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A simple model of the ‘joint effect of baroclinicity and 
relief’ on ocean circulation 

by Rick Salmon’ and Rupert Ford1,2 

ABSTRACT 
We offer a simple model for studying the joint effect of baroclinicity and relief (jebar) on 

large-scale ocean circulation, based upon the planetary geostrophic equations. Applying a 
Galerkin approximation to the buoyancy equation, and asssuming that the temperature 
diffusion and vertical stratification are weak, we obtain a simple relation between the ocean 
temperature and the streamfunction + for the vertically-averaged horizontal transport. 
Substituting this relation back into the vertically-averaged vorticity equation yields a single, 
generally nonlinear equation for JI, in which jebar corresponds to a clockwise ‘advection’ of $ 
along the continental slope (for the realistic case of temperature increasing with $I). Numerical 
solutions resemble those obtained by Salmon (1994) using a more accurate model, and provide 
a physically transparent explanation for the northward excursion of the Gulf Stream along the 
western continental slope observed in the previous study. 

1. Introduction 

When the pressure at the ocean bottom varies along isobaths, the water column 
feels a ‘bottom torque.’ It is customary to divide this bottom torque into two 
components. The first component is the total torque that would occur if the fluid 
were completely homogeneous. The second component represents the adjustment to 
the torque arising from density variations within the fluid, through the hydrostatic 
dependence of pressure on fluid density. This second component is also called jebar, 
for joint efict of baroclinicity and relie$ In ocean circulation models based upon the 
geostrophic approximation, jebar represents the sole feedback of the density field on 
the equation determining the depth-averaged flow. 

A previous paper (Salmon, 1994; hereafter S94) described numerical solutions of a 
particularly simple ocean circulation model based upon an abridgment of the 
planetary geostrophic equations, (2.1-2). The S94 model comprises two coupled, 
second-order equations in two dependent variables: the streamfunction \Ir(x, y) for 
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the depth-integrated flow, and the ocean surface temperature T(x,~).~ The +equa- 
tion, an equation for the vertically-integrated vorticity, contains a T-term correspond- 
ing to jebar. The T-equation, an equation for the vertically-averaged temperature, 
contains a +-term corresponding to the advection of temperature by the vertically- 
averaged flow. The S94 equations also contain an arbitrary projile function, which 
controls the dependence of temperature on potential vorticity, and, thereby, the 
dependence of temperature on depth. If this profile function is chosen to be a step- 
(i.e. Heaviside) function, then the equations reduce to the conventional equations 
for two immiscible, homogeneous layers. The S94 equations were therefore called 
generalized two-layer equations (GTLE). However, smoother choices of profile func- 
tion proved both more realistic and numerically convenient. 

The GTLE are certainly one of the simplest sets of dynamical equations that could 
be used to study the effect of jebar on the depth-averaged flow, and the numerical 
solutions described in S94 show that this effect is especially significant along the 
western continental slope, where jebar causes a large northward excursion of the 
Gulf Stream along the continental slope. However, the GTLE, while simple, are by 
no means transparent, and real physical understanding of the most prominent GTLE 
results probably requires even more drastic simplifications. In this paper, we offer 
one such simplification. 

Our starting point, as in S94, is the planetary geostrophic equations. Assuming that 
the ocean temperature varies exponentially with depth, we obtain, by a Galerkin 
method, a pair of IJJ- and T-equations (3.5, 3.13) similar to, but somewhat simpler 
than, the GTLE. Then, assuming that thermal forcing and diffusion are everywhere 
less important than temperature advection, and supposing that the vertical derivative 
of temperature is small, we ‘solve’ the temperature equation, obtaining a simple 
expression for the temperature as a function of the transport streamfunction. In the 
simplest case, of temperature assumed independent of depth, our solution is 

T = F(4), (1.1) 

where F( ) is an arbitrary function, continuous but not necessarily single-valued. In 
the more realistic case of small but nonzero vertical stratification we obtain the 
generalization (3.21) of (l.l), which includes the effect of westward propagation of 
temperature. Then, substituting (1.1) or (3.21) back into the jebar term in the 
+-equation, we obtain a single, generally nonlinear equation for $. We call this 
single equation the toy model, because it relies on approximations that certainly 
cannot be strictly justified. 

However, numerical solutions of the toy model reproduce some of the important 
features of the GTLE solutions described in S94. Equally important, the toy-model 
equation is sufficiently simple-for linear F( ), it is actually linear-that the physics 

3. More precisely, S94 used a temperature variable S(x, y), related to the surface temperature 7&y) by 
T = O(S), where O( ) is a prescribed function. 
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behind these features is transparent, and one understands immediately why (for 
example) the jebar must lead to a northward over-shoot of the Gulf Stream along the 
western continental slope. The toy model apparently succeeds because its fundamen- 
tal assumption-that the ocean temperature is, to a first approximation, constant on 
lines of constant transport streamfunction +-is most nearly correct near the western 
continental slope, where jebar is also most significant. However, we stress that the toy 
model is not a tool for accurately simulating the real ocean. Instead, we regard the 
toy model as a ‘thinking tool,’ intended to enlarge our intuition about the interaction 
between flow and topography, and to be replaced by something better as that 
intuition improves. 

2. Toy model for depth-independent temperature 

In the usual (nondimensional) notation, the planetary geostrophic equations 
(PGE) are 

(2.1) 

and 

8, + z&3, + ~0, + we, = Q + KV@. (2.2) 

Here, (u, v, w) is the velocity in the (x, y, z) direction, corresponding to (east, north, 
up);f = y is the Coriolis parameter; 4 is the pressure, and 8 the buoyancy. We will 
call t3 the temperature. The constants E and K are coefficients of Rayleigh friction and 
temperature diffusion, respectively. Q is the diabatic heating, and (TX@, y, z), +‘(x, y, 2)) 
is thepresctibed horizontal stress, assumed nonzero only near the ocean surface. Our 
notation is V3 = (i&, a,, &) and V = (a,, a,). For a more complete discussion of 
(2.1-2) including the philosophy behind the Rayleigh friction, refer to S94 and 
earlier papers cited therein. The nondimensionalization of (2.1-2) is the same as in 
S94, and will be explained again later on. 

As previously shown, the planetary geostrophic equations (2.1-2) are well-posed 
with respect to temperature boundary conditions of prescribed temperature (or heat 
flux) at all boundaries, and velocity boundary conditions of no-normal-flow at the 
ocean surface, 

w=o at2 = 0, (2.3) 
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and bottom 

w = -uH, - vH~ at z = -H(x, y), (2.4) 

provided that the ocean depth H vanishes smoothly at the coastline. (If any part of 
the boundary is vertical, then the vertical momentum equation (2.1~) must also 
contain a Rayleigh friction term.) The temperature equation (2.2) and temperature 
boundary conditions are used to step 9 forward in time. Then, at the new time, the 
velocity components (u, v, w) are instantaneously determined by the Cl-field, the 
linear equations (2.1), and the boundary conditions, as follows. First, the two- 
dimensional elliptic equation 

and boundary condition + = 0 determine the transport streamfunction $, defined by 

(2.6) 

where u = (u, v) is the horizontal velocity. Here, 

yfc - 760’ 
W(x, y) = curl 

( 1 
H , (2.7) 

and r’f”, 76”’ are the prescribed stress at the ocean surface and bottom, respectively. 
The temperature enters (2.5) through 

With + determined by (2.5), the velocity field is given by 

and 

(2.8) 

(2.9) 

where u’, the departure of the horizontal velocity from its vertical average, is 
determined by the thermal wind equations, 

au’ 
- = yp& [-ye, - d3, + y7Y, + E7X,] a.2 

avr 1 
- = - [+y@ - 4, - y7x, + ET&] 
a.2 y* + 2 

(2.11) 
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and 

s 

0 
g’dz = 0. 

In S94 we considered PGE solutions of the special form 

l.3 = 0 
i 
; + S(x,y, t) 

i 

(2.12) 

(2.13) 

where O( ) is an arbitrary profile function, and the evolution equation for the new 
dependent variable S(x, y, t) results from substituting (2.13) back into the PGE. The 
significance of (2.13) is that it leads to an exact reduction of the PGE from three to 
two space dimensions in the ideal limit of no forcing and dissipation 
(T=Q=O=E=K).T~ e ansatz (2.13) is equivalent to the assumption that surfaces 
of constant temperature and potential vorticityy0, coincide (Needler, 1971). In the 
general case with forcing and dissipation (or if the ocean includes the equator, 
y = 0), the ansatz (2.13) must be slightly modified, and the resulting S94 equations 
then have the status of a Galerkin approximation. If the arbitrary function O( ) is 
chosen to be a step function, then these equations reduce to the conventional 
equations for two immiscible layers; hence the name generalized two-layer equations 
(GTLE). For complete details, refer to S94. 

Numerical solutions of the GTLE described by S94 showed interesting and 
perhaps realistic features, especially along western continental slopes, where the 
second, so-called jebar, term in (2.5) significantly affected the transport. However, 
the numerical solutions of S94 had two shortcomings. First, the ideal geometry (a 
rectangular ocean with continental slopes and shelves of uniform width) made it 
difficult to compare the results with observations of the real ocean, which has a very 
irregular shape. And second, the GTLE dynamics, while much simpler than even the 
full PGE, were still too complicated for a completely satisfactory interpretation of 
the solutions. The need for an even simpler dynamics than GTLE is readily apparent 
when one confronts the enormous but seemingly unavoidable task of incorporating 
real bathymetry, while keeping the ultimate goal of physical understanding. 

In this paper, we offer an abridgment to the GTLE based upon the somewhat 
unrealistic assumptions that the temperature stratification Cl,, thermal forcing, and 
thermal diffusion are all small. This abridgment, which we call toy dynamics, leads to 
a single, nonlinear elliptic equation for the transport streamfunction $(x, y). This 
streamfunction equation can easily be solved by a numerical relaxation method, and 
the solutions are easy to understand. More importantly, solutions of the toy model 
bear a surprising resemblance to the GTLE solutions described by S94. Thus, it 
seems that much of the physics of the GTLE can be understood by appealing to the 
simpler toy dynamics. 

First, suppose that 

0 = W,Y, t), (2.14) 
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where T is a z-independent function to be determined. The general +-equation (2.5) 
becomes 

+;J(T,H)=W+ 

The velocity field determined by (2.9-12) is 

(2.15) 

(2.16) 

where O(E, T) stands for terms containing the Rayleigh friction or prescribed stress. 
Substituting (2.14) and (2.16) into (2.2), we obtain 

Hz + J(+> 0 = O(E, 7, Q, K), 

in which many terms are absent because 0, = 0, and because the thermal wind (the 
second term in (2.16a,b)) is tangent to the isotherms. 

Now, we are interested in the case of small forcing and dissipation. Furthermore, 
experiments with the full PGE and with the GTLE show that the solutions tend 
toward steady states. Thus, to leading order, (2.17) is 

with solution 

J(h T) = 0 (2.18) 

T = F(e). (2.19) 

We regard F( ) as an arbitrary function; a better interpretation would be that F( ) is 
determined, at higher order, by the small (arbitrary) forcing and dissipation. With 
(2.19) the $-equation (2.15) becomes 

(2.20) 

As in previous papers, we regard (2.20) as an ‘advection-diffusion’ equation for the 
scalar $. Now, however, the ‘streamfunction’ for the advecting velocity, viz. 

contains a second term corresponding to the advection of IJJ along isobaths at a speed 
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Figure 1. The ocean basin topography used for all solutions. The ocean depth varies between 
0 and 1, and vanishes smoothly at the western, northern, and eastern boundaries. The 
southern, equatorial boundary is open. 

proportional to the bottom slope. If, as we assume below, F’(IJJ) > 0 (to give the 
largest values of T where 4 is largest, at the center of the subtropical gyre), then this 
second term corresponds to a ‘velocity field’ that sweeps IJJ clockwise along the 
continental slope in the northern hemisphere. As we see next, this tendency, so 
simply understood from (2.20), qualitatively explains much of the jebar effect 
observed in the experiments described by S94. 

We use the same non-dimensionalization of variables as in S94. Briefly, horizontal 
distances are in units of the basin width (4000 km), vertical distances in units of the 
maximum depth (4 km), and horizontal velocities in units of .2 km/day to make a 
realistic Sverdrup transport (30 Sverdrups) correspond to + = O(1). The units of 
buoyancy are then .02 cm2/sec, so that the observed density range in the ocean 
corresponds to a range in nondimensional 8 of about 50-100. 

We use the same ocean basin topography (Fig. 1) as in S94. The ocean depth 
vanishes smoothly at coastlines on the western, northern, and eastern boundaries. 
The southern, equatorial boundary is open. To ensure sufficient numerical resolu- 
tion in regions of steeply sloping topography, we greatly exaggerate the widths of the 
continental shelves and slopes; altogether they occupy more than half the total basin 
area. The prescribed two-gyre wind curl, 

W&Y) = -& . sin(;y)cos(ty), (2.22) 

is the same as in S94. Figure 2a (bottom) (which is identical to Figure 2b in S94) 
shows the transport streamfunction in the case of homogeneous fluid, that is, the 
solution of (2.20) with F(+) = 0 and E = 0.015, the same friction value used in S94. 



a 

I 

Figure 2. The transport streamfunction + (bottom) in three solutions of the toy model 
equation (2.20) with depth-invariant temperature given by the linear relation (2.23). All 
three solutions have E = 0.015, and differ only in the value of the coefficient To in (2.23): (a) 
To = 0.0 (homogeneous fluid); (b) To = 2.0; (c) To = 5.0. Thus, the sequence (a-c) 
corresponds to increasing temperature contrast within the fluid. Darker contours corre- 
spond to larger values of ~JJ, and extremal values are shown. The top panels show the 
corresponding ‘streamfunction’ (2.21) for the ‘flow ’ ‘advecting’ + in (2.20) with ‘flow’ 
direction indicated by the arrows. 
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Again, we understand Figure 2a (bottom) by regarding (2.20) (with F’(+) = 0) as an 
advection-diffusion equation for $, with the advecting velocity directed along lines of 
constantylH (Fig. 2a, top) in the pseudo-westward direction indicated by the arrows. 

Figures 2b-c show the corresponding solutions of (2.20) when the temperature is 
depth-independent and proportional to I&, 

T = F(+) = T&. (2.23) 

We assume that the constant To is positive; this puts the warmest water at the center 
of the subtropical gyre, and the coldest water at the center of the scbpolar gyre. We 
regard T as the depth-average of the real ocean temperature. Hence, its range should 
be an order of magnitude smaller than the observed (nondimensional) temperature 
range of about 50, because most of the observed temperature range occurs in the 
upper tenth of the ocean. The transport streamfunction \Ir corresponding to To = 2.0 
and To = 5.0 is shown in Figures 2b and 2c (bottom), respectively. The top panels 
show the corresponding ‘streamlines’ (2.21), with the arrows again indicating the 
direction in which + is ‘advected.’ For the choice (2.23) of a linear dependence of $ 
on T, the toy model equation (2.20) is actually linear. Thus the easily understood 
changes in the characteristic lines in Figure 2 (top) as To increases are solely 
responsible for the dramatic changes in $ shown in Figure 2 (bottom). 

In the solutions of Figure 2, the temperature field is proportional to the streamfunc- 
tion shown in Figures 2b-c (bottom). We next consider solutions of the toy model 
equation (2.20) in which the prescribed temperature 

T = F(e) = To I’[ (?)+11) 2 tanh (2.24) 

increases from 0 to To in a +-interval of 2A centered on the transition streamline + = 
$,. Again, the transport streamfunction IJ is ‘advected’ along lines of constant (2.21), 
but since F’(+) is nonconstant, these lines now depend on I/J itself. For F’(Q) > 0, 
jebar still corresponds to a clockwise ‘advection’ of IJJ along the continental slope, but 
now jebar is effective only where F’(e) is large, that is, near the transition streamline 
31 = *o- 

Figure 3 shows the transport streamfunction (bottom) and corresponding tempera- 
ture (top) in three solutions of (2.20) and (2.24) that differ only in the choice of 
transition streamline. In all three solutions, To = 5.0, A = 0.2, and E = 0.02. This 
larger friction is barely sufficient to control the wiggles that occur near + = +. on the 
western continental slope. However, these wiggles disappear if E is further increased. 
We regard the limit E + 0 as the most realistic and interesting, and in all of the 
solutions presented in this paper, E is near the lowest value for which the numerics 
would converge. We note that E usually exceeds the value of 0.01 required to resolve 
an e-thickness boundary layer on our 100 x 200 grid, and also the value of 0.015 used 
in S94, probably because the friction must now compensate for the complete lack of 
thermal diffusion. 
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Figure 3. The streamfunction $ (bottom) and temperature T (top) in three solutions of the toy 
model equation (2.20) with depth-invariant temperature given by (2.24). In all three 
solutions E = 0.02, To = 5.0 and A = 0.2. The solutions differ only in the location of the 
temperature transition line: (a) +a = 0.0 (b) $0 = -0.12 (c) $0 = -0.25. The transition thus 
occurs on a progressively more subpolar streamline in the sequence (a-c). 

In the solution of Figure 3a, the temperature transition occurs on the streamline 
+0 = 0 that divides the two wind gyres. In Figures 3b (+0 = -0.12) and 3c 
(+0 = -0.25) the transition occurs on progressively more subpolar streamlines, and 
the cold water is increasingly confined to the center of the subpolar gyre. By the same 
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reasoning as above, the relatively southern transition in Figure 3a ‘advects’ positive 
values of JI northward along the western continental slope, causing a large penetra- 
tion of warm, Gulf Stream water into the subpolar region. In fact, Figure 3a 
resembles Figure 2c (which had the same size temperature range) rather closely. But 
in the more northerly transitions of Figures 3b-c, this penetration is weaker, and in 
Figure 3c, jebar ‘advection’ acts principally to counteract the southward ‘advection’ 
of low subpolar G-values along lines of constant y/H, thus separating the gyres, 
inhibiting the c-diffusion of + between them, and leading to a stronger total transport 
in both gyres. 

Despite the almost schematic simplicity of the toy model, Figures 2 and 3 
qualitatively resemble the solutions of the much more realistic GTLE described in 
S94. See especially Figures 3 and 11 of S94, which exhibit the same northward 
overshoot of the subtropical western boundary current (although in shallower water, 
where the boundary condition on \cI forces the toy-model temperature to be nearly 
uniform, and jebar to be weak.) 

Our assumption (2.14) of a vertically uniform temperature field is of course too 
severe; it leads to a temperature equation, (2.17), without a westward propagation 
term. However, in many of the GTLE solutions described in S94, westward propaga- 
tion contributed importantly to the ‘characteristic velocity’ of the temperature 
equation, especially in the subtropical gyre, where the relatively thick warm-water 
layer and relatively small Coriolis parameter yielded a relatively large internal 
Rossby-wave speed. In the next section, we show how the steps leading up to (2.19) 
can be generalized to cover the case of a small but nonvanishing temperature 
stratification, thereby including westward temperature propagation in the toy-model 
physics. 

3. The case of non-vanishing stratification 

Now suppose that 

q-&y, z, t> = w, y, t)@(z), 

where O(z) is a prescribed function of depth, with the properties 

(3-l) 

O(0) = 1 and O’(z) 2 0 (3.2) 

so that T(x, y, t) is the surface temperature, and the fluid is statically stable. The case 
(2.14) of vertically uniform temperature corresponds to the choice O(z) = 1. We now 
show that if O’(z) is nonzero but small, then an extension of the reasoning given in 
Section 2 generalizes the simple relation (2.19) between T and + to (3.21), which 
includes the effect of westward temperature propagation. 

With (3.1) (2.8) becomes 

y=-- s _oHzB dz = Tl?(H), (3.3) 
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r(H) = - J~~ZO(Z) dz, 

and the general +-equation (2.5) becomes 

W) 
,,J(T,H) = W-V. 

[53,2 

(3.4) 

(3.5) 

Now, unlike (2.13) and (2.14), the ansatz (3.1) is not precisely consistent with the 
ideal PGE. That is, we cannot now obtain an exact, z-independent equation for 
T(x, y, t), even in the case of vanishing forcing and dissipation. Instead, as in S94, we 
determine T&y, t) by requiring that the temperature equation be satisfied in the 
vertical average, i.e. that 

(3.6) 

The horizontal velocity is now 

t-YT, - GYT, - ETJ + O(T), (3.7) 

where O(r) stands for terms proportional to the stress, and 

G(z,H) = fHO(z’)dz’ +;s_ohz@(z)dz 

ds the solution to 

t-9 

dG 
z = O(z), j-_“, G dz = 0. (3.9) 

Then 

s 
ww 

-“, ue dz = TW)HJ~, 4~x1 + y2 (-yT,- eT,,yT, - ETA) + O(T), (3.10) 

where 

and 

P(H) = +j s_“, O(z) dz (3.11) 

R(H) = s_“, O(z)G(z, H) dz. (3.12) 
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Note that P(H)T is the vertically-averaged temperature. The vertically-integrated 
temperature equation (3.6) becomes 

HZ’(H) $; + J($, P(H)T) + TJ 

(3.13) 

When O(z) = 1, thenP(H) = 1, R(H) = 0 and l?(H) = H2/2; and (3.13) reduces to 
(2.17). 

The third term in (3.13) which has no counterpart in (2.17), causes a pseudo- 
westward propagation of T along lines of constantyR(H)l(y2 + l ‘). The propagation 
speed is proportional to T itself, leading to wave steepening and the possibility of 
shocks, as predicted by Dewar (1991) and noted in the numerical solutions of S94. 
When temperature shocks are present, the dissipation terms on the right-hand side 
of (3.13) are of course indispensable. However, in our further approximations, which 
are based upon the assumption that O’(z) is small, and are analogous to the 
approximations leading to (2.19) above for the case O(z) = 1, we will discard the 
forcing and dissipation terms on the right-hand side of (3.13), and also remove the 
possibility of shocks, while retaining some of the pseudo-westward propagation of T. 
But first we made an ad hoc modification to (3.13) that simplifies the dynamics at very 
low latitude. 

Fory near E, the third term in (3.13) is large, but so is the first of the temperature 
diffusion terms on the right-hand side. Since further progress requires the neglect of 
all terms on the right-hand side of (3.13), we also modify the third term in (3.13) by 
replacingyl(y2 + e’) with l/(y + 6) w  h ere 6 is a small fraction of the total basin 
length. This replacement, which is ad hoc, has the effect of capping the internal 
Rossby wave speed at its y = 6 value. Of course, it would be more graceful to avoid 
the equatorial near-singularity in the temperature equation by considering a model 
ocean with a southern boundary at y z=- E, 6. However, as E + 0, solutions of the 
$-equation (3.5) depend sensitively on the geometry of its characteristic lines of 
constant H/y. In the unrealistic case of a southern coastal boundary, the H/y-lines 
comprise a set of closed curves, and as explained by Kawase (1993) and in S94, the 
streamfunction IJJ differs markedly from the more realistic case in which the ocean 
extends to the equator, with characteristic lines as shown in Figure 2a (top). 

After the modifications noted above, and again assuming steady state, the temp- 
erature equation (3.13) becomes 

J($, P(H)T) + J 

Again, the first term represents the advection of temperature by the depth-averaged 
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flow, while the second term propagates T pseudo-westward, now along lines of 
constant R(H)I(y + S), at a speed proportional to T itself. 

Now suppose that O’(z) is small. Then 

P(H) = 1 + wtw, R(H) = IJW), (3.15) 

where TV, is a small parameter that measures O’(z). The temperature equation (3.14) 
can be rewritten 

J(k W + VP)) + J ( -$.)=o. T, P 

But, to within an error of order k2, (3.16) is the same as 

, T(1 + cup) = 0. 

That is, 

with implicit solution 

TP(H) = F 

(3.16) 

(3.19) 

where F( ) is an arbitrary function. 
On the other hand, suppose that the ocean bottom is flat, H = constant, but that 

the stratification parameter TV, is not necessarily small. Then P(H) and R(H) are 
constants, and (3.14) is equivalent to 

RT 
4~ - ty + 6jp > TP = 0, 

with implicit solution 

WW 
* - ty + s)p(H) (3.21) 

where, again, F is an arbitrary function. But to within an error of order l~,~, (3.20) is 
the same as (3.18). Thus (3.20) holds if either the stratification t.~ is small, or if the 
bottom is flat. Hence, we regard (3.20) as a somewhat better approximation than 
(3.18). Note, in particular, that (3.18) under-estimates (by a factor of P) the speed of 
westward temperature propagation in the flat-bottomed interior ocean. However, 
(3.21) holds only if (3.20) is everywhere satisfied, and we must therefore regard weak 
stratification, t.~ -K 1, as the necessary condition for (3.21), just as it is for (3.19). 
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In the limit l.r, += 0 of vanishing stratification, P + 1, R -+ 0, and (3.21) reduces to 
(2.19). For nonvanishing stratification, (3.21) states that the depth-averaged tempera- 
ture TP is constant along characteristic lines of constant 

(3.22) 

Again, the first term in (3.22) represents advection by the depth-averaged flow; the 
second term represents the pseudo-westward temperature propagation. 

In the solutions described below, we take 

O(z) = ehr, 

where A is a constant. Then, with p = AH, 

1 - e-p 

P(H) = 7 N 
CL b2 

1 -z+z- ***, 

R(H)=2H25 
1 

l-coshF+Zksinhu. 

and 

21J3 3j.L5 
- 2H2e-p $ + -gj- + sr + 

1. . 

T(H) = 5 [l - (1 + b)e-k] N Hz 

We solve 

I’(H) 
,,J(T,H) = W-V. 

(3.23) 

(3.24) 

(3.25) 

1 
(3.26) 

(3.27) 

with T determined by (3.21) for several choices of F( ). Figure 4 shows the depth 
parameters P(H), R(H), and T(H) as functions of the stratification parameter b z 
)LH. The maximum in R near CL = 1 corresponds to the well-known fact that the 
internal Rossby speed is largest when the temperature transition occurs near 
mid-depth. 

We next present solutions of (3.5) and (3.21) with h = 1, the largest value for which 
the approximations leading up to (3.21) can be defended. However, when h f 0, no 
single-valued F( ) can be realistic: Where $ dominates the argument (3.22), it would 
be reasonable to choose a monotonically increasing F( ), so that the warmest water 
lies in the subtropical gyre, as in Section 2. However, in the eastern ocean, the second 
term in (3.22) dominates, so that a monotonically increasing F( ) would lead to cold 
water near the equator, and warmer water in the north. This temperature reversal 
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Figure 4. The three functions P(H), R(H) and T(H) that appear in the toy model, shown as 
functions of the parameter k = AH, where H is the ocean depth and A-* is the decay-depth 
for temperature. 

would be most problematic near the equator, where the second term in (3.22) is 
largest. To avoid this difficulty, we assume that the arbitrary function F(c) in (3.21) is 
multi-valued. In particular, we assume that 

F(c) = To 5 tanh (‘[ (?)+1]) (3.28) 

everywhere outside an equatorial region in which the lines of constant 5 enter and 
leave at the southern boundary but do not extend into the subpolar region. Within 
this equatorial region, we let the depth-averaged temperature TP be uniform at the 
value it has on the bounding contour (a line of constant .Q of this region. The 
toy-model temperature equation (3.20) is then everywhere satisfied, and the tempera- 
ture (but not its derivative) is everywhere continuous. The warmest water still occurs 
at the center of the subtropical gyre, but the water near the equator is not 
unrealistically cold. 

To see how this works, refer to Figures 5 and 6. Figure 5 shows the depth-averaged 
temperature (3.21) (left) and the argument 5 defined by (3.22) (right) in the 
toy-model solution corresponding to Figure 6b. In most of Figure 5, the arbitrary 
function F(c) is given by (3.28) with TO = 5.0, A = 0.2 and .& = -0.2. However, in the 
southern region described above, we take the depth-averaged temperature TP to be 
uniform. The depth-averaged temperature is still warmest in the western subtropical 
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Figure 5. The depth-averaged temperature (left) and the quantity (3.29) in the solution 
presented in Figure 6b. According to the toy-model temperature equation (3.20), the 
Jacobian of these two quantities must vanish. 

ocean, where, in the real ocean, the warm-water layer is thickest. The equatorial 
depth-averaged temperature is cooler, but not unrealistically cold. 

Figure 6 shows three stratified (A = 1.0) solutions in which the temperature 
equation is satisfied in the manner described above. The three solutions differ only in 
the value co of 6 at which the temperature changes most rapidly. However, the 
solutions of Figure 6 required a higher friction of E = 0.04 for numerical conver- 
gence. Thus one cannot gauge the effect of A f 0 by directly comparing Figures 3 and 
6, but Figure 7 shows two unstratified (A = 0) solutions with E = 0.04. Although it is 
impossible to decide exactly corresponding values of E0 in solutions with different A, 
we see by comparing Figures 6 and 7 that, in the solutions with vertical temperature 
stratification (Fig. 6), the westward propagation skews the subtropical temperature 
field toward the west. However, the main qualitative features of Figures 6 and 7 are 
similar, and similar to the other solutions described above. 

4. Remarks 

The assumptions underlying the toy model, and particularly our ‘solution’ of the 
temperature equation (3.13) are obviously unrealistic, and it would be pointless to 
defend them strongly. In the real ocean, diabatic forcing and diffusion are important, 
and the vertical temperature stratification is large. In the toy model, diabatic forcing 



Journal of Marine Research 

a 

Figure 6. The transport streamfunction JI (bottom) and surface temperature T (top) in three 
solutions of the toy model equations (3.5,3.21) with E = 0.04, A = 1.0, To = 5.0 and A = 0.2. 
The solutions differ only in the value <a of (3.29) at which the temperature changes most 
rapidly: (a) .& = 0.0; (b) <a = -0.2; (c) .$a = -0.35. The temperature transition thus occurs at 
a progressively more subpolar value of (3.29) in the sequence (a-c). 
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Figure 7. The transport streamfunction $J (bottom) and temperature (top) in two solutions of 
the toy model equations (2.20,2.24) with depth-independent temperature, X = 0.0. In both 
solutions, E = O.O4,7’a = 5.0 and A = 0.2. The two solutions differ only in the value +a of the 
streamfunction where the temperature changes most rapidly: (a) J10 = -0.12; and (b) $a = 
-0.2. These solutions differ from those in Figure 3 in their higher friction. They differ from 
those in Figure 6 in the value of the stratification parameter A. 

is represented by the choice of arbitrary function I;( ) in (3.21), but the resulting 
temperature field is nonetheless severely constrained; the ocean temperature must 
have the same value at every coastline, because, as H + 0, (3.21) reduces to T = F(G). 
This forces J( T, H) + 0 as H + 0 in (2.15) and (3.5), probably explaining why the 
northward Gulf Stream excursion occurs further offshore in solutions of the toy 
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model than in the GTLE solutions described by S94. In Section 3, we could examine 
only the case of weak temperature stratification (l.r < 1). However, in the real ocean, 
the warm water is concentrated in the top few hundred meters, and hence lo = O(5) 
or greater. Thus the solutions of Section 3 offer only an indication of how realistic 
stratification modifies the much simpler picture of Section 2. 

Still, despite all of these shortcomings, we feel that the toy model captures some 
essential physics, probably because its central assumption-that isotherms coincide 
with lines of constant $-is most correct in the region of strong flow along the 
western continental slope, where jebar is also most important. We are encouraged by 
the qualitative resemblance between our toy-model solutions and the solutions of the 
generalized two-layer equations (GTLE) reported in S94. The GTLE are a good deal 
more accurate, and are nearly as easy to solve as the toy-model equations. However, 
the latter are much more physically transparent, and this physical transparency is 
undoubtedly the biggest advantage of the toy model. 

It is tempting but premature to relate features of our solutions (such as the 
northward excursion of the Gulf Stream) to real ocean observations. Real basin 
bathymetry is far more complex than the ideal, rectangular geometry we have so far 
considered. However, ocean models based upon the planetary geostrophic equations 
seem well able to cope with complicated geometry without sacrificing their other 
advantages. For example, the general solution of the ideal GTLE (S94, Section 3) 
holds for arbitrary ocean depth H(x, y). Thus it seems possible that model dynamics 
no more complicated than the GTLE, or even, perhaps, an abridgment as severe as 
the toy model, could be applied to real basin bathymetry, and could transparently 
explain major features of the observed circulation. We are optimistically pursuing 
this possibility. 
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