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ABSTRACT

In this paper, we analyze one-, two- and three-dimensional numerical solutions of a simple,
inertia-less ocean circulation model. The solutions, which all approach a steady state, demon-
strate that, in the limit of vanishing thermal diffusivity «, a front of thickness x'/2, identifiable
with the thermocline, spontancously appears at a location anticipated by simple arguments that
treat the front as an “internal boundary layer.” The temperature and velocity are generally
discontinuous across the front, but the velocity component normal to the front is zero. In the
asymptotic limit of vanishing diffusivity, the temperature has no vertical variation within the
layer above the front, and the potential vorticity is correspondingly zero. The appearance of a
front seems to require that the horizontal advection terms cancel in the temperature equation,
i.e., that the horizontal velocity be directed along the isotherms on level surfaces. When the
surface boundary conditions are specially chosen to prevent this cancellation, the front does not
appear. However, in the more realistic cases in which the flow determines its own surface
temperature, the cancellation occurs spontaneously and appears to be generically associated
with the front.

1. Introduction

Theorists have shown a great fondness for ocean circulation models that consist of
two or more immiscible layers with different, constant mass densities. The layers, are
separated by surfaces (which we will call fronts) at which the density jumps between
its values in the layers. When only two such layers are present, the single front is
usually considered to be a model of the ocean’s main thermocline, the region of
relatively rapid temperature change between warm surface waters and the cold abyss.
Since the observed thermocline is typically several hundred meters thick, this abstrac-
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“tion is severe. When more than two model layers are present, then the layers comprise a

crude model of the continuous density field that is actually observed.

In this paper we examine one-, two- and three-dimensional numerical solutions of an
inertia-less ocean circulation model in which all the variables, including the mass
density, are assumed to be continuous functions of location. The solutions, which all
approach a steady state, demonstrate that, in the limit of vanishing thermal diffusivity
«, a front of thickness /2 identifiable with the thermocline, spontaneously appears at a
location anticipated by simple arguments that treat the front as an “internal boundary
layer.” The temperature and velocity are generally discontinuous across the front, but
the velocity component normal to the front must be zero. In the asymptotic limit, the
temperature has no vertical variation within the layer above the front (i.e. the potential
vorticity is uniformly zero), but horizontal temperature variations are allowed. The
existence of a front thus seems to require that the horizontal advection terms cancel in
the temperature equation, i.e., that the horizontal velocity be directed along the
isotherms on level surfaces. In fact, when the surface boundary conditions are specially
chosen to prevent this cancellation, a front does not appear. However, in the more
realistic cases in which the flow determines its own surface temperature, this cancella-
tion occurs spontaneously and appears to be generically associated with the front.

The existence of the front clearly depends upon the nonlinear advection terms in the
equation for ocean temperature: These are the only nonlinearities present in the
inertia-less models considered, and “internal boundary layers” cannot occur in a
completely linear model. However, the location of the front is determined by boundary
conditions. The front is therefore closely analogous to the movable singularities that
appear in the solutions of some nonlinear ordinary differential equations. On the other
hand, the frictional boundary layers, which are also present in linearized models but
always occur at the same locations, are analogous to the fixed singularities that appear
at the locations of the singularities in the coefficients of linear ordinary differential
equations.

This paper is organized as follows. Section 2 introduces the basic model equations
(2.5), and discusses their relationship to the more standard primitive equations (2.1)
and to the more restrictive thermocline equations (2.14). In Section 3 we analyze a
family of very simple, one-dimensional solutions to the thermocline equations in which
the horizontal advection of temperature is assumed to be zero. These solutions, which
turn out to be the prototype for the more complicated two- and three-dimensional
solutions of later sections, exhibit a sharp front at a constant depth. The results of
Section 3 are complementary to those of Stommel and Webster (1962) and Young and
Ierley (1986).

Section 4 generalizes the one-dimensional model of Section 3 to a two-dimensional
model in the vertical and eastward directions, in which the temperature and velocity
are independent of latitude, and the eastward velocity is zero. In the solutions of
Section 4, the front has a generally nonzero slope in the eastward direction, and, in the
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limit of a piecewise-constant temperature at the surface, it closely resembles the
sloping interface between homogeneous layers in the familiar two-layer model.

In Section 5 we investigate a second two-dimensional model in which the variables
have a prescribed dependence on eastward distance. Friction is still omitted, but the
horizontal advection of temperature can now be significant. Since the eastward
dependence of the flow is prescribed, the northward dependence of the surface
boundary conditions controls the cancellation between the horizontal temperature
advection terms. We find that, when the boundary conditions favor cancellation, the
solution is essentially the same as in Section 3, and a sharp front occurs. More
interestingly, when the boundary conditions do not favor cancellation, the front
disappears. The experiments of Section 5 thus establish a connection between the
existence of the front and the alignment of the horizontal velocity with isotherms.
However, only three-dimensional experiments, in which the fluid determines its own
structure in both horizontal directions, can decide whether fronts occur spontaneously.

Solutions of the full three-dimensional equations, including viscosity, are examined
in Section 6. These experiments show that the formation of fronts and the coincidence
between horizontal streamlines and isotherms are indeed generic, and always occur in
regions of Ekman downwelling. Section 7 summarizes the results and their implica-
tions for modeling.

This paper makes no pretense to a complete understanding of the solutions to the full
inertia-less equations (2.5). Instead we focus on the general character of the front away
from coastlines and outcrops, and on the ways in which this front may constrain the
flow. The simple “theory” advanced below seems to explain the numerical results, but
it certainly lacks a fundamental justification. In fact, I have no explanation for what is
surely the most dramatic property of these inertia-less equations, namely, that in all the
numerical experiments I have performed, the solutions converge to a steady state,
despite high-order nonlinearity.

The numerical experiments reported here are a thin cross section of many experi-
ments performed since 1984. Besides their simplified dynamics and frictional boundary
layer structure, these experiments are distinguished from others in the literature by
their high spatial resolution in the vertical direction.

2. The simplified model
The primitive equations of ocean motion, invoking the beta-plane, traditional, and
Boussinesq approximations, are:

Du
T fxu= —V¢ + AV + Au,,
0= —¢, + 0+ 4,VW + Aw, 2.1
Uy + v, + w, =0

6, + ub, + v, + wh, = K,V’0 + K,9,..
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As usual, (x, y, z) are Cartesian coordinates in the (east, north, up) direction, ¢ is time,
u = (u, v) is the horizontal velocity, w the vertical velocity, f is the coriolis parameter
(times the vertical unit vector), ¢ is the pressure divided by the mean density, 6 is the
buoyancy (which we will call temperature), and V = (d,, 9,). Coordinate subscripts
denote differentiation. The parameters A,, 4, and K,, K, are eddy coefficients of
viscosity and temperature diffusion in the horizontal and vertical directions. Despite
greatly simplified thermodynamics, the equations (2.1), with appropriate boundary
conditions, are a relatively complete set of model equations for the large-scale ocean
circulation. _

In this paper we consider a rectangular ocean governed by the simplified equations:

fxu=—-V¢p — Au+fxu
0= —¢,+0 — Aw
Uy +v,+w, =0

0, + ub, + vB, + wb, = K,V + K,0,,

(2.2)

which differ from (2.1) in that the horizontal acceleration terms have been entirely
omitted, and the eddy viscosity terms have been replaced by Rayleigh friction in all
three directions. As explained further below, the ug-term in (2.2a) represents the
momentum put in by wind acting near the surface. Salmon (1986), hereinafter S86,
analyzed solutions of equations very similar to (2.2) which had been linearized about a
state of rest and horizontally uniform temperature. In the present paper, which can be
considered a sequel to S86, the emphasis is on the new phenomena that occur when the
full nonlinear advection of temperature is retained in (2.2d).

A good way to understand the relationship of (2.2) to (2.1) is to examine the limit of
vanishing friction in each. When 4,, 4, # 0, solutions of (2.1) satisfy velocity
boundary conditions of no-normal-flow and no-slip (or prescribed stress). When A,,
A, = 0, (2.1) can still satisfy boundary conditions of no-normal-flow. In contrast,
solutions of (2.2) satisfy only the boundary condition of no-normal-flow and require
A # 0todoso. With boundary conditions of no-normal-flow, the inviscid limit of (2.2)
is singular in the sense that the horizontal velocity tangent to boundaries becomes
infinite. From a heuristic viewpoint, this singular behavior arises because the neglect of
both inertia and friction from (2.1a) leaves a dynamics in which fluid particles respond
to force by moving at right angles to the force at a speed proportional to the force. A
rigid wall presents a potentially infinite force to the fluid particles that attempt to eross
it, and hence the infinite tangential velocity. However, it is unnecessary to keep the full
Fickian viscosity of (2.1) to avoid this singular behavior. If only the boundary condition
of no-normal-flow is required, i.e., if fluid particles can be allowed to slip along the
boundary at finite speed, then the simpler Rayleigh friction of (2.2) suffices.

Of course, both the Fickian and Rayleigh eddy viscosities lack any fundamental
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justification as parameterizations of the exact Reynolds momentum flux divergence.
However, the Rayleigh friction offers the practical advantage that (2.2) has a much
simpler boundary layer structure than (2.1). This simplifies the analysis of the
boundary layers (as in the lincarized solutions examined in S86), but, even more
significantly, it greatly facilitates numerical solutions of the inertia-less dynamics. In
numerical solutions, all boundary layers must be resolved, or the solutions show
spurious behavior that typically includes a change in the sign of the velocity at
alternating gridpoints. The need to resolve all three of the nested coastal boundary
layers that generally occur in solutions of (2.1) may require the eddy coefficients to be
so large that the solutions are unrealistically diffusive. In this paper, we are specifically
interested in the nature of the solutions to (2.2) for small values of the friction and
diffusivity.

Since (2.2) do not accommodate boundary conditions of prescribed stress, the
right-hand side of (2.2a) must include a “body force” component

fxug(x,y,2) (2.3)

which models the input of wind momentum near the surface. As shown in S86,
ug(x, y, z) can be interpreted as the horizontal correction velocity in a surface Ekman
layer of prescribed thickness. Since the Ekman layer is independent of A, it is not,
strictly speaking, a boundary layer of (2.2).

We nondimensionalize (2.2) in a standard way by scaling

’

L

(xsy) =L(x,’y’), Z=HZ,, ZZZ]t

H (2.4)
(nup) = Upw,up), w=Wow, W=7

¢ =ﬁ)UOL¢’; 0 = Ao . 0,-

Here, L and H are, respectively, the ocean width and depth, and (Up, W, fo, AB) are
representative values of the (horizontal velocity, vertical velocity, coriolis parameter,
basin-scale temperature variation). Then, after dropping primes, (2.2) take the form,

fxu= —Vop—eu+fxug
— —¢, + TH — & ’
¢ + o (2.5)
U+ vy +w, =0
0, + ub, + vl, + wh, = k;, (0, + 0,)) + &0,
where
A 5 H K, K, (2.6)
ezfo, —L’ Kh—UoL, Kv_WOH .
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and

f=1+6(y—§), 6=6}) 2.7)

where B4, is the dimensional value of df/dy. The complete boundary conditions on
(2.5) are no-normal-velocity and prescribed temperature or heat flux at all boundaries.
Colin de Verdiere (1988, 1989) has analyzed interesting numerical solutions of
equations that are very similar to (2.5) but include Fickian diffusion of horizontal
momentum. He calls these equations the planetary geostrophic equations.

In interesting cases, the parameters (2.6) are all small compared to unity, and 8 is
order one. The nondimensional parameter

8*A0
- Wofe

is a measure of the ratio of thermohaline to wind forcing, with the scales Af and W set
by the differential heating and Ekman pumping near the ocean surface. By an
argument of Welander (1971), T controls the depth of the thermocline. Briefly, the
(dimensional) Sverdrup relation,

T

(2.8)

ow
Bv =f:9; (2.9)
implies that
W,
BUo~f°h 0 (2.10)

where 4 is the depth of the thermocline. By the thermal wind relationship,

ov  of 211
f&z T ax )
we have
U, A8
fqu ~T (2.12)
Eliminating U, between (2.10) and (2.12) yields
h WL 1
- ud: (2.13)

H™ BaimAIH? - \/6T'

We shall recover (2.13) in numerous special cases. From here onward we adopt the
somewhat more natural convention of formally setting 7 = 1 in (2.5), and forcing 6 to
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be order T by the boundary conditions. The nondimensional thermocline depth in the
subtropical ocean is about 1/7. Thus by (2.13) T'is of order 50. However, to center the
thermocline within the computational domain of our numerical experiments, we shall
usually force 7 to be of order 10 (but still large compared to unity).

In my opinion, no set of equations simpler than (2.5) can consistently model the
circulation of an entire ocean basin. Numerical solutions of the full Egs. (2.5), with
thermal forcing and penetrative convection appended, will be presented in a later
article. In this paper, we consider various abridgments to (2.5) that may apply to
restricted regions. Our basic abridgment is to consider the flow below the Ekman layer
only, and thus to exclude the horizontal Ekman transport. This abridgment corre-
sponds to setting uy = 0 in (2.5a) and replacing the upper boundary condition w = 0
by a prescribed Ekman upwelling or downwelling.

A further abridgment will consist of omitting the friction terms from (2.5a—b)
altogether. There results the thermocline equations, '

fxu= —V¢
0= —¢,+ 10
Uy + v, +w, =0
0, + uby +v0, + wh, = k3 (0, + 0,,) + &,0,,.

(2.14)

The boundary conditions on (2.14) are the matching conditions to boundary layers or
fronts in which the viscosity is important.

The ideal thermocline equations, obtained by setting «,, x, = 0 in (2.14), represent
an even more drastic abridgment of (2.5). The ideal thermocline equations apply only
to the regions between all boundary layers and fronts. An important conclusion of this
paper will be that ideal thermocline equations do not apply over the whole interior of
the ocean.

In the most general case, we solve (2.5) on 0 < x, y, z < 1 by stepping (2.5d) forward
in time, and then determining the velocity field at the new time from the solution of a
linear elliptic equation obtained from (2.5a—c). If e < 1, then (2.5a—b) imply that

1 €
um—j—,¢y—ﬁ¢x+u5
1 €
VA +;}¢x—}—2¢y+ Vg (2.15)
0_¢z
"= €d?

-

so that the mass conservation equation (2.5¢) becomes

eazl—fﬁ—zcbﬁv-(%w)aV-uEJ+¢,z=ﬂz (2.16)
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with boundary conditions of no-normal flow,
% + }3—(3—: =fuz - n at coasts
(2.17)

d¢

Pl 0 atz =0, 1.
Here, nis the outward unit normal at the coast, and s is distance measured counterclock-
wise along the coast. As in S86, we solve (2.16-17) for ¢ by expanding ¢ and 4, in
vertical cosine series, and then solving the two-dimensional elliptic equation for each
vertical mode by sequential over-relaxation. After each pass through the interior
gridpoints, all the boundary points are updated simultaneously by use of (2.17a); this
requires the easy solution of a “wrapped-around” tridiagonal system.

We are interested in the case of asymptotically small friction e and diffusion . Since
¢ multiplies only horizontal derivatives in (2.16), we anticipate that the friction is
negligible outside sidewall boundary layers and (possibly) some fronts. The boundary
layer structure of linearized equations similar to (2.5) was explored in S86, and some of
that analysis applies to (2.5). For the flat-bottom case considered, the depth-averaged
flow is unaffected by 6 and is hence the same for both the linear and nonlinear cases.
The boundary layers on the depth-averaged flow include a western boundary layer of
thickness ¢ and northern and southern boundary layers of thickness ¢!/2. There is no
eastern boundary layer on the depth-averaged flow, and the interior depth-averaged
velocity must therefore obey the boundary condition v = Qatx = 1.

To analyze the boundary layer structure of the non-depth-averaged flow, we first note
that if 8 is smooth, i.e., if the temperature includes no spatial scales as small as the
boundary layer scale, then all frictional boundary layers can be analyzed on the basis of
(2.16) alone. The hypothesis of smooth 8 is clearly dangerous in view of the coupling
between the velocity and temperature introduced by (2.5d), and in fact does not apply
to linear theory. However, numerical solutions of the nonlinear model (2.5) suggest
that regions of rapid temperature variation do not often coincide with regions in which
friction is important. Separated western boundary currents are a notable exception.

For smooth 6, the coastal boundary layers on the non-depth-averaged flow have the
same correction equations as in the case of homogeneous flow (S86, Section 4), and
exist at any coast where either the Ekman transport or the interior thermal wind has a
component normal to the coastline. These boundary layers, which we call upwelling
layers, have a th'\ckncss €0, vertical velocities of order 1/(ed), and longshore geostrophic
currents of order!1/e. The important point here is that, since the upwelling layers can
accept an order-one normal flow from the interior, the interior non-depth-averaged
flow need not have a zero normal component at any coastline, including the eastern
boundary at x = 1. This means that the only coastal boundary condition on velocity in
the thermocline equations (2.14) is that the depth-averaged eastward velocity be zero
at x = 1. Pedlosky (1983), Janowi.tz (1986), and Huang (1989) have previously
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emphasized the importance of allowing a nonzero interior baroclinic flow at the eastern
boundary.

The great utility of the thermocline equations stems from the fact that (2.14) can be
rewritten as a single scalar equation in a single unknown (Welander, 1971). First, the
Sverdrup relation (2.9) is rewritten in the divergence form

%(¢)=£(J—;w). (2.18)
This motivates the definition
2 w=f;'j3ij. (2.19)
By (2.14a-b)
1 1
u=— ?Myz, v = ?Mx,, =M, (2.20)

and thus (2.14d) becomes
8 2
szzr - Mszzzx + szMzzy + ?‘MxMzzz =f[KhV Mzz + Kszzzz]' (221)

The factors f and 8/ f can, if desired, be absorbed into the definitions of y and « in
(2.21) to obtain an equation

szzt - Mszzzx + szMZZy + MxMzzz = ﬂhszzz + uszzzz (222)

in which f, ,, u, are the only nonconstant coefficients. Then, since our solutions all
approach a steady state, it makes no difference if we replace f by unity in the first term
of (2.22).

3. A one-dimensional prototype

Our first example is probably the simplest special case that exhibits a front. Consider
the flow below the Ekman layer and away from the sidewalls, and assume that the
governing ‘equations are the thermocline equations (2.14) or (2.21). We consider the
special sol:ﬁon .

M = xW(z) (3.1)

for which

¢ = xW’, u=2~0, v=-_W, w =
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and (2.21) becomes

Wi 22z T ﬂ-” 2227 (33)
where
S
- 34
M 5 (3.4)

is a small parameter with parametric y-dependence. Eq. (3.3), which seems to be the
prototype for the more complicated cases studied below, expresses a balance between
vertical advection w#, and vertical diffusion «,0,, of temperature. The horizontal
advection terms are absent because the eastward velocity and northward temperature
gradient are zero.

We imagine (3.3) to hold between the bottom of the Ekman layer and either the
bottom of the ocean or the top of an abyssal layer with different dynamics. The
boundary conditions are prescribed vertical velocity and temperature at these two
boundaries:

W) =wg, W) =Te

W(0) = wg, w"(0) = Ts. (3.5)

We must prescribe the temperatures at both boundaries because horizontal advection
(which could maintain a temperature contrast) has been neglected. If the temperature
boundary condition at one of the boundaries were changed to no-flux, then the
temperature would always become uniform at the temperature of the other boundary.

The surface and bottom temperatures are x7Tg and xTp respectively. For static
stability, we want Ty > T if the ocean lies on x > 0, and T < Ty if the ocean lies on
x < 0. (It is more convenient to let the east-west location of the model ocean be
arbitrary than to replace x by x — xin (3.1).) If the horizontal temperature variation
at the bottom is to be less than at the top (a reasonable assumption) then we also want
the absolute value of T to be less than the absolute value of Tg. We shall often assume
that T, = 0. Then if the ocean lies on —1 < x < 0, we require that T < 0. This
corresponds to an ocean with a constant temperature on the bottom and eastern
sidewall, and a surface temperature that is warmest on the western side of the ocean. If
the ocean lies on 0 < x < 1, we require Tp > 0, corresponding to an ocean with a
constant temperature on the bottom and western sidewall, and a surface temperature
that is warrii?on the eastern side of the ocean.

The equation (3.3) has been solved by stepping the time-dependent form

szt + Wszz = ”szzz (36)

to equilibrium. This system always approaches a steady state. The time-dependent
equation (3.6) bears a resemblance to Burger’s equation (which would be obtained by
erasing two z-derivatives from every term in (3.6)), but whereas the solutions to
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Burger’s equation contain only moving fronts, (3.6) exhibits stationary fronts in its
equilibrium solutions.
At equilibrium, and outside boundary layers or fronts, W obeys the “outer” equation

WW,, = 0. (3.7)
Thus, in outer regions,
W..=0 (3.8)
and
W = Az* + Bz + C. (3.9)

The constants 4, B, and C are generally different in each outer region. However, since
three constants cannot generally satisfy the four boundary conditions (3.5), there must
exist at least one boundary layer or front.

The analysis of the boundary layers and fronts is complicated by the fact that the
inner equation is the full equation (3.3). We make some progress by assuming that it is
permissible to replace the undifferentiated W in (3.3) by a truncated Taylor expansion.
This method, which is ad hoc, was suggested by the fact that the boundary layers and
fronts are visible only in the higher derivatives of Win the numerical solutions of (3.6),
while W itself appears to be everywhere smooth. Let the location of the inner region be
z,. If zy # 0, | then the inner region is a front rather than a boundary layer. With the
hypothesis introduced above, the inner equation is a linear equation,

Wo + Wiz —20) + + + IWore = uWosss (3.10)
where
W, = W (z) (3.11)
is the n-th derivative of W. Then

W, t W(Z_Z")juw(z_z")2
2z = CONSt eX
P[Wo o 1 2

(3.12)

and three further integrations would complete the solution. If Wy # 0, then the W,
term is negligible, and the thickness of the inner region is u. However, in this case, we
must have z, = 0 or 1, because the inner region correction decays only in one direction.
In fact, if W, is positive, we must have z, = 1, and if W, is negative, we must have
zo = 0.

If W, = 0, then

(—Z—_—i‘i] (3.13)

W,,, = const exp [Wl 7
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and the inner-layer correction decays in both directions provided that W, < 0. The
inner region then has thickness x'/2, and all higher terms in (3.12) are negligible. This
type of inner region can occur at any z, where W, is zero and W, is negative.

Anticipating that the outer solution must satisfy the boundary conditions on W (but
not on W,,), we can summarize our predictions as follows. Boundary layers of thickness
u can occur at any boundary at which fluid is Jeaving the domain. Fronts or boundary
layers of thickness x'/? can occur at any depth where W = 0 and W, is negative.

Using these rules on the locations of the inner regions, we can construct a theory of
the outer solutions. Suppose that wg = Ty = 0. Then it is obvious from (3.3, 3.5) that,
in outer regions, W/wy depends only upon the ratio wz/T;. A top boundary layer
appears possible when wg > 0 (Fig. 1a). In that case, the outer solution

W = wgz, allz (3.14)

satisfies all boundary conditions except the surface boundary condition on tempera-
ture.
On the other hand, if a bottom boundary layer exists, then the outer solution must be

W = l/2 TE(Z — 1)2 + (WE + 1/2 TE)(Z — 1) =+ Wg, all z (315)

which satisfies all boundary conditions except the bottom boundary condition on the
temperature. However, since wg = 0, a bottom boundary layer can exist only when
dW/dz <0atz = 0,i.e., when

Refer again to Figure 1a. This leaves the nature of the solution undetermined in two
sectors of the wy—T plane. In a sector of the first quadrant, both (3.14) and (3.15)
seem possible. In a sector of the third quadrant, neither (3.14) nor (3.15) is possible.

In the third quadrant sector, the inner region must be a front. Let z, be the location
of the front. The outer solutions are

W=wr=1,Tg(z — 1)+ A(z — 1) + wg, z>z
2 T E () (3.17)
W=W~ = Bz, z < Zg

where the constants 4 and B must be determined. It is easily shown that the outer
solutions and their first derivatives must match at z,. Thus, using the fact that W, = 0
at the front, we have

Wt=Ww-=0 and whH=Ww, at z,. (3.18)
These three conditions determine the three constants A, B, and z,. We find that

W=W?*=1,Te(z — 1) — Teg(zp — )z — 1) + wg, z > zg (3.19)
W=Ww-

0, z < Zg
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Figure 1. (a) The regions of the w;-T, plane in which solutions of the one-dimensional
thermocline equation (3.3, 3.5) with top and bottom boundary layers are apparently possible,
and (b) the types of solutions that actually occur. w, is the vertical velocity at the base of the
Ekman layer, and T, is the eastward derivative of the surface temperature.

where the depth A of the front is given by

>
h=1—zy— /7w'—3. | (3.20)
E

The solution (3.19) matches smoothly to (3.15) along the line OP in Figure 1a, and also
to (3.14) along the negative Tz-axis.

In contrast, (3.14) and (3.15) do not match smoothly along any bounding radius
within the first quadrant region of overlap. Numerical experiments show that the
location of the boundary layer changes rapidly (but continuously) from the bottom to
the top along the line Tz ~ 4.2wg. Near this line, numerical solutions of (3.6)
equilibrate very slowly. A complete map of the solutions is given in Figure 1b.

Figure 2 shows representative solutions from each region of Figure 1b for the case
u = .01. This value of u corresponds to realistic scale sizes of K, = 1 cm?sec™ !, H =
5km, and W, = 2 x 10~* cm sec™". Outside the inner regions, the solutions in Figure 2
agree closely with the outer solutions predicted above. Other solutions (not presented
here) show that these results are little changed if wy, T5 take small nonzero values.

The most interesting cases are those that exhibit a front. They correspond to Ekman

éwnwelling at the surface (wg < 0) and a surface temperature that increases to the
west at a sufficiently rapid rate (T < 2wg). Figure 3 shows the solutions corresponding
towg = —1and Ty = — 10 for three values of u. Because the front has a relatively
large (1'/?) thickness, it is not easily recognized as an “internal boundary layer” in the
solution with the largest (most realistic) value of u (Fig. 3, curve a). In fact, judging by




450 Journal of Marine Research [48,3

2=1 d z=1
e
a f hr
a
b b
c
d
e
f
c
2 ) +2 -10 o +10
w we

Figure 2. The vertical velocity W(z) satisfying (3.3), and its second derivative W”. The
boundary conditions are (3.5) withwy, = Ty, =0and (@) wy = —1, T, = —10; (b) w, = —1,
Te=-L@©w,= -1, T, =10(d)w, =1,Tp= -10;(e) w, =1, Ty, = L;and (H w; = 1,
T, = 10, corresponding to the points a through f on Figure 1b. These boundary conditions
correspond to zero vertical velocity and constant temperature at the ocean bottom, Ekman
upwelling (w; > 0) or downwelling (w, < 0} at the surface, and surface temperature increas-
ing to the west (7 < 0) or east (T > 0). The temperature is proportional to the absolute
value of W”.

the smooth appearance of curve a alone, one might be tempted to guess that diffusion is
nowhere important, and that the interior of the ocean could be explained by the ideal
thermocline equations. However, the “internal boundary layer” character of the front
clearly means that diffusion is a/ways important. That is, no matter how thick and
well-disguised the front, temperature diffusion is clearly necessary to match together
the two outer regions in which it is unimportant.

The relatively large thickness of the front for realistic values of u also means that the
asymptotic limit g4 — 0, in which the front becomes a two-dimensional surface, has a
limited quantitative applicability to the real ocean. But just as the solutions to any
differential equation are best characterized by their behavior near singularities, the
asymptotic limit of a sharp front offers the best hope for a better qualitative
understanding of the ocean circulation.

G. R. Ierley (personal communication) has examined numerical solutions of (3.3,
3.5)By the method of “shooting.” He confirms the picture described above, but he
believes that the “top boundary layer” behavior is actually caused by a simple pole p
associated with the special solution

4u

m (3.21)

W =

of (3.3), and lying just above z = 1.
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Figure 3. The same as Figure 2, but with Wg =Ty =0,w; = —1,and T, = —10, for three

values of the nondimensional diffusivity: (a) u = .01; {(b) # = .001; (¢) u = .0001; and (d) the
outer solution (3.19). As regards W, curves b, ¢, and d are indistinguishable, and curve a
differs slightly from the others below the front.

The existence of a special solution with the form (3.1) has been noted, but not
previously studied in detail. Although technically not a similarity solution, it corre-
sponds to the parameter values k — 0and m = o, respectively, in the families of
similarity solutions discovered by Robinson and Stommel (1959) and Young and Ierley
(1986). However, our results are very similar to those obtained by Stommel and
Webster (1962) and Young and Ierley (1986) for the special form,

M = xXBF(z/x'3), e, = 8(z/x'?) (3.22)

The differences between (3.1) and (3.22) are that (3.1) yields a simpler equation, (3.3),
and applies to an ocean of finite depth in which the eastern and bottom boundary
conditions need not be combined. Young and Ierley attributed the front to a conflict
between the boundary conditions at the top and those at the eastern boundary. In this
paper, the conflict is between the top and bottom boundary conditions. As argued in
Section 2, there seems to be no reason to require that the interior, non-depth-averaged
eastward velocity be zero at x = 1. In both solutions, the horizontal advection of
temperature is zero.

In the next two sections we examine two distinct, two-dimensional families of
solutions to the thermocline equations. These two-dimensional models generalize the
one-dimensional prototype (3.1) to the forms

M= M(x,z) (3.23)
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and
M = xW(y,z). (3.24)

The model (3.23) of Section 4 permits the front to have a nonzero east-west slope, but
there is still no horizontal advection of temperature. In the model (3.24) of Section 5,
horizontal temperature advection can be important.

4. Two-dimensional model with no horizontal advection

We again assume that the flow is governed by the thermocline equations, and
consider special solutions of the form

M = M(x, 2). 4.1)
for which
o =M, u=0, v=lsz, w=£Mx, 6=M,, (4.2)
P 7 12
With u = u; = u, the thermocline equation (2.22) takes the form
MM,.; = p[M o + M) (4.3)
or
we, =pulo,, +0,, W,=80, W=M, (4.4)

We solve (4.3) by time-stepping the time-dependent form
Mzzt + MxMzzz = I-L[Mzzxx + Mzzzz] (45)
The boundary conditions are taken as

W(x, 1) = wg(x), 0(x, 1) = 6g(x)

W(x, 0) = 0, 0(x,0) = 0 (4.6)

and
,=0 at coasts. 4.7

Once again, the solutions always converge to a steady state. There are no coastal
boundary layers, and hence no need for friction, because the eastward velocity u is
everywhere zero.

The new feature of these solutions is that the front can have a non-zero slope in the
east—west direction. In outer regions, where temperature diffusion is negligible, we
must have

W=0 or 6, = 0. (4.8)
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Thus either
0 =F(z2) and W=0
or
= A(x) and W=1,A4(x)z> + B(x)z + C(x)
where
F(z), A(x), B(x), C(x)

are functions to be determined from the boundary and matching conditions.
The interesting case is wg < 0. If 8; = 0, the solution

=0, W = wg(x)z

453

(4.9)

(4.10)

(4.11)

(4.12)

satisfies all boundary conditions. If 8 > O there must be a bottom boundary layer or

front. If there is a front at z = zy(x) # 0, then we must have
6 = 0:(x), W= 10:(x)(z — 1) + C(x)(z — 1) + wg(x), z> 2z,
and either
0 = F(z), W =0, z <z (F(0) =0)
or
8 =0, W = B(x)z, Z <z

By (4.4), the outer solutions (4.13—15) must also satisfy the jump conditions
dZO
W=AW =20 ~and AW, = — [0z — F(ZO)]“‘J;

at zy, where AW = W(zg) — W(zy). We find that

0 = 0g(x)
W= [120g(z — 1)? + (8ch)'(z — 1) — F(zg)h' (z — 1)]
A+ we(x), z > 2z
and
6 = F(z), W =0, z < zg
where the depth

h(x) =1 — z5(x)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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of the front is determined by

d (1 d (1
e (5 thz) — F(z) E(E hz) = Wg. (4.20)

The primes on 8 and » denote x-differentiation.
Suppose that the deep stratification is zero, F(z) = 0. Then the solution to (4.20) is

2(x — xo)wg

h = e (4.21)
where x; is a constant of integration. In the special case
O = Tp(x — xp), Ty = const (4.22)
we recover the result of Section 3. By (4.2¢) and (4.17) the northward velocity is
1
v=7 [0:(z — 1) + (hOp)], z> z, (4.23)

above the front and zero below; the eastward velocity is everywhere zero. Note that v is
discontinuous across the front only if the frontal slope 4’ is nonzero.

Numerical solutions of (4.5) always approach a steady state. Two equilibrium
solutions will be shown. These exhibit the two extreme types of frontal behavior
allowed by the Sverdrup equation (4.20). In the first solution (Fig. 4), the prescribed
surface temperature is piecewise constant,

{20, O<x<.5
Og(x) = 0, S<x<l (4.24)

corresponding to an upper layer of constant temperature. Eq. (4.20) is satisfied with
& = Oand 4" # 0. In the second numerical solution (Fig. 5), the surface temperature
varies continuously,

2011 i
— 75
0, IS5<x<1

), O<x<.75

0 (x) = (4.25)

and (4.20) is satisfied with 6% # 0 and A" = 0. In both experiments wy = — 1, and the
bottom temperature and vertical velocity are zero. The resolution is 100 x 100
gridpoints, and the diffusivity is u = .005.

The numerical experiments confirm the behavior predicted above. The temperature
field in the homogeneous-layer experiment (4.24) is shown in Figure 4a. The computed
thermocline depth closely agrees with that predicted by (4.21) with x, = .5. The
ve&ical velocity (Fig. 4b) is small below the front. East of the frontal outcropping, the
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Figure 4. The equilibrium solution of the two-dimensional thermocline model (4.4) and (4.6) for
the case of piccewise constant surface temperature (4.24) and surface vertical velocity wy =
—1.(a) The computed temperature 8(x, z) in an east-west section; and (b) the vertical velocity
w(x, z). Darker contours denote higher values, and the zero contour is dashed. The dashed line
in (a) is the front location predicted by (4.21).

vertical velocity varies linearly with depth, and the solution is the same as for
homogeneous fluid.

Figure 4a also shows a narrow region of static instability in the vicinity of the
outcrop. Static instability is in fact a typical feature of the equilibrium solutions to the
inertia-less equations. In most of the numerical experiments described in this paper,
the boundary conditions were arranged to reduce or eliminate static instability. In a
later paper, we will consider solutions of (2.5) that include the horizontal Ekman
transport u; and a surface cooling at high latitude. The latter solutions show large
regions of strong static instability unless the dynamics includes an explicit vertical
convection. Although the addition of vertical convection complicates the interpretation
of the solutions, it does not erase general features like fronts that also occur in the more
ideal situations analyzed in this paper. ‘

Figure 5 shows the corresponding equilibrium fields for the case (4.25) of continuous
surface temperature. Now (4.21) (with x, = .75) predicts that the depth of the front
has the constant value A = .27 shown by the arrow in Figure 5a. Thus the front begins
in midwater, at x — .75, where the temperature jump across the front is zero. This
temperature jump increases linearly to the west. The vertical velocity is small below the
front (Fig. 5b), no matter what the size of the temperature jump across the front. East
of x = .75, the velocity field is again the same as for homogeneous fluid.

Other solutions, not depicted, show that a bottom boundary layer occurs when the
prescribed surface temperature increases toward the east. This is anticipated from the
results of Section 3.
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X

Figure 5. The same as Figure 4, but for the case of continuous surface temperature (4.25). The
arrow on (a) is located at the constant depth of the front predicted by (4.21) and (4.25).

The special solutions of this section show that the inertia-less equations exhibit
fronts that are considerably more general than the interface between homogeneous
layers typically postulated in layered models. However, these special solutions are
unrealistic in two major ways. First, the surface temperature has been prescribed, and
could not sensibly have been determined by the flow itself, Second, the horizontal
advection of temperature was assumed to be zero. The need to prescribe the surface
temperature is an unavoidable feature of two-dimensional models, but the neglect of
horizontal temperature advection is not. In the next section we examine some two-
dimensional solutions in which horizontal temperature advection can be significant.

5. Two-dimensional model with significant horizontal advection

We again assume that the friction is negligible, so that the flow is governed by the
thermocline equations in the form (2.22), and consider special solutions of the form

M(x,y,z) = xW(y,z) (5.1
for which (2.22) reduces to

- Wz&z + WzVszy + Wszz = H [Vszyy + szzz]- (52)

The boundary conditions are taken as

Wy, 1) = wg(y), Wy, 1) = Tg(yp)

W(y,0) =0, W..(y,0) = 0. (5.3)

Eqgs. (5.1-3) generalize the one-dimensional problem (3.1-5) considered in Section 3.
As in Sections 3 and 4, we solve (5.2-3) by stepping the time-dependent form of (5.2)
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to equilibrium. Once again, the solution always approaches a steady state. The new
feature of (5.2) is that the horizontal advection of temperature need not be small.
Again the interesting case is w; < 0 (Ekman downwelling) and 7 < 2w (correspond-
ing to an ocean on x < 0 with surface temperature increasing to the west).

Now, if the horizontal advection terms in (5.2) were to cancel, then the solution
would be (3.19-20) with w;, Ty replaced by wg(y), Tg(y). Then substituting (3.19-
20) back into (5.2), we easily find that the horizontal advection terms do indeed cancel
only if the surface temperature is proportional to the vertical velocity,

wg(y) = const Te(y). (5.4)

By (3.20), (5.4) implies that the thermocline has a constant depth. Thus, if the
boundary conditions satisfy (5.4), then the horizontal advection is zero, and we obtain
our former solution (3.19-20) with the front at a constant depth. If the boundary
conditions do not satisfy (5.4), then numerical experiments show that the solution does
not contain a front.

The two experiments summarized in Figures 6 and 7 are typical. In the experiment
of Figure 6, the boundary conditions are

wg(p) = —1 4 hecosmy (O<y<]l)
(5.5)
Te(y) = 10(—1 + Yy cos wp)
which satisfy (5.4). In the experiment of Figure 7, the boundary conditions are
wg(y) = —1 + Y4 cos wy
(5.6)

Te(y) = 10(—=1 — Y4 cos wy)

which do not satisfy (5.4). In both experiments u = .002 and the sidewall boundary
conditions are

szy(o, Z) = szy(ls Z) =0 (57)

The resolution is 50 x 50 gridpoints. Since x < 0, the temperature xW_, increases to the
northwest in the case of (5.5b), and to the southwest in the case of (5.6b).

Figure 6 shows that the solution with boundary conditions (5.5) closely resembles
the outer solution (3.19), with a front (Fig. 6b) at the depth predicted by (3.20). As
expected from the theory, the thickness of this front increases with u. In contrast, the
solution with boundary conditions (5.6) does not show a front (Fig. 7b), and the whole
solution changes very little if u is increased by a factor of 5. (The small wiggles in
Figure 7, which are caused by a slightly under-resolved diffusive boundary layer at
y = 0, disappear when u is increased.) In both experiments, both components u and v
of horizontal velocity are negative throughout the fluid (assuming x < 0), and have
comparable magnitudes. In experiment (5.5) the southwestward horizontal velocity is
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Figure 6. The equilibrium solution to the two-dimensional thermocline model (5.2) with
boundary conditions (5.5). This solution agrees closely with (3.19-20). (a) The vertical
velocity W(y, z) in a north-south section; and (b) W,_(y, z), which is proportional to the
temperature. Darker contours correspond to higher values. The zero contour is dashed.

exactly tangent to surfaces of constant temperature and thus causes no advection of
temperature. In experiment (5.6) the southwestward horizontal velocity crosses iso-
therms, and the steady state is a balance between horizontal and vertical advection.

At this point, there is no reason to assume that the experiment (5.5) with the front is
more typical of the ocean than (5.6); indeed, the relationship (5.4) between surface
temperature and vertical velocity seems quite special. However, the existence of a
thermocline in the real ocean, and the connection established here between the
cancellation of the horizontal advection terms and the existence of a front, together

\

=1

S - -

- T b

[

Figure 7. The same as Figure 6, but with the boundary condition (5.6), for which the horizontal
advection of temperature is significant. This solution contains no front.
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Table 1. Summary of three-dimensional experiments.

Experiment o* o* 0. 0 s U,
k=".1 10. 10. 8.35 10.7 1.60
k= .03 . 10. 9.28 10.8 1.75
k= .01 1. 10. 9.42 10.7 1.91

suggest that, in the more realistic three-dimensional case where the surface tempera-
ture is not prescribed in the limit of small diffusivity, the fluid may spontaneously
adjust its surface temperature to produce states like that of Figure 6. We test this
hypothesis in the following section.

6. Three-dimensional model

In this section, we examine numerical solutions of the fully three-dimensional
inertia-less equations (2.5), including viscosity, but still excluding the Ekman layer at
the surface. That is, we solve (2.5) with ug = 0 and surface boundary condition

w(x, y, 1) = wg(x, y). (6.1)

The velocity boundary condition at all other boundaries is no-normal-flow. The
boundary conditions on the temperature are

\ 8(x,y,0) =0 (6.2)

\

at the bottom, and no-flux at all other boundaries. Temperature contrast is maintained
by a heating term Q(x, y, z) added to the right side of (2.5d). This heating term is
positive near z = 1 and zero elsewhere. In the limit of small temperature diffusivity, a
very weak Q can maintain a realistic temperature contrast. In this limit, the tempera-
ture throughout the fluid is nonlocally determined by advection. The boundary
condition (6.2) and the restriction to positive Q maintain static stability.

In regions where the viscosity is negligible, the solutions to (2.5) also satisfy the
thermocline equations in the form (2.21). Suppose that the horizontal advection terms
in (2.21) cancel. Then, in the region where two layers are present, the outer solutions

M = %BE(x,y)(z -1+ Cl, )z —1)

f?

+
B8 Jxly

) wg(x', y) dx’, z>zo(x,y) (6.3)

and

M = D(x, y)z + E(y), z < zg (6.4)
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Figure 8. The velocity (arrows) and temperature in a north-south section at mid-basin (x=1)
with Ekman velocity (6.18) in the case of (a) homogeneous fluid; and for the stratified
experiments summarized in Table 1: (b) experiment x = .1; (c) experiment x = .03; and (d)
experiment x = .01. The vertical velocity varies between =+ 1 at the surface, and the northward
velocity has a commblc magnitude (as shown). The maximum temperature in each section
is given. The temperature at the bottom, z = 0, is constrained to be zero. Darker contours
correspond to higher values of the temperature.

satisfy the boundary conditions on vertical velocity and temperature, and the thermo-
cline equations (2.21) provided that

(6.5)
Equation (6.5) is the requirement that the horizontal advection terms cancel. The
functions

0p(x.y),  C(x,p),  x(»),  Dxy), EW), zxyp) (6.6)

must be determined from boundary and matching conditions. The jump conditions at
the front z = zy(x, y) can be succinctly written as

AM =0 6.7)
AM,) =0 (6.8)
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=t 3. S R

=0 S y=1

and
w=u-Vz at z =1z and z=2z. (6.9)
Eqs. (6.7) and (6.8) also imply that A(M,) = A(M,) = 0, so that
Aw = 0. (6.10)

Further, (6.8) implies that

820 (920
Ay = —A8 — and  fAu = Af £ (6.11)

ox 9

which are the thermal wind equations integrated across the front. Then by (6.10) and
(6.11), the jump in equation (6.9) across the front is zero. Thus the only independent
jump conditions are (6.7), (6.8) and (6.9) in (say) the bottom layer. Applying these
three conditions to (6.3—4) we obtain

C=8h+ D, ' (6.12)
the integrated Sverdrup relation,
1 f? prx
- 2 1 ' _ D
20k = f wgdx' — D — E (6.13)
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Figure 9. The horizontal velocity and temperature at the surface, z = 1, in (a) experiment x —
.15 (b) experiment xk = .03; and (c) experiment « = .01. The extremal temperatures are given

in each picture, and the rms horizontal velocities are 2.4, 2.7 and 3.1 (respectively).

and the potential vorticity equation for the bottom layer,
J(D, f/zy) = 0. (6.14)

If the fluid below the front is nearly at rest (as in the numerical experiments of this
section) then D = E = 0, C = 6zh, and (6.13) reduces to a generalization of (4.21), viz.
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(Note that wg differs by a factor of f?/8 from its definition in the previous three
sections.) However, (6.5) must still be satisfied. With (6.15), (6.5) becoracs

J(0g, h) = 0. (6.16)

That is, the horizontal advection terms cancel only if the upper-layer temperature is

constant along lines of constant thermocline depth.
In this section, we analyze the three numerical experiments summarized in Table 1.

These experiments differ mainly in their values for the diffusivity « = &, = «,. In all
three experiments, the prescribed Ekman velocity is

wg(x, y) = —cos 7y, O<y<l (6.17)

corresponding to a southern subtropical wind gyre on y < 1/, and a subpolar gyreon y >
/2. The temperature contrast is maintained by a heating

Q* * (1 - Zy)e—(l—z)/Az(a* - sfc)a y < 1/2
0(y,2) = (6.18)
O’ y > l/2
added to the right-hand side of (2.5d). Here, Q* and 6* are prescribed constants, Az is
the vertical grid spacing, and 6, is the average surface temperature. Note that Q is
nonzero only in the subtropical gyre and near the surface, and “turns off” as the
average surface temperature approaches §*,
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Figure 10. The velocity and temperature in the experiment « = .01 at two latitudinal sections,

(a) through the subtropical gyre at y = ',; and (b) through the subpolar gyre at y = ¥,. The
maximum temperatures are given.

The numerical experiments have a resolution of 20 x 20 x 20 grids, and use the
finite-difference advection/diffusion scheme developed by Fiadeiro and Veronis (1977).
(All previous experiments used ordinary centered differencing.) In the limit of small
diffusivity (at fixed resolution), the Fiadeiro-Veronis scheme shifts from centered
differencing of the temperature advection terms to upwind differencing. Therefore, the
Fiadeiro-Veronis scheme corresponds, in essence, to an effective local diffusivity in the
i-th direction that is the larger of v; A, and «, where v, is the velocity in the i-th direction
and A; is the grid spacing. This diffusivity is near the minimum that the spatial
resolution will permit.

The Fiadeiro-Veronis scheme is necessary in the three-dimensional experiments
because the affordable resolution is not great. In the experiments reported here,
centered differencing becomes unstable at diffusivities between « = .1 and .03, where
the temperature field develops unresolvable small scales. The experiment «x = .1 was
insensitive to the choice between centered differencing and Fiadeiro-Veronis. The
experiments xk = .03 and « = .01 could be performed only with Fiadeiro-Veronis. In
these latter two experiments, the effective numerical diffusivity is larger than x = .03
and .01 in regions of high velocity. However, useful inferences can still be drawn.
Moreover, since the computer time needed to reach equilibrium increases as the fourth
power of the grid-spacing, this situation must be allowed to stand.
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Once again, all the experiments converge toward a steady state. Table 1 gives the
average surface temperature, the maximum temperature 6., and the rms horizontal
velocity U, at the end of each experiment (after 3000 timesteps). Figure 8 shows the
velocity and temperature in a north-south section at x = Y. As the temperature
diffusivity decreases, the front corresponding to the thermocline sharpens, and the
subtropical wind-driven flow is confined to the layer above the thermocline. In the
subpolar gyre, the wind-driven flow penetrates more deeply. In homogeneous fluid
(Fig. 8a), the horizontal flow would be depth-invariant.

Figure 9 shows the velocity and temperature at the surface, z = 1. As the diffusivity
decreases, the surface temperature resembles the heating (6.18) less and less, and the
horizontal velocity aligns itself with the isotherms.

In the limit x — O, our theory predicts that the flux of both mass and heat across the
thermocline front must be zero. This follows from the facts that the velocity normal to
the front is asymptotically zero, and the diffusive temperature flux across the front
decreases as «'/2. Therefore, the imposed Ekman mass flux into the subtropical upper
layer must escape at the boundary y = 1/, between gyres, where the front breaks down.
In the subpolar gyre, a front cannot exist because of Ekman upwelling.

Figures 9c and 10 show that the sharp front does indeed disappear as warm fluid
crosses the boundary between gyres. The temperature variance created by Q in the
subtropical gyre disappears as the warm fluid, circulating in the subpolar gyre, flows
back into the Ekman layer.

Figure 11 shows the thermocline depth (defined somewhat arbitrarily as the depth of
maximum vertical temperature change) and the surface temperature in the subtropical
gyre, y < V4. A visual comparison between the top and bottom pictures in Figure 11
tests the relationship (6.16) needed to satisfy the hypothesis that the horizontal
advection of temperature is negligible. As the diffusivity decreases (from Figure 11a to
11c) the isolines of thermocline depth and surface temperature tend to coincide.

This conclusion is reinforced by Figure 12, which offers a more direct test of the
alignment between the horizontal velocity and the isotherms. Figure 12 shows that the
angle between the horizontal velocity and the isotherms on level surfaces tends to zero
as k — 0. (The relatively large angles at small z are somewhat irrelevant, because the
deep velocity is very small.)

Finally, we note from Figures 9 and 11 (top) that, as k decreases, the temperature
contrast within the subtropical upper layer decreases dramatically. Again, this occurs
because the heat flux across the front tends to zero. Heat transfer then occurs only at
the boundary between gyres, and the significant proportion of subtropical water that
recirculates above the thermocline homogenizes its temperature.

7. Discussion

In my opinion, the most successful inertia-less model of the general circulation is the
two-layer model developed by Parsons (1969), Veronis (1973, 1976, 1978, 1981),
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Figure 11. The thermocline depth (bottom) and surface temperature (top) in the subtropical
gyre, 0 < y < ', in (@) experiment « = .1; (b) experiment x = .03; and (¢) experiment x = .01.
Extremal values are given. Darker contours correspond to higher values.
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Kamenkovich and Reznik (1972), and Huang and Flierl (1987). This model explains
many features of the observed circulation on the basis of relatively few special
assumptions. However, it does rely on the assumption of two density layers separated
by a sharp front. The justification for this assumption may be the most important result
of the present paper. However, our experiments suggest that the front disappears
(except perhaps as a boundary layer at the top) in the subpolar gyre, where the warm
water is returned to the bottom layer.

Our results suggest that it is impossible to explain the thermocline structure within
the subtropical gyre on the basis of ideal thermocline theory (i.e., without invoking
temperature diffusion) as attempted, for example, by Huang (1988). Our picture also
differs significantly from that of Luyten, Pedlosky and Stommel (1983), who assume
that, in the limit of zero temperature diffusion, the ocean consists of multiple “layers”
isolated from surface influence except in narrow outcropping bands. Here we have
argued that, in the asymptotic limit, there are only two layers, and the upper layer
satisfies the boundary conditions at the surface. However, these boundary conditions do
not include a prescribed temperature at the ocean surface. In contrast to Luyten ez al.,
I believe that it is inconsistent to prescribe the surface temperature in the limit of zero
temperature diffusivity.

In our view, the difference between the two-layer state and the observed ocean is
caused by a finite temperature diffusivity, which, as we know from the relatively large
observed thermocline thickness, is not vanishingly small. This raises the issue of
whether the asymptotic case of zero diffusion is even worth considering. I believe that a
correct asymptotic theory offers the best hope of physical understanding. Moreover, if
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Figure 12. The average angle between the horizontal velocity and isotherms on level surfaces in
the three experiments.

the ideas advanced here should hold up, then a next-order theory might provide the
needed quantitative accuracy.

We leave completely open the issue of why the ocean should choose to arrange itself
so that the vertical and horizontal advection of temperature are separately zero. I
believe that a fundamental explanation for this is somehow related to the preference of
the system for steady state solutions.

Isinertia really negligible in large-scale ocean circulation? Salmon (1982) suggested
that the shape of the thermocline front is controlled by inertial boundary layers that
drive the system toward a statistical-mechanical equilibrium state resembling that
discussed by Fofonoff (1954). This suggestion has received some support from the
numerical experiments of Griffa and Salmon (1989) with a quasigeostrophic model.
However, these experiments also show that the time required to reach statistical
equilibrium is very long for a realistically small Rossby number. In the experiments of
Griffa and Salmon, the Rossby number was kept large in order to resolve the inertial
boundary layers. The question of whether the whole ocean exhibits a significant inertial
recirculation is perhaps best answered from observations.
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