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Hamiltonian approximation methods yields approximate dynamical equations that 
apply to nearly geostrophic flow at scales larger than the internal Rossby deformation 
radius. These equations incorporate fluid inertia with the same order of accuracy as the 
semi-geostrophic equations, but are nearly as simple (in appropriate coordinates) as 
the equations obtained by completely omitting the inertia. 

1. Introduction 
Numerical models of the large-scale circulation in the Earth’s ocean and atmosphere 

are usually based upon variants of the primitive equations, the equations of motion for 
a Boussinesq hydrostatic fluid. However, in addition to the slow geostrophically 
balanced motions of primary interest, solutions of the primitive equations contain 
relatively high-frequency inertia-gravity waves. In earlier days, these inertia-gravity 
waves severely hindered numerical computations, because the time-step could not 
exceed the time required for the fastest wave to travel between gridpoints. Sophisticated 
numerical methods (including semi-implicit methods) have largely overcome this 
difficulty, but the inertia-gravity waves remain troublesome, because relatively small 
errors in the computation of the geostrophic motions can excite unrealistically large 
inertia-gravity waves. Quite apart from the issues of efficiency and accuracy, the 
presence of inertia-gravity waves and small-scale turbulence greatly complicates the 
interpretation of solutions. 

Balanced equations are approximations to the primitive equations that filter out the 
inertia-gravity waves but retain the geostrophically balanced motions. The simplest 
such equations are the planetary geostrophic equations, which Completely omit the fluid 
inertia. More typical balanced equations take account of the inertia in the geostrophic 
motions; the quasi-geostrophic equations and the semi-geostrophic equations are among 
the most useful of such approximations. However, the semi-geostrophic equations are 
relatively difficult to solve (in their general three-dimensional form), and the quasi- 
geostrophic equations are artificially restricted to flows in which the isopycnal surfaces 
are nearly flat. 

In a series of papers, Salmon (1983, 1985, 1988a) proposed a strategy for 
constructing new balanced equations, in which the approximations corresponding to 
balance are imposed as constraints on the Lagrangian for the primitive equations. This 
strategy has two important advantages. First, the conservation laws for energy and 
potential vorticity survive if the approximations respect the corresponding symmetry 
properties. Second, transformations to new dependent and independent variables, in 
which the approximate dynamics takes its simplest form, automatically suggest 
themselves. 
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In this paper we extend an idea proposed by Salmon (1985, 94) to obtain 
approximate equations for nearly geostrophic flow at horizontal lengthscales larger 
than the internal Rossby deformation radius Nh/ f ,  where N is the Brunt-Vaisala 
frequency, h is the fluid depth, and f is the Coriolis parameter. These large-scale semi- 
geostrophic equations (LSGE) incorporate inertia at the order of the semi-geostrophic 
equations, but are nearly as simple and easy to solve as the (inertia-less) planetary 
geostrophic equations. 

This paper is self-contained, but it should be considered a sequel to Salmon (1985). 
We begin, in 92, with a brief overview of the primitive, planetary geostrophic and 
semi-geostrophic approximations. Section 3 reviews the Hamiltonian approximation 
theory developed in the earlier papers. In 9Q4 and 5, we derive the LSGE and 
demonstrate their close mathematical resemblance to the planetary geostrophic 
equations. 

Because the planetary geostrophic equations conserve a very simple form of 
potential vorticity, the assumption that surfaces of constant buoyancy and potential 
vorticity coincide leads to a useful exact reduction to a coupled pair of equations in two 
space dimensions. This reduction formed the basis for a simple numerical ocean 
circulation model developed by Salmon (1 994). In Q 5 we show that the LSGE conserve 
a form of potential vorticity that is nearly as simple (in appropriate coordinates) as that 
of the planetary geostrophic equations. Hence, Salmon’s (1994) model can be modified 
to include the inertia without sacrificing its other advantages. 

The present paper illustrates the enormous advantages of Hamiltonian approxi- 
mation theory more convincingly than any of my earlier papers. Although the specific 
results are primarily interesting to oceanographers and meteorologists, the general 
strategy and philosophy exemplified here ought to be useful in many other applications. 

2. The primitive equations and the planetary geostrophic equations 
Consider an inhomogeneous rotating fluid with a free surface at z = q(x ,y ,  t )  and a 

rigid lower boundary at z = - h(x, y ) .  The primitive equations of motion (expressing the 
Boussinesq and hydrostatic approximations) are 

with boundary conditions 

+ = O  

a4 0 = - - - g + o ,  
a Z  

and 

- = 0: DB 
Dt 

w = -  D?1 
Dt  

at 

(2.1 a) 

(2.1 b) 

(2.1 c)  

(2.1 d)  

and 
Dh 
Dt 

w = -- at z = -h(x,y). 
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Here, (u ,  v, w) is the fluid velocity in the direction of Cartesian coordinates (x, y ,  z) with 
z pointing up; f ( x , y )  is the Coriolis parameter (that is, twice the local vertical 
component of the rotation vector); 4 is the pressure; g is the gravity constant; 8 is the 
buoyancy (which we shall call temperature); and D/Df is the usual substantial 
derivative. Frequently, one assumes thatf= f o  + Py, wheref, and P are constants, and 
y is northward distance, but it is more illuminating to allow an arbitrary dependence 
off on the horizontal location (x, y ) .  The formal parameter c = 1 in (2.1) reminds us 
that we are interested in flows in which the relative accelerations are small compared 
to the Coriolis force, that is, in which the Rossby number i s  small. 

The primitive equations (2.1)- (2.3) conserve the energy 

E = .CTSd.dyd;i;E(u’+tI;)+(g-H)i), (2.4) 

where the integration runs over the whole fluid, and the potential vorticity, 

on fluid particles, DQ/Dt = 0. 
We are interested in cases in which the flow is nearly geostrophic, that is, in which 

the e-terms in (2.1) are small, and we seek approximate dynamical equations that are 
simpler than (2.1). In the most drastic approximation, we simply set e = 0 in (2.1). The 
resulting planetary geostrophic equations, 

(2.6a, 6) 

$24 av a w  -+-+- == 0, 
r?x c?y a2 

DB 
- = 0, 
Dt 

(2.6d)  

(2.6e) 

completely omit the inertia. Although the planetary geostrophic equations have been 
rather widely used in oceanography (see, for example, Salmon 1994), their complete 
neglect of inertia is probably too severe to explain many realistic features of the large- 
scale ocean circulation. 

The search for approximate equations for nearly geostrophic flow with accuracy 
between (2.1) and (2.6) has been longstanding; see, for example, McWilliams & Gent 
(1980) and Allen, Barth & Newberger (1990). Of the many equations proposed, the 
semi-geostrophic equations (Hoskins 1975; Cullen & Purser 1989) seem to be especially 
promising. The semi-geostrophic equations filter out the high-frequency inertia -gravity 
waves present in solutions of (2. l ) ,  while exactly conserving logical low-Rossby- 
number approximations to the energy and the potential vorticity on particles. 
Moreover, the semi-geostrophic equations have a Hamiltonian structure (Salmon 
1985, 1988a; Purser 1993), which at least partly accounts for their remarkable 
conservation laws and beautiful transformation properties. Finally, unlike the well- 
known quasi-geostrophic equations, the semi-geostrophic equations do not demand 
that the fluid depth and the vertical separation between isothermal surfaces be nearly 
uniform. 
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equivalent to the equations obtained by replacing 
In the case of constant Coriolis parameter f, the semi-geostrophic equations are 

in (2. l), where (uG, uG) is the geostrophic velocity, defined by (2.9). In the generalization 
to non-constant Coriolis parameter f ( x ,  y )  proposed by Salmon (1989, the semi- 
geostrophic equations take a relatively complicated form in ordinary physical 
coordinates (x, y ,  z). In both cases, however, the semi-geostrophic equations take their 
simplest form in so-called geostrophic coordinates (xs, y,, zs) defined (implicitly) by 

where 

and 

(2.8 a-c) 

(2.9 a, b) 

(2.10) 

is the hydrostatic pressure. The geostrophic coordinates turn out to be canonical 
coordinates in the Hamiltonian formulation of the theory. 

Despite their many favourable properties, the semi-geostrophic equations are 
significantly harder to solve than (say) the quasi-geostrophic equations. A central 
difficulty is that solutions of the semi-geostrophic equations can (and normally will) 
evolve into states for which the equations are ill-posed, that is, in which the semi- 
geostrophic equation for the pressure-tendency becomes non-elliptic. The conditions 
for non-ellipticity turn out to be the same as the conditions for symmetric and static 
instability of the flow (Shutts & Cullen 1987), and the ill-posedness thus corresponds 
to the development of localized regions of static and symmetric instability that the 
approximate dynamics evidently cannot relieve. Well-posedness can be maintained by 
adding eddy-friction and diffusion terms (perhaps adjusted to be largest in the regions 
of localized instability). However, Cullen & Purser (1984, 1989; see also Shutts, Cullen 
& Chynoweth 1988 and Cullen, Norbury & Purser 1991) have developed a substantial 
generalization of semi-geostrophic theory in which the instabilities leading to ill- 
posedness are automatically relieved without the addition of a large ad hoc eddy 
diffusion or the loss of conservation laws. In this so-called geometric theory, the elliptic 
equation for the pressure tendency is replaced by a (nonlinear) Monge-Ampkre 
equation for a scalar whose curvature, in geostrophic coordinates, is the (inverse) 
potential vorticity. The solution of the Monge-Ampkre equation is subject to a 
convexity condition (equivalent to static and inertial stability) that guarantees its 
uniqueness but may imply that the fluid particles undergo discontinuous rearrange- 
ments. However, despite the very elegant generalization of Cullen, Purser and 
collaborators, the semi-geostrophic equations remain difficult to solve. In fact, there 
seem to be few three-dimensional numerical solutions of the semi-geostrophic 
equations, especially in domains, like the ocean, with complicated boundary shapes. 

In this paper, we combine the assumption of nearly geostrophic motion with the 
additional assumption that the flow of interest has horizontal lengthscales larger than 
the internal deformation radius, to obtain approximate dynamical equations that are 
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Hamiltonian, conservative, and incorporate the effects of inertia at the same order of 
approximation as do the semi-geostrophic equations. However (because they take 
advantage of the restriction to scales larger than the internal deformation radius) the 
new equations are scarcely more complicated than the planetary geostrophic equations 
(2.6). We call these new equations (which are a generalization of those proposed by 
Salmon (1985, $4)) the lurge-scale semi-geostrophic equations (LSGE). The LSGE are 
nearly as simple to solve as (2.6), but they do not apply accurately to lengthscales 
smaller than the internal deformation radius. However, numerical ocean-circulation 
models seldom resolve lengthscales smaller than the internal deformation radius, which 
is about 40 km at mid-latitude. 

Like the planetary geostrophic equations, the LSGE admit a very useful, exact 
reduction to a pair of coupled equations in two space dimensions. In the case of the 
planetary geostrophic equations (2.6), this reduction is possible because the 
conservation laws for temperature and potential vorticity, 

DO D 
Dt D t  
- = - ( ( fO , )  = 0, 

imply that the ansatz 
YO, = G(@, 

(2.11) 

(2.12) 

where G( ) is an arbitrary function, is consistent with (2.6) and the boundary conditions 
(2.2) and (2.3). However, (2.12) integrates immediately to 

H=O -+S(x,y,t), ( f 1 (2.13) 

where @( ) is another arbitrary function, related to G, and S(x, y, t )  is a function of 
integration, independent of z ,  to be determined by substituting (2.13) back into (2.6) 
and (2.2)-(2.3). The resulting two-dimensional equations are a very handy gene- 
ralization of the two-layer analogue of (2.6), to which they reduce in the case in which 
the arbitrary function O( ) is chosen to be a step (i.e. Heaviside) function. For many 
further details, see Salmon (1994). 

Now, obviously, no such strategy could apply to the primitive equations (2.1); the 
analogue of (2.12), namely Q = G(8) with Q given by (2.5), is a partial differential 
equation in u, u and O that cannot be directly integrated, as could (2.12) to (2.13). 
However, the LSGE analogue of (2.12) turns out to be nearly as simple as (2.12), and 
can be directly integrated to yield a simple generalization of the ansatz (2.13), provided 
that all the calculations are performed in special coordinates that are the natural 
coordinates in which to formulate the theory. These special coordinates bear the same 
relation to the LSGE as do (2.8) to the semi-geostrophic equations. Thus, the LSGE 
have virtually all the useful mathematical properties of (2.6), but correctly incorporate 
inertia at the same order of accuracy as the semi-geostrophic equations. Again, their 
primary disadvantage is their limitation to lengthscales larger than the internal 
deformation radius. 

Shutts (1 989) used Hamilton’s principle to derive equations for nearly geostrophic 
flow in which the fluid velocity in the direction of the Earth’s rotation vector is assumed 
to be small. Since this component of velocity includes a large fraction of the northward 
velocity, Shutt’s equations apply to very large-scale atmospheric flow (in which the 
velocity is predominantly zonal) but are not as useful for the ocean (in which some of 
the strongest geostrophic currents are northward-flowing boundary currents like the 
Gulf Stream). 
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3. Hamiltonian approximation theory 
We derive the large-scale semi-geostriphic equations by making approximations 

based upon our two fundamental assumptions directly to the Lagrangian cor- 
responding to the primitive equations (2.1). This strategy has two important 
advantages. First, conservation laws survive if the approximations respect the 
corresponding symmetry properties. Secondly, transformations to new dependent and 
independent variables, in which the approximate dynamics takes it simplest form, 
automatically suggest themselves. 

Let x(a, 7) = (x(a, b, c7 7) ,y (a ,  b, c, 7), z(a, b, c, 7)) be the location of the fluid particle 
identified by the labelling coordinates (a, b, c) at time r.  The labelling coordinates move 
with the flow. Thus a/& is the time-derivative following a fluid particle, and a/& = 
D/Dt. We assign the labelling coordinates so that dadbdc = d(mass). Then the 
Lagrangian corresponding to the primitive equations is 

ax 
ar L = J S d u  db dc { (eu - R(x, y ) )  - + (€0 + P(x,  y ) )  

where 

is the Hamiltonian. In (3.1) and (3.2) the integrations run over the full mass of 
fluid. The prescribed functions R(x,y) and P(x,y) are any two functions satisfying 
tIR/t?y + aP/ax = f ( x ,  y ) .  The temperature O(a, b, c) is a prescribed function 
(depending on initial conditions) of the particle identity only (and thus aB/ar = 0). 
Hamilton's principle states that 8s L d7 = 0, for arbitrary independent variations 
Sx(a,7), Su(a,r), 8v(a,r), S$(a,7) in the particle locations and velocities, and in the 
Lagrange multiplier $ for the incompressibility constraint, 

where a. is the constant specific volume of the fluid. The 7-derivative of (3.3) is (2.1 c). 
Hamilton's principle yields (2.1 a, b) and the surface boundary condition (2.2). We 
incorporate the bottom boundary condition by constraining the fluid particle 
trajectories and their variations to be tangent to the rigid bottom at z = -h(z ,y ) .  The 
Lagrangian (3.1) differs from the corresponding Lagrangian for a general (Boussinesq) 
fluid only in that the terms containing the vertical velocity w have been dropped; this 
neglect corresponds to the hydrostatic approximation. For further background, see 
Salmon (1988b). 

The conservation of energy (2.4) and potential vorticity (2.5) correspond, 
respectively, to the symmetry properties that the Hamiltonian (3.2) is invariant with 
respect to time-translations, and to relabellings of the fluid particles that do not affect 
f?(a,b,c) or the Jacobian in (3.3). Because of its importance in what follows, we will 
examine the particle-relabelling symmetry more closely. First, realize that Hamilton's 
principle requires that the action be stationary with respect to variations in the time- 
dependent mapping x(a, r ; p )  from label-space with coordinates (a, b, c) to physical- 
space with coordinates (x, y ,  z) .  Here, p is a parameter that controls the variation, i.e. 

ax 
-(a, b, C, 7; 0), 
aP 

~ x ( u ,  b, C, T) (3.4) 
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and ,u = 0 corresponds to the unvaried particle trajectory. Now, Hamilton’s principle 
is obviously equivalent to the requirement that the action be stationary with respect to 
variations in the inverse mapping a(x, r ;  p) from (x? y ,  z)-space to (a, b, c)-space. By 
writing 

(3 .5)  
regarding each side of (3.5) as a function of (x, y ,  z ,  t,p), and taking a/+, we obtain the 
equation 

?X 6.x da ax i3b c?.u dc 
(?p 8aap ab a,u c?c 2,u 

x = x(a(x,  y ,  z ,  t ; p), b(x, Y ,  2, t ; p), c ( ~ ,  Y ,  z ,  t ; p), t ; p), 

(3.6) __ - -~ - - 

relating variations in the mapping and its inverse. That is, 

Now, since H(a,b,c) remains constant on each fluid particle, we can take the 
temperature itself as one of the particle labels. Suppose then that H = c. Then, particle- 
label variations satisfying 

leave the Hamiltonian (3.2) unchanged. For variations satisfying (3.8), Hamilton’s 
principle thus implies that 

By steps similar to those leading to (3.6), we find that 

ax CX P ax 2 ?x c? 
c?r da ab c?r ?c c?r 

6- - __ - & _ _  __ &b - __ - sc. 

But, by (3.8), Sc = 0 and hence 

(3.10) 

( 3 .  I 1) 

for some (arbitrary) 8$(a, 6 ,  c,  r) .  After integrations by parts, (3.9) thus becomes 

(3.12) a 
&{  d(a,b,c) a(a, b, c) 

qx, BU - R, c)  a( y ,  €0 f P,  c) 0 = J’dr JJ”SJ’da S ~ ( a ,  r )  - ____-_. t- 
}. 

Then since S$ is arbitrary, (3.12) implies that aQ/ar = 0 where 

(3.13) 

is equivalent to (2.5). 
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replacements 
All the dynamical approximations considered in this paper correspond to 

u(a,7) + ~ a ,  71, ~ ( a ,  71, z(a, 711 and v(a, 7 )  + W U ,  71, ~ ( a .  71, z ( ~ ,  711, (3.14) 

in the Lagrangian (3.1), of the momentum variables u(a,7) and v(a,7) by prescribed 
functionals u[x(a, T)] and v[x(a,  T ) ]  of the location variables x(a, 7). The replacements 
(3.14) are projective in the sense that the resulting Lagrangian depends only on the 
particle locations x(a, 7) and the Lagrange-multiplier field $(a, 7),  that is, on two fewer 
fields than (3.1) and (3.2). 

The planetary geostrophic equations (2.6) result from the replacements 

u t O  and v t O  (3.15) 

in (3.1) and (3.2). The resulting Lagrangian has an error of O(F). 
The semi-geostrophic equations result from the more accurate replacements 

uG[x,  y ,  z1 and O G [ X ,  y ,  23, (3.16) 

where (uG,uG) is the geostrophic velocity defined by (2.9) and (2.10). The resulting 
Lagrangian, which has an O(e2) error, is then renormalized, to make it resemble the 
simpler Lagrangian for the planetary geostrophic equations. This renormalization step 
is based upon the observation that 

JJSS (3.17) 

to within an error of O ( 2 )  and an irrelevant total functional differential, where (ax, Sy) 
are arbitrary, and (dx,, dy,) are the corresponding variations of the geostrophic 
coordinates defined by (2.8). The simplification (3.17) is of course the motivation for 
the definition (2.8), which amounts to a transformation to canonical variables. For 
further explanation, refer to Salmon (1985). 

The semi-geostrophic equations are equivalent to the statement that 8s L,, d7 = 0 ,  
where 

SSSda{(€u-R(X,y))~~+(rz .+P(*,y))~yj  = da{-R(x,,y,) %+P(X,,Y,) 6Y,), 

(3.18) 

and 

for arbitrary variations 6x,(a, 7) and @(a, 7) in the geostrophic coordinates x, = 
( x , , y S , ~ , )  and in the Lagrange multiplier $. (The derivation is a straightforward 
generalization of that given by Salmon (1985, $3 and Appendix B).) However, the 
variations of HSG are somewhat awkward to take, and the resulting semi-geostrophic 
equations somewhat complicated, because the Hamiltonian (3.19) does not take a 
particularly simple form in the new coordinates x,. That is, the new coordinates 
simplify the first part of the Lagrangian (3.18) (the part corresponding to the Poisson 
bracket, in the usual geometrical view of the subject), but the Hamiltonian (3.19) takes 
a much simpler form in the old coordinates x. We shall see that it is possible to rewrite 
the Hamiltonian as a simple functional of the new coordinates, but only after an 
additional restriction. 
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To expose the essential difficulty, we temporarily assume that the rigid bottom at 
z = - h is flat, that is, that h = h, is a constant. The constraint 

(3.20) 

in (3.19) takes a complicated form in the geostrophic coordinates (2.8). However, re- 
defining the new vertical coordinate to be 

instead of (2.8c), we find that (3.20) is equivalent to 

(3.21) 

(3.22) 

to within the same O ( 2 )  error already present in (3.18) and (3.19). Here,A7 =f(xs l y , )  
and the lower integration limit in (3.21) was chosen to make the equation for the rigid 
bottom take the simple form z,  = - h in the new coordinates. 

We now turn to the (u,,~,) terms in (3.19). These would take a simple form in the 
new coordinates if only we could accurately replace 

(3.23) 

(3.24) 

and z ,  = 7, is the location of the free surface in the new coordinates. Unfortunately, 
the first term in (3.24) presents serious difficulties, because 

(3.25) 

and the last two terms in (3.25) are of size U and ghU/f2L2 respectively, where Uis the 
scale for the horizontal velocity, and L is the horizontal lengthscale of the flow. Thus 
the replacement (3.23) requires that L be much larger than the external deformation 
radius hezt E (gh)i/ f .  By similar steps, one can show that the last term in (3.24) is 
accurate if L is much larger than the internal deformation radius hint 3 Nh/ f ,  where 
N (the Brunt-Vaisala frequency) is a typical value of a0/dz. 

The largest numerical ocean-circulation models resolve lengthscales as small as 
20 km. Since the external deformation radius is about 2000 km, the requirement 
L 9 A,,, is much too severe. On the other hand, the internal deformation radius is only 
about 40 km. Thus L 9 hint is a tolerable constraint. In the following section we show 
how it is possible to simplify the approximate Hamiltonian by using only the latter 
assumption. The trick is to divide the velocity into a vertically averaged part and a 
remainder, and to constrain the velocity by assuming that this remainder is determined 
by the temperature field, through the thermal wind relations. We treat the vertically 
averaged flow in much the same way as if we were making no approximations at all, 
and filter out the external-mode inertia-gravity waves with the rigid-lid approximation. 
Since the rigid-lid approximation corresponds to the assumption that L Q our 
final equations, the large-scale semi-geostrophic equations, are accurate if the flow is 
nearly geostrophic, and if hint 4 L 4 A,,,. 
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4, Derivation of the large-scale semi-geostrophic equations 
Consider, then, a fluid bounded by a rigid lid at z = 0 and a rigid bottom at 

z = -h(x ,y ) .  The Lagrangian for the primitive equations is (3.1) and (3.2), but the 
g-term is now irrelevant and can be dropped. At both the rigid lid and the rigid bottom, 
we require the particle trajectories and their variations to be tangent to the boundary. 

In the primitive-equation Lagrangian, we now replace 
u(a, 7 )  -+ a+ zi, v(a, 7 )  + i7+ 8, (4.1) 

where (a, G) is the vertically averaged horizontal velocity, and (6,s) the departure 
therefrom. Both are functionals of the fluid-particle locations, as defined below. We 
define the new coordinates 

where 

8 
x,(a,7)  = x(a ,T)+€-- ,  f, 
y,(a,7> =y(a ,7) - -6- ,  

f ,  

zi 

and (&8) is defined by 

-((zi a 8) =-  ( -- ’* - as) and (zi, 0) dz, = 0. az, 3 f, ayys’axs 

(4 .2~)  

(4.2b) 

(4.2 c) 

(4.3) 

(4.4) 

Thus (a, G) is the vertically averaged velocity in (x, ,  y,, z,) coordinates and, similarly, 
( z i ,O)  obeys the thermal wind equations in these same new coordinates. Since all the 
terms containing the horizontal velocity in the Lagrangian are already of O(E), the 
definitions (4.2)-(4.4) are consistent with an overall accuracy of O(2). These definitions 
will allow us to express the approximate Lagrangian neatly in terms of the new 
coordinates, and this leads to final equations of great simplicity. 

Once again, 

Moreover, by the definition (4.2c), the equation for the rigid upper lid, z = 0, 
transforms exactly to z, = 0. Similarly, the equation for the rigid bottom, z = 
-h(x ,y ) ,  transforms to z ,  = -h(x, ,y , ) ,  to within the required O(2) accuracy of 
the approximation. To see this, note that z = -h (x , y )  is equivalent to 

2, = -h (x , y )+€  r [A( ”)”( f i ) ] d ~ ; + O ( ~ ~ )  
-h, f, ‘Ys f ,  

= - h(xs, y,) + O(€”. (4.7) 
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Thus, to consistent order, the rigid-boundary conditions take the same simple form in 
the new coordinates as they did in the old coordinates. Note that the final step in (4.7) 
depends critically on the fact that the vertical integral of (a, 6) vanishes. 

The approximate Lagrangian is 

ax 
ar L = J j / d a  ((&+ 66 - R(x,  y ) )  - + (e8+ eO + P(x, y ) )  

where 

However, with the same justification as in $3, we can replace (4.8) by 

We note that 

To further simplify H ,  we use (4 .2~)  to write 

where V, is the gradient operator in x, z (xs, y,, z,)  coordinates, and 

But 

because A vanishes at both boundaries. Then 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Collecting all these results, we obtain the Lagrangian for the large-scale semi- 
geostrophic equations in the form 

(4.16) 

where U = (U, 0) and fi = ( l i ,  6). The Lagrangian (4.16) is a functional of the particle 
locations x,(a, r )  and the Lagrange multiplier +,(u, T )  for the (transformed) 
incompressibility constraint, through the definitions (4.3) and (4.4). However, unlike 
the Lagrangian (3.18), (3.19) for the semi-geostrophic equations, (4.16) depends simply 
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on the x,-coordinates alone. In fact, the original x-coordinates have entirely 
disappeared from the formulation, except insofar as they will (eventually) be needed to 
transform the results back into physical space. Even the locations of the rigid 
boundaries take a simple form in the new coordinates. 

The Lagrangian (4.16) for LSGE is formally identical to the Lagrangian for the 
planetary geostrophic equations (2.6) except for the two O(e) terms in P and 6. Yet, as 
we verify below, the LSGE incorporate inertia with the same accuracy as the semi- 
geostrophic equations, provided that the internal deformation radius is small. Some of 
the physics of inertia is taken into account by the transformation from x to x,. This 
part of the inertia-physics obviously causes nothing more than a geometrical distortion 
of the flow, and need not even be calculated until it is time to transform the results back 
to x. On the other hand, the e-terms that appear explicitly in (4.16) evidently represent 
the irreducible part of the inertia-physics - that which cannot be removed by a 
coordinate transformation-and it is these terms that must be responsible for the 
qualitatively new behaviour that we expect from the addition of inertia. 

To obtain the LSGE, we require that the action based on (4.16) be stationary with 
respect to variations of $,(u, 7) and the (transformed) fluid-particle trajectories xs(u, 7). 
We require that the trajectories and their variations be tangent to the boundaries at 
z ,  = 0 and z, = - h(x,, y,). For the trajectory variations, we find that 

aY da -f, - Sy, +f, 2 Sx, + OSz, - V, q 5 . 6 ~ ~  + d7(SK+ Sk), s I III i 2 a7 
(4.17) 

(4.18) 

I S  S L,,, d7 = dr  

where 
K = / / /du+eP2 and k = /s/du+e6'. 

In Appendix A we show that 

and in Appendix B we show that 

6k= e / ~ ~ d n ( s x , . [ V , ~ ~ ~ ' ) - ( V , ~ A ) V ,  O]}. 
Thus 

(4.20) 

(4.21) 

and 

The Sy,- and Sz,-variations yield analogous equations. 
Now let 

(4.23) 

be the velocity of massive fluid particles in x,-coordinates, that is, the true velocity in 
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transformed space, and note that u is, by its definition (4.3), the vertical average of 
U = ( U ,  V ) .  but that U =k a+ 6. We want to rewrite (4.22) and its analogues to make 
them easier to compare to the more exact primitive equations. It is convenient to define 

4 = q5, - €U2- €U2+ eu. (U- u) + €eV,. A .  (4.24) 

Then, after integrations by parts, (4.22), its analogues, the 7-derivative of (4.21), and 
a8/& = 0 are equivalent to 

(4.25 a) 

(4.25 b) 

c?u av aw -+-+-- = 0, 
ay,s az, 

?I0 28 a19 ?$ -+ u,+ V-+ w- = 0, 
at, C X ,  ay, aZ, 

where 
@ = $+&(u+6)2. 

(4.25 d )  

(4.25 e) 

(4.26) 

Equations (4.25) are the LSGE in x,-coordinates; L?/at,T is the time derivative with x, 
held fixed. The boundary conditions are no flow through the rigid boundaries at the 
top and bottom, that is 

ah ah 
ax8 ?v, 

W =  0 at z ,  = 0, and W =  - U-- V-- at z ,  = -h(x8,ys) .  (4.27) 

Since @ is determined by the continuity equation (4.25 d )  and these rigid-boundary 
conditions, its definition (4.26) is actually irrelevant, but (4.26) makes the planetary 
geostrophic equations agree with the primitive equations with pressure q5, to within an 
error of O(e2). 

5. Properties of the large-scale semi-geostrophic equations 
First, we verify that (4.25) and (4.26) agree with the primitive equations, within the 

O(a2) error. We have already shown that (4.21), and hence (4.25d), is an accurate 
approximation to the corresponding primitive continuity equation (2.1 c). We have 
also shown that the equations for the boundaries in xs-coordinates, and hence (4.27), 
are formally identical to the corresponding equations in x-coordinates, within the O(e2) 
error. Clearly, (4.25e) is equivalent to i38/37 = 0. Therefore, it only remains to check 
the momentum equations (4.25 a-c). The horizontal momentum equations (4.25a, b) 
seem to incorporate only the inertia in the vertically averaged flow. However, we shall 
see that the last terms in (4.25a-c), and the transformation between x and xs, 
accurately account for the inertia in 0. 



98 R. Salmon 

We start with the vertical momentum equation (4.25~). The first term is 

+O(2) ,  (5.1) 

where we have consistently replaced x,-derivatives by x-derivatives in the O(e) terms. 
Thus 

Substituting (5.2) back into (4.25c), we see that (4 .25~)  is equivalent to 

(5.3) 

The two largest terms in the x,-momentum equation (4.25a) are -f, V and 
-a@/ax,.  By steps similar to those in (5.1) and (5.2), 

Similarly, 

-f(Xs,Ys) = - f (X,Y) +€Vf(X,Y) * (;, -$) + . . .]$ (Y-€?) [ 
a ("1 (5.5) 

V 
= -fv-s-Vf.(S, -22)+€j- - +O(€2). 

f 37 f 
Substituting (5.4) and (5.5) into (4.25a), and noting that all the terms in the derivatives 
off cancel to O(e2)>, we eventually obtain 

(5.6) e-(U+Q)-fu a = --+O(e2>. a$ 
a7 ax 

By similar steps, we verify the y,-direction equation. Thus, the LSGE (4.25)-(4.27) are 
a consistent O(e2) approximation for large-scale nearly geostrophic flow. 

The LSGE exactly conserve the energy, 

ELSG = JJPxs {;€a2 -;€a2 -z, O}, (5.7) 
and the potential vorticity, 
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on fluid particles, aQL,,/ar = 0. These conservation laws follow from the time- and 
particle-relabelling symmetries of the Lagrangian (4.16), but can also be proved 
directly from (4.25). In (5.7), the kinetic energy in the non-vertically-averaged flow 
seems to occur with the wrong sign, and, similarly, (5.8) seems to ignore the relative 
vorticity in the non-vertically-averaged flow. Once again, however, the apparently 
missing physics is hidden in the transformation between x and x,. In fact, calculations 
like those given in (5.1) and (5.2) show that 

(5.9) 
and 

ELsG = JJJdx ($& +$€ti2 - zO} + 0(c2). 

(5.10) 

Thus the conserved energy and potential vorticity are consistent-order approximations 
to the energy (2.4) and potential vorticity (2.5) of the primitive equations. 

We get a further impression of the physical content of the LSGE by examining 
solutions of the linearized equations. Suppose that the depth is uniform, h = h, 
(constant). Then the equations governing small departures from a state of rest with flat 
isothermal surfaces are 

a@ o =  - - $ O - € N 2 ( V , . A ) ,  c3Z, 

where 
@’ @-E.OV,. A, 

(5.l la,  b) 

(5.1 1 c) 

(5.1 1 d )  

(5.11e) 

(5.12) 

and N is the Brunt-Vaisala frequency, assumed constant for convenience. The 
boundary conditions are W = 0 at z ,  = 0, - h,. Remember that (@, iJ) are the vertical 
averages of the true fluid-particle velocities ( U ,  V ) .  

Solutions of (5.1 1) are separable in the form 
cc 

(5.13) 
m=u 

and 

(5.14) 

The rn = 0 (i.e. external mode) equations take the form 

(5.15) 
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and the m $. 0 (i.e. internal mode) equations take the form 

(5.17a, b) 

(5.17~) 

(5.17d) 

(5.17 e)  

Inertia is present in both (5.16) and (5.17), but in (5.17) it is hidden in the last term of 
(5.17 c). 

Now suppose that f, = f, + Py,, in the usual beta-plane approximation. Then the 
linearized primitive equations have (WKB) plane-wave solutions satisfying the 
Rossby-wave dispersion relation 

- PkAt 
w =  

1 +e(k2+l2)A;'  (5.18) 

where w is the frequency, (k, 1) is the horizontal wavevector, and Am = Nh,/m.rcf is the 
deformation radius corresponding to mode m. Note that A, = 00 on account of the 
rigid lid. The plane-wave solutions of (5.16) have dispersion relation 

(5.19) 

in exact agreement with (5.18) when m = 0. However, the plane-wave solutions of 
(5.17) have dispersion relation 

w = - #&A;[ 1 - €At(k2 + I"], (5.20) 
which represents the first two terms in an expansion of (5.18), assuming that 
hk(k2 + 1') < 1, that is, assuming horizontal lengthscales larger than the internal 
deformation radii. 

To solve the LSGE in their general nonlinear form (4.25), it is convenient to form 
a vorticity equation for the vertically integrated flow. By the continuity equation 
(4.25d) and boundary conditions (4.27), 

a a 
ax, 3 Y S  
- (h,U)+-(h,V) = 0. 

Hence 

(5.21) 

(5.22) 

for some $(x,, yB, tB). The horizontal momentum equations (4.25 a,  b) become 

(5.23~) 

(5.23b) 

I a2$  a 0  a 
h, aY, at, 
I a 2 $  a@ a 

+€-- h, ax, at, [ (L, )I ay, ay, 

- € - - - [A + a,. (i v, lC.)] v = -ax, + €0 g v, . A ,  

+ f,+€V,. -V,$ u=  --++6e-VV,.A. 
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We take the vertical integrals of (5.23), using ( 4 . 2 5 ~ )  to write 

= O(xs,ys, , etc., (5.24) 

divide the results by h,, and cross-differentiate to remove @. The result is a vorticity 
equation for the vertically averaged flow, 

(V,*A)dz, +s- - 1 -(V,-A)dz,]. ae (5.25) ] ;, [lh, h, ax, 
Here, 

(5.26) 

is the horizontal Jacobian operator in x,-coordinates. Note that the right-hand side of 
(5.25) depends only on the temperature B(x,, t,), and not on $(x,, y,, t,). 

Now suppose we know $(xs,ys, t,) and O(xs, t,) at some initial time. Then we can 
determine the velocity field ( U ,  V, W )  at that time as follows. The horizontal 
components are 

(5.27) 

where (e, p), the departure of the true velocity field from its vertical average, is 
determined from $ and 8 by the vertical derivatives of (5.23a, b), and by the 
requirement 

Then 

(5.28) 

(5.29) 

With the velocity field thus determined, we use (4.25 e)  to step 0 forward to a new time. 
To determine $ at the new time, we first solve (5.25), a linear elliptic equation for 
a$/at,, subject to the boundary condition &++/at, = 0 at the coastal boundary, where 
h, = 0. Since (6,s) vanish with h,, this boundary has the same location in x,-space as 
in x-space. With a$/at, thus determined, we step $, and the cycle is complete. This 
algorithm fails if (and only if) the coefficients of U and V in (5.23 a,  b) vanish. Hence, 
the condition for LSGE to be well-posed is evidently 

f=i,+eQ,.(;v&) > 0, (5.30) 

the condition for symmetric stability of the vertically averaged flow. The condition 
(5.30) is far milder than the two corresponding conditions in the semi-geostrophic 
equations (which must be enforced at each three-dimensional location). 

Interestingly, the LSGE filter out the inertia-gravity waves in three space dimensions, 
but only require the solution of a two-dimensional elliptic equation (5.25). (In contrast, 



102 R. Salmon 

the quasi-geostrophic and semi-geostrophic equations both require the solution of a 
three-dimensional elliptic equation.) However, (5.20) shows that the group and phase 
velocities of the internal Rossby waves become infinite as the wavelengths vanish 
(violating our requirement that horizontal lengthscales be larger than the internal 
deformation radii). In the limit of perfect spatial resolution, these waves carry 
information at infinite speed, mimicking the behaviour of a three-dimensional elliptic 
equation. These facts suggest that the LSGE will be most useful as the basis for 
numerical models, in which the spatial resolution is always limited by the grid size. 
Even the largest existing numerical ocean circulation models barely resolve the internal 
deformation radius. 

With F set formally to zero (and thus ignoring the distinction between x and x,) the 
LSGE reduce to the planetary geostrophic equations (2.6), and it is clear that the 
solution algorithm given above is a straightforward generalization of the algorithm 
discussed by Salmon (1994) for the planetary geostrophic equations. However, when 
F vanishes, (5.25) changes type, from an elliptic equation for a$/&, to a hyperbolic 
equation for $. The hyperbolic equation is obviously incapable of satisfying the 
boundary conditon $ = 0, and, as emphasized by Salmon (1994), the planetary 
geostrophic equations therefore require horizontal friction terms to make the analogue 
of (5.25) elliptic. 

Salmon (1994) used the ansatz (2.13) to reduce the planetary geostrophic equations 
to a pair of coupled two-dimensional equations, which then formed the basis for a very 
simple and efficient numerical ocean-circulation model. Because the LSGE potential 
vorticity (5.8) takes such a simple form in xs-coordinates, a similar reduction applies 
to the LSGE. By the same reasoning as in $2, the ansatz 

1 8 = F 4+S(x,,y,, t,) c (5.31) 

must be consistent with the LSGE. Here, F is an arbitrary function, and the primes, 
which denote differentiation, are introduced for later convenience; f is defined by 
(5.30); and S is a 2,-independent function to be determined by substitution back into 
the LSGE. One eventually obtains a coupled pair of equations for a$/at, and aS/at,. 
The $-equation is just (5.25) with (5.31) substituted into its right-hand side. To obtain 
the S-equation, we substitute (5.31) and the resulting expressions (in terms of $ and S )  
for the velocity (U,  V, W )  into the temperature equation (4.25e), verifying that the 
many z,-dependent terms cancel out. However, it is much easier to obtain this S- 
equation by simply evaluating the temperature equation at 2, = O (where W = O). We 
obtain 

(5.32) 

where J is defined by (5.26). The second term in (5.32) represents the temperature 
advection by the vertically averaged flow, and the last term represents the advection by 
the remaining part of the flow. Then, further eliminating (U,  V )  in favour of $ and S, 
and omitting some tedious details, we eventually obtain 

(5.33) 

where 

(5.34) 
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is the phase speed of internal Rossby waves, and 

(5.35) 

The coefficients (5.34) and (5.35) can, in turn, be written as lengthy but explicit 
functions of $,S,  and their derivatives, involving the arbitrary function F. For 
example, 

(5.36) 

If we choose the arbitrary function F"( ) to be a step function, then these equations 
reduce to the equations obtained by making the LSGE approximations on a system 
composed of two homogeneous layers. But whatever the choice for F( ), the solutions 
of the two-dimensional equations are also solutions of the full three-dimensional 
LSGE. 

This work was supported by the National Science Foundation, grant number OCE- 
92- 14 12. 

Appendix A. Derivation of (4.19) 

to a-space. Then 
It is easiest to consider variations &z(x,, t )  in the inverse mapping from x,-space back 

= c l/lda[SxS. VS(iu2) + u.  84. (A 1) 

We go to work on the last term in (A 1). Adopting the careful notation of $3,  

Thus 

Hence 
-h  
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Similarly, 

Then, combining (A l), (A 4) and (A 5),  we obtain (4.19). 

Appendix B. Derivation of (4.20) 

steps similar to those in Appendix A, 
Again, it is much easier to consider variations 6u(x,, t )  in the inverse mapping. By 

(B 1) 8e = E //Jdu[8xsWs($i2) + l i e  S&]. 
By its definition (4.4), 

However, because the vertical integral of zi vanishes, the last (2,-independent) term in 
(B 2) makes no contribution to (B 1). Thus 

Interchanging the order of the last two integrations, we have 

Combining (B l), (B 4) and (B 5), we obtain (4.20). 
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