UX,T) = dX/dr and R(X,T) = d(a)/d(X) (8.5)

are, respectively, the velocity and density fields associated with the refer-
ence flow. Hamilton’s principle now requires that (8.4) be stationary for
variations d&(X, T). The reference flow enters (8.4) as a “medium” through
the prescribed functions U(X, T) and R(X, T). If this reference flow is
independent of one space-time coordinate, say X,, then (8.4) is invariant
to space-time translations in the X,-direction. To discover the conservation
law associated with this symmetry property, we consider variations of the
“form

0g; = 0&/0X, of (X)), (8.6)

where df is an arbitrary infinitesimal function of the space-time coordi-
nates. For variations (8.6), Hamilton’s principle leads directly to

0T ,;/0X; =0, (8.7)
where
T,; = 0L|0(0E,/0X)) 0&,/0X,— LS, (8.8)

is the so-called energy-momentum tensor. Repeated indices are summed.
When the reference flow is steady (i.e. r = 0), Ty is the pseudo-energy
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density, and Ty (j # 0) are its fluxes. When r # 0, 7., is the pseudo-
momentum density. The conserved quantity (7.16) is the pseudo-energy
corresponding to the steady reference flow . Pseudo-momentum con-
servation laws are also called generalized Eliassen-Palm theorems in
meteorology.

Now suppose the reference flow is not independent of any space-time
coordinate. We can still create a conservation law of the type (8.6) by
simply introducing an extra independent variable y into the disturbance
field £. That is, we generalize (8.2) to

x(a,7) = X(a, 1)+ &(X, T, ) (8.9)

and regard the new variable p as an ensemble parameter that identifies the
members of a continuous collection of flows. With no loss in generality,
we assume that & depends periodically on u with unit period. Then

3€d# ={ D (8.10)

is the ensemble average. If the reference flow is defined so that

agdu X, T, ) =0, @8.11)

then the reference flow is really a mean flow, and (8.10) is the generalized
Lagrangian mean introduced by Andrews & Mclntyre (1978a).

Now, the mean flow X(a, 7) is, by design, independent of u. Thus the
averaged action

o [

is invariant to translations in the p-direction. The analogue of (8.7) is just
0T ,;/6X;+6Tuu/op =0 (no summation on ), (8.13)
and the average of (8.13) is

o Ty[0X; =0, (8.14)
where
Ty = 3€du OL[0(DE,/0X)) O, /op. (8.15)

Equation (8.14), which expresses the conservation of generalized wave
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action {T,,» (Hayes 1970), is simply the field-theory version of the classical
action conservation law

djdt 3€du pddgildp) =0,  p; = 0L(g;, dg;/dr)/0(dg;/dr), (8.16)

for a discrete system with generalized coordinates {g,(¢)}. See, for example,
Lanczos (1970, pp. 180-83). The integration in (8.16) is around a closed
loop of evolving states in phase space. The conservation law (8.16) arises
from the invariance of this metasystem to a shift in the system-labeling
parameter ¢ around the loop, in the same way that Kelvin’s theorem (4.14)
arises from a shift in particle label around a closed material loop of fluid.

With L given by (8.4), (8.14, 8.15) can be brought into the general form
given by Andrews & Mclntyre (1978b, his Equation 2.15). If, at the other
extreme, we assume that & in (8.4) takes the very restricted form

& = A(X, T) cos (O(X, T)+2np) (8.17)

of an infinitesimal, slowly varying wave train, then (8.14) reduces to the

* familiar form

OOt(E |0 )+ V [(U+CHE/w'] =0 (8.18)

in which E’, C,, and w’ are, respectively, the energy, group velocity, and
frequency of the sound wave in a reference frame moving with the mean
flow. The result (8.18) also requires the dispersion relation, which can be
obtained from (8.4, 8.17) by amplitude variations dA. This is essentially
Whitham’s (1965, 1967) method, although his specific procedure, which
would bypass (8.14), is actually more streamlined.

For nongeneral (e.g. infinitesimal) (X, T, p), it is inconsistent to regard
the reference flow X(a, t) as prescribed, and we must vary both the dis-
turbance and the reference flow to satisfy Hamilton’s principle. The vari-
ations 6X(a, 1) and 8&(X, T, u) yield coupled equations for the mean flow
and disturbance. Since these variations are taken independently, all the
above results for the disturbance flow remain valid.

With respect to mean-flow variations dX(a, ), &X, T, i) acts like a
prescribed function of X(a, ). Now suppose that the ensemble average
(8.10) is equivalent to an average over space coordinate x,. Then the p-
averages of &(X(a,1),1, ), that appear in the averaged Lagrangian are
independent of X,. That is, the statistics of the disturbance field, which
comprise the “medium” for the mean flow, are invariant to a translation
in the x,-direction. The resulting conservation law, which can be obtained
by considering mean-flow variations 6X,(a, 1), has been called a “non-
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acceleration theorem” because it sometimes implies that disturbances
cause no permanent change in the mean flow (Andrews & McIntyre 1978a).

9.  Approximate Dynamical Equations

We have so far entertained only the exact equations for a perfect fluid.
However, many commonly used approximate dynamical equations exhibit
2 Hamiltonian structure analogous to the exact case (and its generalization
to include electromagnetic fields). Examples include the reduced magneto-
hydrodynamic (MHD) equations (Morrison & Hazeltine 1984) and a
four-field extension thereto (Hazeltine et al. 1987), the shallow-water
equations (Salmon 1983), the quasi-geostrophic equations (Holm 1986),
the Boussinesq surface-wave equations (Whitham 1965), and the Bous-
sinesq internal-wave equations (Benjamin 1986). These examples raise the
interesting possibility that Hamiltonian methods can be used to gencrate
useful new approximations. In this spirit, Salmon (1983, 1985) derived a
new family of approximations to nearly geostrophic flow, including a
generalization of Hoskins’ (1975) semi-geostrophic equations to the case
of a spatially varying Coriolis parameter. His method has two clear advan-
tages over other perturbation procedures. First, the approximate dynami-
cal equations exactly conserve approximations to the exact invariants of
the motion, because the approximations, which are applied directly to the
fluid Lagrangian, do not disturb the corresponding symmetry properties.
Second, the Hamiltonian perspective suggests transformations to new
dependent and independent variables in which the approximate physics
takes its simplest mathematical form.

Miles & Salmon (1985) invoke Hamilton’s principle for a homogeneous
fluid with free surface with the added constraint that the fluid moves in
vertical columns, and they thereby obtain a simple, unified derivation of
previously known equations for long gravity waves. Their procedure,

_which is sketched as an example in the remainder of this section, demon-
strates that the ideas of Sections 1-6 apply profitably to approximations.

The exact equations for a three-dimensional homogeneous perfect fluid
with a free surface and flat bottom result from Hamilton’s principle (2.10),
with the internal energy replaced by the potential energy associated with
the free-surface displacement and by the constraint

d(x, y, z)/d(a,b,c) = 1, 9.1

where the constant mass-density has been taken as unity for convenience.
The particle labels a can always be assigned to correspond to the Cartesian
locations x in a hypothetical initial state in which the fluid is at rest. Then
¢ = 0 and ¢ = H describe the bottom at z = 0 and the free surface atz = A,
respectively, where H is the undisturbed depth of the fluid. Miles & Salmon
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(1985) introduce the fundamental approximation that the fluid -always
moves in vertical columns, i.e. that

x = x(a, b, 1), y=y(ab,1) 9.2)
are independent of ¢. Then (9.1) integrates to
z = ¢(a, b)/d(x, y)e, O0<c<H, (9.3)

which can be used to eliminate z(a, b, ¢, T) from the general expressions for
the kinetic and potential energy. The resulting Lagrangian,

Lon = 12H H da db {(8x/07)*+(0p/00)* + 1/36(0hjor) —gh},  (9.4)

depends only on the horizontal locations (9.2) of the vertical fluid columns.
In (9.4) g is the gravity constant, and

h = 8(a, b)/e(x, ) H (9.5)

is the vertical depth of the fluid. The third term in (9.4) is a shallow-water
approximation to the vertical kinetic energy. The formal small parameter

"¢ represents the squared ratio of water depth to horizontal length scale,
and Lgy differs from the exact Lagrangian by an error of O(&%). Hamilton’s
principle

6 \[LGN d’r = 0 (9.6)

yields the equations
ox: Du/Dt = —gVh—e(3h)~'V(h*D*h/Dt?), .7

where u(x, y, 1) = (u,v) is the horizontal velocity. A direct application of
/07 to (9.5) yields the exact mass-conservation equation,

Dh/Dt+hV-u=0. (9.8)

Equations (9.7, 9.8) are equivalent to the equations obtained by Green &
Naghdi (1976) using a method based upon Cosserat surfaces.

Now (9.4) is unaffected by particle-label variations da(x, y, r) that leave
the Jacobian (9.5) unchanged. By the methods of Section 4, this symmetry
property leads to the potential vorticity conservation law

DII/D:t =0, 9.9
where

I = [0v/0x — dufdy+ 1/3 8(Dh/D1, h)j8(x, y)]/h. (9.10)
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Tt is interesting to consider the subclass of solutions to (9.7, 9.8) in which
the potential vorticity (9.10) is identically zero. Such flows could arise from
very distant sources. By the reasoning of Section 3, the Eulerian equivalent
of (9.4-9.6) is

é jjj dx dy dt {h[1/2u-u+1/6&(hV* u)’—1/2gh—{Da/Dt

_yDb/Dil+ p[ohjor+V - (hw)]} =0 ©.11)

for independent variations oh, Su, da, ob, 8¢, on, and dP(x, y, 1). By the
same logic as in Section 5, the use of Da/Dt = Db/Dt = 0 to eliminate a,
b, {, and 5 from (9.11) gives

F) ﬁj dx dy di h[od/ot+u-Vep—1/2u-u—1/6(AV -u)’+1/2gh] = 0.

(9.12)
The velocity variation of (9.12) yields
du: u = Vo +e(3h) 'V(h'V-u), (9.13)

for which the potential vorticity (9.10) is zero for any ¢. Thus (9.13) is the
analogue of potential flow (5.4) for the approximation (9.7, 9.8). However,
the velocity (9.13) is not the gradient of a scalar and indeed takes a form
that would be very hard to guess from (9.7, 9.8) alone.

Unfortunately, it is very difficult to solve (9.13) for u to eliminate the
velocity from (9.12). However, we can consistently replace (9.13) by

u = Vo+e(3h) VRV ), (9.14)

which has the same O(&?) accuracy as (9.13). Substitution of (9.14) into
(9.12) yields

5 j” dx dy di h{0g[01+1/2(Vh) = 1/6:(hV>¢)*+1/2gh} =0 (9.15)

to the same O(¢?) accuracy as (9.12). The variational principle (9.15) and
resulting canonical form of the Boussinesq equations had been previously
given by Whitham (1967).

All the above results apply to long-wavelength motions of arbitrary
amplitude. Now consider the restricted case of one-dimensional flow, and
let the parameter u represent the ratio of free-surface displacement d(x, ¢)
to mean water depth H. Then, omitting irrelevant terms and setting
H = g = 1, we can rewrite (9.15) as
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b f f dx dt {ddpjot+1/2(1 + pd) (8¢/3x)?

—1/6e(1 + pud)(@*p/ox*)*+1/2d*} = 0 (9.16)

for variations éd and é¢(x, t). Linearized, nondispersive wave equations
result from (9.16) with u and ¢ set formally to zero. The change of variables

r(x,1) = J (Opjox+d) dx',  s(x,1) = f @pjox—d) dx'  (9.17)

transforms these linear equations into the form
orfdt+orfox = 0, 0s/dt—0s/ox =0 (9.18)

of uncoupled equations for waves moving in opposite directions. Now
substitute the inverse of (9.17), namely

¢ = 1/2(r+s), d = 1/2(0r/0x — Is[0x) 9.19)

back into (9.16), assume p = Of{g), neglect O(¢?) terms, and, following
Broer (1975), set the variable r(x,t) formally to zero. The final step
corresponds to the assumption that the motion is slowly varying in the
reference frame moving with the s-wave. The result (with 4 = ¢ = 1) is the
variational principle

0 JJ dx dt {s,5,—(5,)*+ 1/4(5)* + 1/6(s.,)*} = 0 (9.20)
for (one form of) the Korteweg—de Vries equation (Gardner 1971).
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