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Similarity solutions of the thermocline equations

by Rick Salmon’ and Rainer Hollerbach"?

ABSTRACT

We apply symmetry group methods to find the group of transformations of the dependent
and independent variables that leave the thermocline equations unchanged. These transforma-
tions lead to an optimal subset of sixteen forms of similarity solution. Each form obeys an
equation with one fewer dependent variable than the original thermocline equations. Previ-
ously obtained similarity solutions, which are based solely upon scaling symmetries, are special
cases of just three of these forms. Two of the sixteen forms lead to linear, two-dimensional,
advection-diffusion equations for the temperature, Bernoulli functional or potential vorticity.
Simple exact solutions contain “internal boundary layers” that resemble the thermocline in
subtropical gyres.

1. Introduction

The thermocline equations (2.1) or (2.3) govern geostrophic, hydrostatic flow that
advects its own mass density. Despite the severity of the approximations they
embody, the thermocline equations are mathematically quite formidable, and are
sometimes considered an adequate description of the large-scale, time-average
ocean circulation outside frictional or inertial boundary layers. Whether adequate or
not, it seems clear that the solutions of still more complicated model equations
cannot be understood without a better physical understanding of the solutions to the
thermocline equations.

In this paper we record all the point symmetries of the thermocline equations; that
is, we find all transformations of the general form (3.5) that leave the thermocline
equations (2.1) or (2.3) unchanged. These transformations can be used to transform
solutions into other solutions by the explicit formulae given in column 3 of Table 1.
More importantly, the transformations form the basis for a classification of similarity
solutions to the thermocline equations. Each similarity solution obeys an equation in
which the number of independent variables has been reduced from three to two. As
illustrated by the calculations of Salmon (1990), a reduction from three to two space
dimensions permits high-resolution numerical experiments that can be used to study
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fronts, “internal boundary layers” in which temperature diffusion is important and
flow properties change rapidly.

Our basic result is that all two-dimensional similarity solutions of the thermocline
equations (of a general class defined below) can be obtained by selecting one of the
sixteen similarity forms given in Table 3, where G is a function to be determined by
substitution back into the thermocline equation (2.3), and then applying an arbitrary
combination of the transformations given in column 3 of Table 1. In two of the
sixteen cases, the resulting equations for the undetermined function G are linear,
and can therefore be thoroughly analyzed. These two cases lead to simple exact
solutions of the thermocline equations in which the temperature or potential
vorticity changes rapidly across a front corresponding to the main thermocline in a
subtropical gyre.

The previously known similarity solutions of the thermocline equations (2.3) are
based upon scaling symmetries. These lead to the familiar type of similarity solution,
. in which the scalar potential M(x, y, z) depends on ratios of x, y, z raised to various
powers. However, symmetry group theory allows us to find all the invariant transfor-
mations of the thermocline equations, and to construct the general family of
similarity solutions based upon them. In fact, only three of the sixteen similarity
forms listed in Table 3 are based solely on scaling symmetries, and the similarity
solutions discussed in Sections 6-8 below are not based upon scaling symmetries at
all. The solutions in Sections 6-8 rely on one previously unnoticed symmetry
property of the thermocline equations, and on the gauge symmetry of the M-equation
(2.3).

This paper is organized as follows. In Section 2, we introduce the thermocline
equations, and establish our notation. In Sections 3 and 4, we apply symmetry group
methods to the thermocline equations to obtain the results summarized in Tables 1
and 3. These two sections offer a gentle introduction to symmetry group methods in
terms that should appeal to readers with a background in fluid mechanics. However,
readers who have no interest in group theory can skim ahead to Section 5, which
begins with a summary of the results.

In Sections 6, 7, and 8 we investigate the similarity solutions that result from two of
the sixteen cases in Table 3. These cases correspond to three-dimensional flows in
which the temperature, Bernoulli functional, or potential vorticity obey linear,
two-dimensional, advection-diffusion equations in the yz-plane. These equations are
exactly hyperbolic when the temperature diffusivity  vanishes, and exactly parabolic
when k # 0. (The general thermocline equations have defied any such classification. )
When k = 0, the solutions can be written in a general explicit form involving several
arbitrary functions. When k # 0, fronts appear where the flow along characteristics
converges.
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Readers who want only a sampling of results can skip from Section 2 all the way to
Section 8. Section 9 summarizes our results.

2. The thermocline equations

In nondimensional form, the thermocline equations governing large-scale ocean
flow are

= -4,
= —d,
0= o, (2.1)
u +v,+w,=0

uf, + v, + wh, = k0,

Here, u = (u, v, w) is the velocity in the (east, north, vertical) direction with
coordinates (x, y, z), f = y is the Coriolis parameter, ¢ is the pressure, 6 the
temperature, and k is a coefficient of vertical temperature diffusivity. The equations
(2.1) assume steady flow, and neglect inertia, friction, and temperature diffusion in
horizontal directions. Nevertheless, (2.1) are mathematically quite formidable, and
are sometimes considered an adequate description of the time-average, large-scale
ocean circulation away from boundaries. For a more complete discussion of the
thermocline equations, including a review of previous solutions, refer to Veronis
(1969, 1973) and Pedlosky (1987). For a discussion of the possible roles played by
boundary layers, see Salmon (1990).

In this paper, we set aside questions about boundaries and matching conditions,
and seek solutions to (2.1) of whatever form. These solutions will contain adjustable
constants and arbitrary functions that can be used to satisfy boundary and matching
conditions, as appropriate. To be sure, our prejudices about boundary conditions will
determine which of the similarity solutions are ultimately the most interesting.
However, it does no harm to defer such matters, and to study (2.1) by themselves.

With no loss in generality, the representation

1 1 1
u= -5 M, v = y M, w —szx, b=M, 0=M, 2.2)
satisfies (2.1a—d). Here M(x, y, z) is a function to be determined by substitution into
(2.1e). There results:

Y-M,M,, + M,M_] + MM, = y’xM... (2.3a)

Thus (2.2) and (2.3a) are equivalent to (2.1). When k = 0, (2.3a) reduces to the ideal
thermocline equation,

y[-MM_, + MM+ MM, =0 (2.3b)
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For future reference, we note that the thermocline equations (2.1) imply

u- VB = zk %ll (2.4)
and
u-Vg =«gq, (2.5)
where
B=b-—-20=M,—2zM, (2.6)
is the Bernoulli functional, and
q=y0.=yM, (2.7)

is the potential vorticity.

3. Symmetry groups

Symmetry group methods are attractive because they apply to general nonlinear
equations. Good basic references include the books by Bluman and Cole (1974),
Olver (1986), and Bluman and Kumei (1989). In this paper, we apply symmetry
group methods to obtain a general family of similarity solutions to the thermocline
equation. Our explanation of the methods will be very brief, and is designed to
appeal to readers with a background in fluid dynamics. For a complete and rigorous
explanation, the reader should consult Chapters 2 and 3 of Olver’s book. Readers
who are uninterested in the methods can skim ahead to Section 5, which begins with
a summary of the results.

Given (2.3) in the abstract form

Ax,y,z, MMM, M, ..., M,_)=0 3.1
we seek solutions
T,y z,M)=0. 3.2)

Here A and I are ordinary functions of their respective arguments. The situation is
that A is a given function and I must be found.

From a more geometric viewpoint, (3.1) is a hypersurface in a high-dimensional jet
space with coordinates

ny,z, MMM M, ..., M,,. (3.3)

A solution (3.2) is a 3-dimensional hypersurface in the 4-dimensional base space with
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coordinates
x,y,z, M. (3.4)

The strategy is to find transformations of the dependent and independent vari-
ables for which the thermocline equation is unchanged. We therefore consider
transformations of the variables from “old coordinates” (x, y, z, M) to “new
coordinates” (x',y’,z', M"). Under certain assumptions such transformations form a
group. If the group depends continuously on a parameter s, then it is called a Lie
group:

X' =fxy,z, M;s)

y' =g(x,y,z, M;s)
z' = h(x,y,z, M;s)
M’ =jx,y,z,M;s).

(3.5)

It is conventional to let s = 0 correspond to the identity element of the group. Thus
x =f(x,y,z, M; 0)
y =8 y,z,M;0)

(3.6)
z=h(x,y,z,M;0) -
M=jx,y,z,M0).
One way to generate such a group is as the solution to equations of the form
$=§(x,y,z,M), x'(0)=x
dy, I3 ’ ! ’ ’
o = ey 2 M, y(0) =y
3.7
dZ, Zf ! ? ’ Mr ' 0 _ ( )
ds_g(x’y)za )’ Z()'—Z
M’
=YL M), M) =M.

It is then useful to think of (', y’, z’, M") as the “location” at “time” s of a particle
initially at (x, y, z, M) that moves always with the “velocity”

Y= [‘Ex(x, ¥, 2, M): ‘Ey(x’yﬂ z, M)> gz(x’y’ Z, M)a gM(x’Ya 2, M)] (38)

The simplifying feature is that the “velocity field” (3.8) is “steady,” i.e. s-indepen-
dent. Thus v is everywhere tangent to the base-space trajectories that define the
transformation.
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The “velocity field” v determines a corresponding “velocity field”

d(M,) d(M, dM,,
prv= gx’gy’gz,gM, (dS)’ (ds ),"', (dS ) (3.9)

in the jet space with coordinates (3.3). (The notation pr v stands for “prolongation of
v,” a good terminology.) The first four components of (3.9) are the same as (3.8). The
remaining components of (3.9) can be expressed in terms of &, £, &, £ and their
derivatives. It is obvious that such expressions must exist, from the fact that the
formula for the transformation of a function implicitly determines formulas for the
transformations of all its derivatives. As an example, we calculate d(M)/ds.

Taylor expansions of (3.7) yield

x=x"—st,y, 2, M)+ -
y=y —s&,y 2\ M)+ -

(3.10)
z=2 —s&x,y, 2, M)+ -
M =M+ st"x,y,z, M) + .
Thus
N R R ) PN
axr - axr ax + axv a-y + axr az [ +S§ (x7y’z’ )] (s )
oM
= + s{ngM -MDE -MDE — MZDXEZ] + O(s?) (3.11)
where
D = g M i 3.12
= T Mo (3.12)
Therefore
dM,)
dS = ng - Mxngx - Mnygy - Mszgz' (3'13)

Returning to the thermocline equation (2.3), we seck transformations of the form
(3.7) for which the thermocline equation takes the same form in new variables as in
old,i.e.

Ay, Z, M M M, ... M .)=0 (3.14)

2zzz7

where A(, ,,,) is the same function of its arguments in (3.14) as it is in (3.1). We
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expand (3.14) in s,

Ax +s&E+-,y+s&+--, ... )=20 (3.15)
and subtract (3.1) from (3.15). Letting s — 0, we obtain

aa oA dM.,.) oA
gy 2 M)—-+ By, z,M)y—+ - — =

ay ds oM, (3.16)

By changing the definitions (3.8) and (3.9) slightly to

d d d d
v = £(x,y, z,M)g); + E(x,y, z,M)@ + §Z(x,y,z,M)5z- + M(x, y, Z’M):M—l 317

and
d(M) o diM,..,) 9
prvEv+— o 6M1+“-+ ds oM. (3.18)
we can rewrite (3.1) and (3.16) compactly as
(prvA=10 (3.19a)
on
A=0. (3.19b) |

The tangent vectors (3.17) and (3.18) are simply the “advective derivatives” associ-
ated with the “velocity fields” (3.8) and (3.9). Eq. (3.19) just states that the jet-space
“trajectory” must lie in the hypersurface (3.1) corresponding to the thermocline
equation.

We have solved (3.19) to determine the components of the “velocity field” that
defines the transformation. This involves equating the coefficients of monomials in
the derivatives of M to zero in (3.19a) after using (3.19b) to remove one of the
derivatives. There results a very large set of coupled differential equations in the
functions &, £, &, £¥(x, y, z, M). These equations, which are called the determining
system of the transformation, are linear (cf. Eq. 3.13), even though the thermocline
equation (2.3) is nonlinear. This is what makes the symmetry group method so
attractive. For the thermocline equation, the determining system contains over one
hundred differential equations. Fortunately, there now exist symbolic manipulation
programs that do nearly all the work of setting up and solving these systems. We have
used the program SPDE developed by Fritz Schwarz (see Schwarz, 1988) in
REDUCE 3.3.
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Table 1. The symmetry generators of the thermocline Eq. (2.3a). The second column contains
the corresponding transformation that leaves (2.3a) unchanged. The third column gives the
corresponding rule for transforming an arbitrary solution M = F(x, y, z) of (2.3a) into
another solution. The functions «, p and v are arbitrary, and ¢ is an arbitrary constant.

] Transformation

Generator Finite transformation of solutions
vila(y)] = a(y), ®y,2,M) = (x + o(y), y,2, M) M=F(+ a(y),y,2)
v, = 2xd, — yo, (x,v,2, M) = (c™x, ylc, z, M) M = F(ck, ylc, 2)
v, =4, (x,y,z, M) = (5,y,z + ¢, M) M=F(x,y,z +¢)
v, =xd, + 20, x,y,z, M) = (ex,y,cz, M) M = F(cx, y, cz)
v, =xd, + M, x,y,z,M)— (cx, y,z,cM) M = F(cx,y, 2)lc
Vo = 2y «y,z,M)— (x,y,2, M + ¢2) M=F(kx,y,z) +cz
v, =29y ®x,y,2, M) = (x,y,z, M + cz%) M = F(x,y,2) + cz*
vo[B(Y)] = B(¥)du oy, z,M) = (x,y,2,M + B(y)) M=F(,y,z) + B(y)

For the ideal thermocline equation (2.3b), the above table is unchanged, except that the
first row is replaced by

vi[¥(e )] = v, ), .y, 2, M) = (alx, ), 5,2, M) M = F(a(x,y), y, 2)

For the thermocline equation (2.3a) with x = 0, the general solution of the
determining system turns out to be
Ex,y,z, M) = ay) + 2c,x + ¢x + ¢5x
g}'(x, Y, Z, M) = _CZy
EZ(X,)’,Z,M) = C3 + C4Z
EM(x,y,z, M) = csM + ¢,z + ¢,z + B(Y)

(3.20)

where the ¢, are arbitrary constants, and «(y) and B(y) are arbitrary functions.’
Equivalently, we can say that the thermocline equation is invariant to the transforma-
tions corresponding to an arbitrary linear combination of the 8 generators listed in
the first column of Table 1. Two of these gemerators, v,[a] and v[B], actually
correspond to infinite-dimensional vector fields, because a(y) and B(y) are arbitrary
functions. For each generator, Table 1 also shows the corresponding finite transfor-
mation obtained by solving (3.7), and the corresponding rule for transforming an
arbitrary solution,

M=F(x,y,z) (3.21)

of the thermocline equation into another solution.

3. Throughout this paper, we use o, §, and v to denote arbitrary functions ofx, y or (x, y). The arbitrary
function « in any particular equation is generally unrelated to the arbitrary function « in any other
equation, and similarly for B and y.
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In the case of the ideal thermocline equation (2.3b), the generators are the same as
for (2.3a), except that the arbitrary function a(y) in vi[a(y)] is replaced by an
arbitrary function a(x, y) of both horizontal coordinates. Thus if k = 0, Table 1 is
unchanged, except that the first row is replaced by the row set off at the bottom of
Table 1.

To exemplify the way Table 1 has been constructed, consider the transformation
generated by v, = 9,. By (3.17) and (3.7), it is:

x' =x, y =y, z' =z +s, M =M. (3.22)

Now let (3.21) be a particular solution of the thermocline equation. By (3.22), the
v,-transform of (3.21) is

M' =F(,y,z' —s). (3.23)

But we know that, by design, the primed variables also satisfy the thermocline
equation. We therefore conclude that if (x,y,2) is a solution, then so must be F(x, y,
z+c), for any constant c. Repeating this logic for all the generators of the
thermocline equation, we obtain the results given in column 3 of Table 1.

We emphasize that Table 1 contains the complete results of using the computer
program SPDE to solve the huge determining system resulting from (3.19), and that
the results in Table 1 can be easily checked; it is a trivial matter to verify that each of
the transformations given in column 2 of Table 1 leaves the thermocline equation
unchanged. In fact, most of the transformations given in column 2 of Table 1 could be
guessed from an inspection of (2.3). However, the transformation corresponding to
the generator v, is an important exception that proves the value of the symbolic
manipulation software. For the case k = 0, this generator leads to the important
result that, if (3.21) is any solution to the ideal thermocline equation (2.3b), then

M = F(a(x,y),y,z) (3.24)

is also a solution, where af(x, y) is an arbitrary function of the horizontal coordinates.
Again, this statement can be verified by a direct substitution into (2.3b), and the
ensuing cancellations seem almost miraculous. If k = 0, the corresponding statement
is much weaker: If (3.21) is a solution of (2.3a), then so is

M=F(x+ a(y),y, z). (3.25)

However, even the less general transformation (3.25) could be used to make an
arbitrary solution (3.21) of the thermocline equations satisfy the condition of
no-normal-depth-averaged flow at a longitudinal boundary, a strategy we follow in
Section 8. These general properties of (2.3a, b) have apparently not been previously
noticed.

As the preceding paragraph suggests, the ability to transform solutions into
solutions is sometimes useful by itself; the transformation of even trivial solutions can
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yield nontrivial results. However, it is in the determination and classification of
similarity solutions that symmetry group methods show their full power.

4. Similarity solutions

In Section 3 we drew an analogy between a transformation group of a differential
equation and the particle trajectories in a steady flow. The generators of the group
are analogous to the velocity field of the flow. Knowing the generators is equivalent
to knowing the transformation group, but, as the fluid mechanical analogy would
suggest, it is usually much easier to deal with the generators than it is to deal with the
group.

The generators form a Lie algebra with mathematical properties that reflect the
underlying group. The most interesting of these properties is this: If v, and v, are any
two generators, then their Lie bracket, defined as

[Va’ vb] = vavb - vbva (41)

is a linear combination of all the generators. For example, consulting Table 1, we find
that

[Vs V7] = 228y = 2ve. 4.2)

This closure property of the Lie algebra is a consequence of the correspondence
between generators and transformation groups.*

We now turn to invariant (similarity) solutions. Let v be a particular generator and
recall that ( prv) is, by hypothesis, tangent to the “equation surface” (3.1), correspond-
ing to the thermocline equation, in the high-dimensional jet-space. However, v is not
necessarily tangent to an arbitrarily chosen “solution surface” (3.2). That is, (prv) -
A = 0 but v[ = 0. In fact, it is the “flow” across solution surfaces that carries
solutions into other solutions, as in column 3 of Table 1.

We now consider the special solutions for which vI' = 0. The generator v, offers a
trivial but prototypical example. v; has a component in the z-direction, but no
components in the x-, y-, or M-directions. Thus v,I' = 0 only if ' = I'(x, y, M). That is,
solutions invariant to the transformation generated by v, must take the form M =
G(x,y) and are independent of z. '

For an arbitrary generator v, the invariant solutions are found by a method that
amounts to finding the special coordinates in (1, y, z, M )-spacé for which v takes the
canonical form (3.22). This is most easily done by the method of characteristics: one

4. Briefly, the commutator (4.1) is the generator of the composite transformation consisting of an
infinitesimal displacement along the trajectory corresponding to v,, followed by an infinitesimal displace-
ment in the direction of v,, followed by backwards displacements in the directions of v,, and then v,. This
composite transformation is certainly a member of the general group of transformations, and therefore its
generator, (4.1), is some linear combination of the basis vectors v,.
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determines the functions w,(x, y, z, M), w,(x,y, z, M), p:(x, y, z, M), called differential
invariants, whose iso-surfaces intersect to form the trajectories of v. The similarity
solution then takes the form p, = G(p,, p,) where G is a function to be determined
by substitution into the original differential equation.

As an example, we calculate the similarity solutions corresponding to the genera-
tor v, + cv, of the thermocline equation, with ¢ an arbitrary constant. The character-
istic equations

001 @ (4.3)
yield the differential invariants
Wy =X, K, =Y, L, =M — lhez? 4.4)
so that the similarity solution takes the form
M= Gx,y) + Yez? (4.5)

with G(x, y) left to be determined by substitution in the thermocline equation.
To study the most general similarity solution of the thermocline equation (2.3a),
we must use the general generator

w =V [y] + ¥, + €3V + €V, + CVs + CVs + vy + v[p] (4.6)

where ¢, are arbitrary constants and v(y), n(y) are arbitrary functions. Unfortu-
nately, the characteristic equations corresponding to (4.6) are very difficult to solve.
However, this task can be circumvented by a procedure that forms the most powerful
part of the theory.

The essential idea is very well illustrated by the example (4.3-5). To obtain (4.5)
we can use a combination of v, and v, as above; or we can use v, by itself to obtain (4.5)
with ¢ = 0, and then use the transformation property, obtained from v, in the last
column of Table 1, that a constant multiple of z* can be added to any solution. That
is, we can use a more restricted generator to obtain our similarity solutions if we
combine the results with the rules for transforming solutions into solutions. It can be
shown, in fact, that if ¢, # 0 in (4.6), then we can take ¢, = 0 with no loss in generality.

The special geometrical relationship between v, v, and v, that allows this can be
explained as follows: If the trajectories tangent to v, are subjected to a coordinate
transformation corresponding to v,, then the transformed trajectories are tangent to
a linear combination of v, and v,. We can regard the trajectories as material lines in a
perfect fluid with velocity v,. The material lines are carried along by the fluid, and the
tangents to these lines are Lie dragged by the velocity field v, in the same way as the
vorticity or magnetic field vectors in a perfect fluid. In complete analogy with the
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vorticity or induction equations, the evolution equation for the tangent, v, is

dv
P [v5 v], v(0) = v;. (4.7)

The Taylor-series solution of (4.7) is
v(s) = V5 + s[v,, V3] + Ws?[vy, [V, v5]] + - -
= v, + 5(—2v,) + Vs [v,, =2v] + - - (4.8)
= vy — 28V,
Thus, a transformation (“advection”) by v, drags v, into v, — 2sv,.

More generally let v, be any generator. Then a finite transformation corresponding
to v,, by amount s, transforms the vector field v; into

v(s) = v; + s[v, v,] + %s[v, [v, v ]] (4.9)

The right-hand side of (4.9) is called the adjoint operation of v, on v,. The adjoint
operations for all generators of the thermocline equation (2.3a) are given in Table 2.

To investigate all the similarity solutions obtainable from the general generator
(4.6), we first operate to eliminate as many components of (4.6) as possible. Each
elimination requires an assumption about the arbitrary constants in (4.6) (typically,
that a particular ¢, is nonzero), and the converse of each assumption must be
separately examined. The final result is an optimal subset of generators, each very
much simpler than (4.6). All the similarity solutions obtainable from (4.6) can then
be obtained from this optimum subset (whose characteristic equations are much
easier to integrate) plus the rules from Table 1 for transforming solutions into
solutions.

We begin with (4.6) and operate first with vg[B(y)]. Consulting Table 2, we obtain

w+ s[c,yB'(y) + ¢sB(Y)]0u- (4.10)

So, unless ¢, = ¢; = 0 we can choose B(y) to cancel the p(y)d, in w. Then (4.6)
reduces to

w, = v, [Y(¥)] + ¥, + v + C ¥, + Vs + ¥, + GV (4.11)
We next operate on (4.11) with v, [a(y)] to obtain
w, + s[2a + ya')c, + (¢, + ¢5)a]d,. (4.12)

So, unless ¢, = ¢, + ¢, = 0 we can choose a(y) to cancel the y(y)d, in w,. Then (4.12)
reduces to

W, = C,V, + C3¥5 + €V, + €5V + ¢V + €V, (4.13)
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We next operate with v, to obtain
w, — 25¢yvg + s(cs — 2¢,)Vy. (4.14)

So, unless 2¢, = ¢, we can choose s to cancel the v, in w,. Continuing in this way we
find that, provided ¢, # ¢; and ¢, # 0 (in addition to the assumptions already made), it
suffices to consider the generator

v, +avs + bv, (4.15)

instead of (4.6). Here, a and b are arbitrary constants. As explained above, the rules
given in Table 1 for transforming solutions into solutions compensate for the
components which have been removed from (4.15).

In contrast to (4.6), the differential invariants of (4.15) are easy to calculate. The
characteristic equations

dx dy dz dM

Q+a+2b)x by z aM (4.16)
yield the differential invariants
xRy i) ool My -e1+a+2) (4.17)
so that the similarity form is
M = x#0Has DG (g VIras) ypbilisars) (4.18)

with G to be determined. Of course, (4.17) can be replaced by other combinations,
e.g.

)Ch/(l+a+2b)_)’, yZb, Mz" (419)

so that (4.18) can be written in many ways. The cases in which the constant factors in
the denominators of (4.16) vanish must be separately examined; the casesa = 0 and
b = 0 are correctly obtained from the corresponding limits on (4.18), while 1 +a +
2b = 0 leads to the similarity form

M =y G (x, ™). (4.20)

The consistency of (4.18) and (4.20) can be verified by direct substitution into (2.3a).
When b = 0, (4.18) reduces to the similarity form discovered by Young and Ierley
(1986), which was itself a generalization of the form given by Robinson and
Welander (1963).

We now return to the exceptional cases set aside between (4.6) and (4.15). If,
taking the other alternative at (4.10), we have ¢, = ¢; = 0 then

w = v, [y] + vy + v, + CV, + vy T+ velre]- (4.21)
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Table 3. The optimal subset of generators for similarity solutions of the thermocline equation
(2.3a) and the resulting forms of the similarity solution. Here, 4 and b are arbitrary
constants, ay) and B(y) are arbitrary functions, and G is a function to be determined by
substitution in the thermocline equations.

Generator Similarity forms

S, v, +av,+bv, M= xa/(1+a+2b)G(a—1/(l+a+2b)’yxb/(1+a+2b))’ M = y*""G(x, zy™)

S, v,+av, M = x"BG(px4) 2), M = y'G(x, 2),

S, vitav,*v, M = MG (a2, yer) M = y'G (x, ye™), M = xG (y,
xei’l)

S, vitvitav,xvy, M=2G(@ ",y +2Inz, M =2G(x,zfy) £ zInz

S, vi+2vitav,xv, M=z7G@x 0 yx0v) + 2 inz, M = 2°Gx, z/y™) = 2" In
z

S, v, M =G4 2)

S, v, Ev, M = G(»?, ye™)

S, v, v M=Gx®,z)xzlny

S, v *v, M=G®,z) £z Iny

So Vv EV; XV, M G’ ye*) = 142° (+ taken mdcpendently)

S, V.tV =a(y) Inx + G{x/z,y)

Sp it v,V vt M xa(y) +xzB(y) + G(y,2)

S5 vitvwtv M = xa(y) +x2°B(y) + G(y,2)

S. v, tv,— v M=z"'Gx+a(y)Inzy)

Sis vt vty, M = xa(y) + G(x + zB(¥),)

S VitV tv,tv, M = za(y) + G(x + zB(y),y) = 1z’

Unless ¢, = 0 we can operate with v, to remove v,. Then operations with v,, v, and v,
remove v,, v,, v, (respectively) and we are left with

Vo + 1(2)u- (4.22)

If on the other hand ¢, = 0, we simplify using other operations. Omitting all further
details, we eventually find the optimal subset of relatively simple generators given in
Table 3. Table 3 also gives the corresponding form of the similarity solution to the
thermocline equation. Again, consistency may be checked by direct substitution into
(2.3a).

Now, every symmetry generator of the thermocline equation (2.3a) is also a
generator of the ideal thermocline equation (2.3b). Therefore all of the similarity
forms in Table 3 apply to the special case k = 0 of zero temperature diffusion.
However, when k = 0, we can use the more general set of rules for transforming
solutions into solutions, in which (3.24) replaces (3.25). For example, from the
second line of Table 3, we see that both (2.3a) and (2.3b) have similarity solutions of
the form

M =xG(y,z). (4.23)
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Therefore, by (3.25), (2.3a, b) also have similarity solutions of the more general form
M =[x + a(y)IG(y, 2) (4.24)

where a(y) is an arbitrary function. However, by (3.24), the ideal thermocline
equation (2.3b) has similarity solutions of the even more general form

M = a(x, )G (¥, 2). (4.25)

The ideal thermocline equation (2.3b) may have other similarity solutions that
cannot be obtained from Tables 1 and 3, because the general generator of similarity
solutions to (2.3b), viz.

w = v,[v(x,y)] + ¥, + V3 €V, T+ C5Vs + GV + cv; + vg[p] (4.26)

is a generalization of (4.6). In contrast to (4.6), it is generally impossible to remove v,
from (4.26) by operating with the other generators. Moreover, the characteristic
equations corresponding to (4.26), viz.

dx dy

= ———= .. 4.27
Ty T ARt Gt el Gy (4.27)

cannot generally be solved, because the first equation in (4.27) is inseparable for
arbitrary y(x, y). Two avenues remain open. First, we can make special choices for
v(x,y) for which dy/ax = 0 but (4.27) is integrable. Second, we can restrict ¢, = 0.
Theny itself is a differential invariant and the first differential in (4.27) is exact.

If we set ¢, = 0, and simplify (4.26) with the help of Table 2, we obtain the
generators in Table 3 with v, dropped, and v,[y(x,y)] added to every generator.
However, tedious calculations show that the similarity forms thus obtained are no
more general than those obtained from Tables 1 and 3, when the general transforma-
tion rule corresponding to v,[a(x, )] (i.e. the bottom row in Table 1) is included.

We have also examined the point symmetries of the thermocline equations in the
form (2.1). These are not necessarily the same as for the M-equation (2.3), because
the point symmetries of (2.1) are allowed to depend onx,y,z,u,v,w, d, 6, (i.e.onux,y,
z, M, M, M, M, M), whereas the transformations (3.5) depended only onx, y, z,
M. We find, somewhat surprisingly, that the point symmetries of (2.1) are actually a
subset of the point symmetries of (2.3); the former lack the gauge symmetry, Vs, that
an arbitrary function B(y) can be added to M without changing any of the physical
variables (2.2). Although the gauge symmetry corresponds to a physically irrelevant
change in M, it leads to a number of physically meaningful similarity forms in Table 3.
In fact, the similarity solutions analyzed in Sections 6-8 depend upon this gauge
symmetry in an essential way.

5. This conclusion is unchanged if (2.1) are augmented by the defining equation g = y8, so that the
transformations also depend on the potential vorticity g.
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In view of all the foregoing results, and particularly those summarized in the
preceding three paragraphs, we conclude that Tables 1 and 3 contain a relatively
broad class of similarity solutions to the thermocline equations. ’

5. Summary of the results in Tables 1 and 3

Tables 1 and 3 contain a broad class of similarity solutions to the thermocline
equations (2.3). In Table 3, G( , )is a function to be determined by substitution into
the thermocline equations, a(y) and B(y) are arbitrary functions, and a and b are
arbitrary constants. The consistency of all the forms in Table 3 is guaranteed. Once G
is determined, then the resulting solution can be further generalized by applying any
combination of the transformations given in Table 1, excluding the bottom row. If
k = 0 (the ideal thermocline equation), we may also use the bottom row of Table 1.

For example, setting @ = 0 in the similarity form S,, we seek solutions of (2.3a) in
the form (4.23) used by Salmon (1990, Section S). The resulting equation,

y[-G,G, + G,.G_,] + GG, =y’xG_,, 6.1

has one fewer independent variable than (2.3a).

Two of the similarity forms in Table 3 (S, and S,,) lead to linear equations for G
and can therefore be thoroughly analyzed. All the other forms lead to nonlinear
equations, like (5.1). For the nonlinear equations, there are two ways to proceed. We
can solve the equation numerically as did Salmon (1990), or we can seek special
analytical solutions. In this paper we are interested in analytical solutions.

Special solutions may be sought by a variety of techniques, including a further
similarity reduction to an ordinary differential equation. A special solution of (4.23,
5.1)is

M = x[y(y) exp (Cz/y) + «Cy] (5.2)

where y(y) is an arbitrary function and C is an arbitrary constant. We obtain other
solutions by applying the transformations in Table 1. For example, applying the
transformation corresponding to v, [a( )] (and remembering that M is arbitrary up to
a function only of y), we generalize (5.2) to

M = x[y(y) exp (Czly) + kCy] + a(y) exp (Cz) (5.3)

where a(y) is another arbitrary function. If k = 0 we can use the more general
transformation corresponding to v, [a(x, y)] to obtain

M = a(x,y) exp (Cz/y) (v =0). .4)

The solutions (5.2-5) are the simplest members of a general family of solutions found
by Welander, Neecdler, Blandford and others, in which the temperature varies
exponentially with depth. For a review of this earlier work, see Veronis (1969, 1973)
or Pedlosky (1987). These similarity solutions have led to other, closely related
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solutions such as
M = a(x,y) exp (Cz/y) + xCxy (5.5)

which generalizes (5.2-4). All of these solutions are, like (5.5), characterized by a
balance between temperature diffusion and the advection by a depth-independent
component of the vertical velocity. In the following sections, we show that there are
other analytical solutions of the thermocline equations with strikingly different
properties.

6. The similarity form S,

We begin by analyzing the similarity form §,, from Table 3, the first of two
similarity forms that lead to linear equations for the undetermined function G.
Setting

a(y) =ywe(y),  B(y) =y*[w.(y) —wo(»)] (6.1)

we have

M =xy*wy(y) +xzy*[w, (y) — wo(M)] + G (¥, 2) (6.2)

where w,(y) and w,(y) are arbitrary functions and G must be determined. The
northward and vertical velocities are

v=y M, =y[w,(y) — wy(y)] (6.3)

and

w =y M = wy(y) +z[wi(y) — wo()]- (6:4)

Thus w,(y) and w, (y) are the vertical velocities at z = 0 and z = 1, respectively. If we
take the ocean surface to be at z = 1, then we can regard w,(y) as a prescribed
Ekman upwelling velocity and w,(y) as the abyssal (or bottom) velocity. The
eastward velocity u is nonzero, but it has no effect upon the temperature,

6=M,=0G, (6.5)
because 0, = 0. Thus the thermocline equation (2.3a) reduces to the linear equation
vo, + wb, = k0, (6.6)

for & with v and w given by (6.3) and (6.4). The temperature enters (6.6) as would a
passive scalar, but the thermal wind equations are satisfied because 8, and v, are zero;
this is the special significance of the similarity form (6.2).

If k = 0, the solution of (6.6) has 8 constant along characteristic lines given by

dz w z  w(y)

(6.7)
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where
W) = -wi(y) + wo(y). (6.8)
That is,
0=2C(5) (x =0) (6.9)
where C is an arbitrary function of the characteristic coordinate

z woy') .,

s=;+fy(y,)2W(y,)dy. (6.10)

If  is nonzero but small, we anticipate that the solution may contain boundary
layers or fronts. In the simplest case w, and w, are constants, 6 is independent of y,
and the solution to (6.6) is simply

de c Wz —z,) 611
dz =(,exp|— Ik ( . )
where C, is an arbitrary constant (positive for static stability), and
Wy
=y (6.12)

is the depth at which the vertical velocity is zero. Figure 1 shows the character of this
solution as k — 0, with C, and the integration constant of (6.11) chosen to satisfy
boundary conditions of prescribed temperature at the top and bottom of the ocean.
If W > 0 (converging vertical velocity) and z = z, lies within the ocean,’ then (6.11)
corresponds to two layers of constant temperature separated by a sharp front of
thickness '? atz = z,. If W < 0 the temperature gradient increases in both directions
from z,. Then if the ocean lies above z, the vertical velocity is positive throughout the
ocean and (6.11) corresponds to a boundary layer of thickness k at the ocean surface
(i.e. at the bottom of an Ekman layer with prescribed temperature.) If z, lies within
the ocean, there are both top and bottom boundary layers. These solutions are very
similar to those discussed by Salmon (1990).

For general w,(y) and w,(y), we regard 9 as a function of y and the characteristic
coordinate s. Then (6.6) transforms to

—y*W(y)8, = kb, (6.13)

6. We could regard the location of the ocean as fixed and translate the solutions vertically by an
arbitrary amount, but here it is easier to keep the solutions fixed and regard the location of the ocean as
arbitrary.
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Figure 1. Schematic drawing of the solution (6.11) to (6.3, 6.4, 6.6) in the case of y-indepen-
dent vertical velocity. The rays emanating from the stagnation point (y, z) = (0, z,)
correspond to the projections of particle trajectories onto the yz-plane, and the arrows
indicate the direction of flow. (The three-dimensional flow is nondivergent.) Superimposed
rectangles represent hypothetical ocean boundaries, and the corresponding temperature
profiles are shown on the left. In the case of convergence (upper diagramy), a front occurs if
the level z, lies within the ocean (lower rectangle). Otherwise (upper rectangle) there is a
boundary layer where the fluid exits the domain. In the case of divergence (lower diagram),
only boundary layers are present.

A further transformation to the coordinate

v 1
e=-f RLACOLA (6.14)
yields the “‘heat equation”
8, = kb, (6.15)

for 8 (&, s). The coordinate £ increases in the direction of the flow along characteris-
tics. Thus, according to (6.15), the temperature on each characteristic is determined
by the “initial” temperature at the end where flow enters from the Ekman layer or
abyss, and by the diffusion across characteristics.
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In the previously considered case of constant w, and W, the characteristics are
straight lines emanating from the point at z = z, on the equator y = 0. Refer again to
Figure 1. The solution (6.9) is multi-valued at this point, but (6.11) shows how even
small diffusion removes this singularity. The front at z, in (6.11) occurs because all
the characteristics originating above z, have a uniform “initial” temperature that is
higher than the temperature of those characteristics originating below z,. In fact, the
solution (6.11) corresponds to the fundamental solution,

g, = ! ‘ s (6.16)
= €X - .
2w P |7 ank
of (6.15), with
(z — z0) 1
=—" = . 1
s y £ Wy (6.17)
At the opposite extreme lies the solution
z -z,
6 =Cs=C, 5 (6.18)

in which the boundary temperature distribution is so smooth that the diffusion is
everywhere unimportant. Other solutions of (6.6) could be obtained by writing down
solutions of (6.15) and then inverting the transformations (6.10) and (6.14), but the
general nature of the solutions is already clear from (6.6) or (6.15).

7. The similarity form S,

We next investigate the similarity form S, in Table 3. We find that the problem
again reduces to a linear advection-diffusion problem in two dimensions. In this case,
however, the “passive” scalar quantity turns out to be the Bernoulli functional or

potential yorticity.
Setting

M =xy’w,y(y) — x2’y’W(y) + G(»,2), (7.1)
we have

u=4axzW(y) + 2xzyW'(y) —y'G,

v=-=22yW(y) (7.2)

w=w,(y) - 2’W(y)
and

6= -2x*W(y)+ G,.. (7.3)
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The thermocline equation reduces to
YW()G,. = 2zyW ()G, + [Wo(y) ~ 22 W ()]G = kG (74

All three components of velocity enter (7.4), because the temperature (7.3) has
gradients in all three directions. Hence (7.4) does not fit the form of an advection-
diffusion equation in two dimensions. However, the equivalent equation for the
Bernoulli functional does fit the advection-diffusion form because, by (7.1),

B=M —-zM_ =G, - 2G, (7.5)

is independent of x. Thus (2.4) reduces to

B,
vB, + wB, = kz ?] (7.6)

with v and w given by (7.2b, ¢). Egs. (7.4) and (7.6) are equivalent. Then, since

d
B=F—zF, = —z2—

iz \z

A o
where
F=gG, (7.8)

is the contribution of G to the pressure, the solution to (7.6) determines the whole
flow.
From the general relation

g=-73B

2B (7.9

between the potential vorticity g and the Bernoulli functional, we see that g, = 0 if
B, = 0. Thus, (2.5) reduces to

vq, + wq, = Kq,, (7.10)

and the potential vorticity also obeys a two-dimensional advection-diffusion equation
with prescribed velocity. If g is known from (7.10), then by (7.9) we know B,. Then B,
and (7.6) determine B, so that B is known everywhere, and the velocity and
temperature are determined as before.

It is clear that the reasoning of Section 6 again applies, with the Bernoulli
functional or the potential vorticity now replacing temperature as the “passive
scalar.” If k = 0, then B is constant along characteristics of constant

_z wo(y')
$= +ﬁ(y Wi ? (711
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and the general solution of (7.6) is
B(y,s) = —Ci(s) (7.12)

where C, (s) is an arbitrary function. Then, using (7.7), the general solution for x = 0
is given by (7.2), (7.3) and

"2 ’
mo|Er o)
@) O Ywi)
where C, and C, are arbitrary functions of their respective arguments. Moreover,
since k = 0, the factor x in (7.2-3) can be replaced by an arbitrary function a(x, y).
The arbitrary function C, is determined by values of the Bernoulli functional at the
“inflow” ends of characteristics. The arbitrary function C, corresponds to an
arbitrary component of the temperature that depends only ony, and a corresponding
component of eastward thermal wind. These two features produce cancelling effects
in the advective derivative, (u - V8). It is straightforward to verify that (7.2), (7.3) and
(7.13) are a solution to the ideal thermocline equations.

By (7.9), the potential vorticity is

F=Gz=zj: dy’}dz’ +2C(y)  (7.13)

q =yG_, = 2C{(s). (7.14)

Thus, as anticipated above, surfaces of constant potential vorticity coincide with
surfaces of constant Bernoulli functional when k = 0. By (7.12) and (7.14) the
potential vorticity and Bernoulli functional are proportional if

2C|(s) = —aC,(s) (7.15)
for some constant a. That is, if
Ci(s) =e*” (7.16)
then
q =aB. (7.17)

Now, within this solution, we can replace z by z — c/a, where c is another constant.
Then since

¢ c
B=G,—ZGE—>GZ—(2~E)GZZ=B+;(-) (7.18)
(7.17) becomes

q=aB +co (7.19)

which is the linear relationship betwee‘n potential vorticity, Bernoulli functional, and
temperature postulated by Welander (1971). However, the general solution (7.13) is
far less restricted.
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As a simple example, suppose
wo(y) =0, W(y) =1 (7.20)

This example is indeed special, because, by (7.2¢), the vertical velocity is everywhere
of one sign, but with (7.20) the rather complicated expression (7.13) can be rewritten

G, =A(ZYy) +zC(») (7.21)
where now A4 and C are arbitrary functions. From (7.21) we obtain the solution

u=4xz+zy A (2%y) —zyT'C'(y)
v=—=2zy (7.22)

w= —z°

0 = —2xy> + 2zy T A (Z%y) + C(y).

It is easy to verify that (7.22) solve the ideal thermocline equations for arbitrary
functions 4 and C. Again, the factor x can be replaced by an arbitrary function
a(x, y).

We now turn to the more realistic case k # 0. Thus far, our viewpoint has been that
the equations determining G, such as (7.4), should be solved before we apply the
transformations in Table 1 to further generalize the solutions. However, this strategy
is sensible only if we intend to write down the general solution of (7.4). When k = 0,
this procedure is inconvenient.

If special solutions are sought, in which we wish to exercise our prejudices about
boundary conditions, then it is far more efficient to generalize the similarity forms at
the outset. Now it can be easily shown that, with only two exceptions, the transforma-
tions in column 3 of Table 1 add nothing to the similarity forms S,, and §,; that is not
already contained in the arbitrary functions a(y), B(y) and the undetermined
function G (y, z). The two exceptions are the shift transformation v, in the case of §;,
only, and the transformation v,[y(y)] in the case of both $,, and S,;. Applying the
shift transformation to §,; we obtain

M =xa(y) +x(z+)*B(y) + G(y,z +¢) (7.23)
which, after suitable redefinitions of a, 8, and G is
M =xa(y) +x(z* — z02) B(y) + G(¥,2) (7.24)

where z, is a constant proportional to ¢. Now having incorporated into (7.24) an
arbitrary shift and scaling of z, we can assume without loss of generality that our
model ocean lies on

0<xyz<l (7.25)
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The vertical velocity at the ocean bottom is proportional to a(y), which must
therefore be zero. The vertical velocity atz = 11is

we(y)=(1- 2y B(Y)- (7.26)

We regard (7.26) as a prescribed Ekman upwelling velocity, and seek solutions to the
thermocline equation in the form (8.1).

8. Examples
We seek solutions to the thermocline equation (2.3a) in the form

, (2 —242)
M=xy —(1-_—20)“’5()’) +G(y,2) (8.1

where z, is a constant, w,(y) is an arbitrary function, and G(y,z) remains to be
determined. The form (8.1) satisfies the boundary conditions

w(x,y,0) = 0, w(x,y, 1) = we(y) (82)

at the ocean bottom and the base of the surface Ekman layer. The corresponding
velocity and temperature fields are

x(we)
yhy

1
= (22 —2) = ;G

¥z

(8.3)

where
hy=1-—2z, (8.4)

It is casily verified that (8.3) satisfy the Sverdrup and thermal wind relations; the
temperature equation is satisfied if

we(y)

o [-2yG,. +y(2z — 2))G., + (2* — 202) G ] = kG, (8.5)
o
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which is a third-order equation for G,. The simplest solution of (8.5) has w, constant
and G, = 0. We easily find that

SNSRI | YS!
0 e v exp i3’ — 5% g (8.6)

with C, a positive constant. Ifw, < 0and0 <z, < 1, then 6, has a local maximum at
z = z,, within the ocean. Then, for k =0, (8.6) corresponds to a front of thickness K2
separating regions with vertically uniform temperature. The jump in temperature
across the front is proportional to the arbitrary constant C,.

The two further integrations required to produce G, from (8.6) contribute only a
physically irrelevant constant to the temperature. Thus, for k — 0, we can abbreviate
the solution corresponding to (8.6) as

G, = (z — z))CH(z — z,) 8.7

where C is a constant related to C,, and H is the Heaviside function (zero for negative
argument and unity for positive argument).

Egs. (8.3) with (8.7) (and w, a negative constant) are one solution to the
thermocline equations. However, we can obtain another solution by applying the
transformation corresponding to v, in Table 1. (This is the only such transformation
not already incorporated in the form (8.1).) That is, we can generalize (8.7) to

G, = (z = 2,)CH(z = 2) + (22 — z)Y () (88)

where y(y) is an arbitrary function. This arbitrary function can be used to satisfy
another of our prejudices about boundary conditions: that the depth-averaged
eastward flow be zero at the eastern boundary x = 1. With v(y) so chosen, the
complete solution is

2wy
w="% 0z = 2) (1 - %)
0
w
=—hj(2z - Zy)
¢ ’ (8.9)
w= &(zz — z42)
= .
2wy
0=- W (1-x)+ CH(z — zy)
0

where, again, w; is a negative constant.

It can easily be checked that (8.9) satisfy the thermocline equations. This solution,
shown schematically in Figure 2, has interesting features that correspond to the
southern part of a subtropical gyre. The vertical velocity is zero at the bottom but
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Figure 2. Schematic drawing corresponding to the solution (8.9) of the thermocline equations.
A front (dashed) separates regions of vertically uniform temperature. The vertical velocity
(profile at left) is negative throughout the upper layer, positive throughout the lower layer,
and zero at the bottom. The horizontal velocities change sign midway through the lower
layer.

positive throughout the lower layer below z,. This deep upwelling drives a poleward
flow in the bottom half of the lower layer. The southward Sverdrup flow is confined to
the upper layer and to the upper half of the lower layer. The eastward velocity is
negative in the upper region of southward flow, and positive below. The temperature
increases to the northwest, and the horizontal velocity is along the isotherms on level
surfaces, which are the same at all levels. Of course (8.9) also has unrealistic features,
such as the constant frontal depth, which cannot be overcome within the framework
of similarity form §,,. If w, is a positive constant, then the solution corresponding to
(8.6) has a minimum stratification at z, and a boundary layer at z = 1, where flow
departs into the Ekman layer. This could correspond to a subpolar gyre.
For constant, w,, another special solution of (8.5) is

2WE 'z 21 'z2 1 3 1 2 WE
1+K—ho~£ dzlj; dzzj; d§exp -3-.*5 —Ezug)mﬂ
2

+ cf; Y2z -2,) (8.10)

G
G, =—
y

where C,, C, are arbitrary constants and y(y) is an arbitrary function. The solution
(8.10) corresponds to a jump in potential vorticity y G,,, at z,. Again the last term in
(8.10) corresponds to the transformation generated by v,. For negative w, and small
k, we can abbreviate (8.10) as

ZZ

C
Go= 5, @2 Hz ~2) + G+ ¥()(2 — 2) (8.11)

where H is the Heaviside function, and C is a constant related to C,. According to
(8.11), the stratification 8 —but not the temperature 6—is discontinuous at z,. We
choose C, = 0 to make the stratification in the lower layer vanish, and we choose y(y)
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to make the vertical average of the eastward velocity be zero at x = 1. With these
choices, the complete solution is

2w, C s 1 ,
“=h“0(22_20)(1_x)+§ (Z_ZO)H(Z_ZO)*gho(ZZ_ZO)J

v=""E 07— 2
hy

(8.12)
e o
w = 7 (z° — z2)

2y*w, C

0=— Iy (1-x)+;

The arbitrary constant C is proportional to the constant potential vorticity y8, of the

upper layer, and must be positive for static stability. Above the front at z,, diffusion is

unimportant and the temperature varies in all three directions. Thus (8.12) offers a

counterexample to Salmon’s (1990) conjecture that fronts always separate regions of
vertically uniform temperature.

It is logical to think of the w,-terms in (8.9) or (8.12) as the wind-driven circulation,
and the C-terms as the thermohaline circulation. The thermohaline circulation adds
nothing to the vertically averaged transport, but in (8.12) it induces a component of
the eastward thermal wind. This thermal wind component is eastward near the
surface and bottom, and westward at mid-depth. Since (8.5) is linear, the thermo-
haline circulations can be superposed. For example, by combining (8.9) and (8.12) we
obtain a solution with discontinuities in both temperature and stratification.

We next want to relax the requirement that we and 0, be independent of y.

Applying the operator yd, to (8.5) we obtain the potential vorticity equation

(z—2z) H(z - 2) - %th

vq, + wq, = «kq,, (8.13)
where
q=yG.. (8.14)

and v and w are given by (8.3b, ). Once again, (8.13) is a linear advection-diffusion
equation in two dimensions for the “passive” scalar g- Now, however, the shapes of
the characteristic lines defined by

dz w (2% —z2)

&=V @ -z @15

are independent of w,(y). These characteristic lines are the lines of constant

@ - 22)
o= ¥ T 22)

> (8.16)
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Z=

z=0

Y=Y,

Figure 3. A north-south section showing the characteristic lines corresponding to (8.3b, c)
and (8.13). These characteristic lines are streamlines for the velocity field projected onto the
yz-plane. The arrows indicate the direction of the flow along characteristics when the
Ekman velocity w.(y ) is negative (positive) to the south (north) of y,.

shown in Figure 3. All of the characteristics pass through a stagnation point at depth
z, on the equator. All of the characteristics below z, pass through a second stagnation
point at the bottom. All of the characteristics above z, pass into the Ekman layer.

The sign of w,(y) determines the direction of the flow along the characteristics. If
w, is negative, as assumed above, then the flow throughout the ocean converges on
the stagnation point at z, on the equator. If k = 0, the potential vorticity is generally
multivalued at this point, but as the preceding solutions demonstrate, even a small
nonzero k removes this singularity. The solution (8.9) corresponds to a potential
vorticity that is zero except for a “delta-function” at z = z,. The delta-function
solution represents a balance between advection by the flow converging on the
equatorial stagnation point and very small diffusion across characteristics. The
solution (8.12) with layers of uniform potential vorticity has a similar interpretation.

We now assume that w,(y) is negative in a subtropical gyre south of y, and positive
to the north. We continue to assume that 0 < z, < 1, to keep the possibility of a front.
Then the flow along characteristics is as shown by the arrows on Figure 3. There is no
flow either along or across the vertical stagnation line at y = y,. Let the boundary
conditions on (8.13) be prescribed 6, at the ocean surface and bottom. It is logical to
take 8, = 0 at the bottom (z = 0) and also at the surface (z = 1) in the subpolar gyre
(y > y,)- Then, for k — 0, the stratification 8, is zero throughout the region below z,,
and throughout the subpolar gyre. Above the characteristic line AC, 6, is determined
by its prescribed value at the surface: the potential vorticity y0, is constant along
characteristics. Within the characteristic triangle ABC, y8, is an arbitrary function of
s, the characteristic identifier, because there is no flow through, or diffusion across,
the liney = y,. However, this arbitrary function must be zero, or 8, (and hence u,,) is
infinite aty = y,. Thus 8, is zero everywhere below the characteristic line AC, and the
solution does not resemble the ocean.

Our failure to obtain a two-gyre similarity solution of the form (8.1) may reflect
only the inadequacy of the particular form (8.1). We speculate, however, that it
represents a general failing of the thermocline equations. At the boundary between
gyres, isotherms slope steeply, and friction or inertia probably become important as
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the flow assumes some of the character of a separated western boundary layer.
Horizontal temperature diffusion may also become important. Its neglect is responsi-
ble for the arbitrariness of the flow inside the triangle ABC, but the addition of
horizontal diffusion cannot, by itself, cure the deficiencies noted above. Neverthe-
less, solutions of the form (8.1), exemplified by (8.9) and (8.12), offer textbook
examples of simple flows within individual gyres that share interesting properties
with the real ocean.

9. Discussion

We have applied symmetry group methods to the oceanic thermocline equations in
the form (2.3) to obtain the wide class of similarity forms summarized in Tables 3 and
1. In Table 3, G is a function of two independent variables that depend upon the
Cartesian coordinates. By substituting these similarity forms back into the thermo-
cline equation, we obtain the equation for G. The consistency of this equation (i.c.
the property that only the similarity variables appear in it) is automatically guaran-
teed by the theory. Once G is determined, the similarity solution can be further
generalized by means of any of the transformations summarized in column 3 of Table
1. Of these, the transformation corresponding to generator v, is especially important.
In the diftusive (k # 0) case, it permits the solution to be shifted in the x-direction by
an amount that depends arbitrarily ony. In the nondiffusive (x = 0) case the allowed
generalization is even greater; the x-dependence can be replaced by a dependence on
an arbitrary function of x and y.

In 14 of the 16 cases in Table 3, the equation for G turns out to be nonlinear (but of
a lower dimensionality than the original equation for M). These 14 cases provide the
raw material for future numerical studies. In two cases, however, the G-equation is
linear, and the whole dynamics reduces to a linear, two-dimensional advection-
diffusion equation for the temperature or potential vorticity (respectively). In these
equations, the temperature or potential vorticity behave like passive scalars, because
they affect only the x-component of velocity, and there is no change in temperature or
potential vorticity in the x-direction. Although it is difficult to write down the general
solutions exactly, the general character of the solutions is obvious, and the special
cases given in Sections 68 are prototypical. From a more mathematical viewpoint,
these solutions are interesting because they arise from the gauge symmetry of the
M-equation, and thus would not have been obtained from a symmetry group analysis
of the thermocline equations in the form (2.1), in which only physical variables
appear. That is, a transformation that produces no change in any physical quantity
leads to similarity solutions of physical importance.

Why look for similarity solutions in the first place? Evidently Nature likes “special
solutions,” and the current intense interest in “coherent structures” and “patterns”
in fluid mechanics is really a belated recognition of this fact. Complicated general
solutions are often mosaics in which special solutions form the individual pieces. In
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any case, this is our view of the way in which solutions like those presented in
Sections 6-8 will likely contribute to our understanding of the general ocean
circulation. On this view, one cannot hope to successfully fit individual similarity
solutions to the circulation of the whole ocean (or even, perhaps, of a single gyre) by
adjusting the parameters available to a single solution.

Two courses of further study suggest themselves. First, one could look at similarity
solutions of the time-dependent, non-diffusive form of (2.1), obtained by setting k =
0 and adding 46/0t to (2.1d). In these equations, fronts would correspond to
developing singularities in the derivatives of temperature, and questions about
stability and attracting states (which are outside the scope of the steady-state theory)
could be addressed in a natural way. Second, one could look for similarity solutions
of the steady, viscous form of (2.1), obtained by adding friction terms to (2.1a-). As
we speculate in Section 8, friction is likely important at the poleward edge of the
subtropical gyres, and it would be interesting to seek similarity solutions correspond-
ing to the separated western boundary current. We speculate that such solutions
would have a multiple, frictional-diffusive boundary-layer structure.

After this paper was first submitted, Roger Samelson kindly drew our attention to
the work of Filippov (1968), who applied symmetry group methods to the thermo-
cline equations including horizontal diffusion. For these equations, Filippov lists five
generators (not including the gauge symmetry) and gives seven specific similarity
solutions. In the first pair of these, the advection terms and the diffusive terms
separately cancel. The second pair are very similar to the first pair, but there is some
cross-cancellation. Two of the remaining solutions satisfy our Eq. (2.1). However,
none of these solutions exhibit fronts, or resemble any of the solutions we have
discussed.
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