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Eddy formation on a continental slope 
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ABSTRACT 
We consider a uniform-density ocean in which the depth-independent horizontal velocity is driven 

by a two-gyre wind. Numerical solutions of the governing vorticity equation reveal that the solutions 
with a flat ocean bottom differ greatly from those in which a continental shelf and slope are present 
along the western boundary. In the ocean basin with a western continental shelf, steady inertial 
circulations readily lose stability to unsteady inertial circulations that spawn eddies. However, eddies 
do not form in the corresponding solutions for the flat-bottom ocean. Reducing the friction leads to 
flat-bottom solutions that shed eddies far offshore, but still differ significantly from the corresponding 
continental-slope solutions, where eddies pinch off near the western boundary. 

1. Introduction 

Our physical understanding of western boundary currents rests upon simple dynamical 
models. The first (and still perhaps most influential) such models were those of Stommel 
(1948) and Munk (1950), who neglected the inertia of the fluid, and considered the 
vertically integrated flow in a rectangular ocean with a flat bottom (and, hence, vertical 
sidewalls). In the flat-bottom, inertia-less models of Stommel and Munk, the western 
boundary current occupies a frictional boundary layer at the coast. 

The two assumptions of a flat ocean bottom and negligible inertia are of course 
unrealistic, particularly near western boundary currents, where observations show that the 
flow is strong and extends almost undiminished to the relatively steeply sloping ocean 
bottom. However, the relaxation of either assumption couples the equation for the 
vertically integrated flow to the baroclinic (i.e. depth-dependent) motion, raising the 
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complexity of the problem to a level no longer amenable to simple analysis or easy 
numerical solution. For this reason, theorists trying to explain the role of inertia in western 

boundary currents have often considered the case of homogeneous fluid, and assumed a 
priori that the horizontal velocity is independent of depth. In the case of homogeneous, 

depth-independent flow, the governing dynamical equation remains a single, two- 
dimensional equation in the stream function +(x, y, t) for the vertically-integrated horizon- 

tal transport. Although nonlinear, this equation is still somewhat tractable to a combination 
of numerical and analytical methods. Curiously, however, most studies of nonlinear, 

depth-independent motion have continued to consider the case of a flat ocean bottom. This 
is somewhat surprising, because once the assumption of depth-independent flow has been 
made, the governing $-equation is really no more complicated with bottom topography 
than without it. 

In this paper, we present numerical solutions of the equation (2.9-10) governing 
homogeneous, depth-independent flow, driven by a two-gyre wind, in a rectangular ocean 

of depth H(x, y). To demonstrate the importance of the western continental slope, we 
compare solutions in which H vanishes smoothly at the western boundary to the correspond- 

ing solutions with a flat ocean bottom. We find that the flow is completely different in the 
two cases and (we believe) much more realistic in the case where a smooth continental 
slope replaces the vertical wall at the western boundary. 

In both cases, the lines of constant f/H (where f is the Coriolis parameter) represent 
characteristic lines in the limit of vanishing nonlinearity and dissipation (in which the 
steady $-equation becomes hyperbolic). In the case of a flat bottom, these characteristic 

lines intersect the western boundary, leading to the formation of a frictional or inertial 

boundary layer at the vertical sidewall. However, in the case of a western continental slope, 
the topography bends the characteristic lines nearly parallel to the coastline, and boundary 
layers are not required. In the (linear) limit of weak wind-forcing, the western boundary 

currents on the continental slope flow along characteristic lines at some distance from the 
coastline, and are completely controlled by the topography; friction is almost everywhere 

unimportant. 
In both cases, inertia becomes important near the western boundary as the winds become 

realistically strong. However, in the case where a western continental slope is present, 

steady inertial solutions lose their stability much more readily, and eddies form within the 
boundary current itself. We do not observe such significant eddy formation in the 

corresponding solutions with a flat bottom. 
Although our results are primarily descriptive, we offer a physical interpretation based 

upon the interaction between vortex layers already present in the (linear) limit of weak 
wind-forcing. In the linear limit, and for the case of a flat bottom, these vortex layers lie 
within the frictional western boundary layer and are well separated from one another 

(Fig. 2b). As the wind strength increases, the vortex layers are advected by the flow 
(Fig. 3b), but do not interact significantly until advection has pulled the vortex layers far 
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offshore into a nearly parallel configuration. Even then, eddies form far offshore at the 
eastern end of the vortex layers only if the friction is relatively weak (Fig. 11). 

In contrast, in the case of a western continental slope, the vortex layers are already nearly 
parallel in the linear limit (Fig. 2d), and therefore strongly interact as the wind-forcing (and 
nonlinearity) increase (Fig. 3d). Eddies form readily (Fig. 6), as the stronger vortex sheet 
wraps the weaker sheet around its tip. 

The literature on the flat-bottom case is long-running and extensive. Veronis (1966) 
determined the effects of increasing the Rossby number on the solutions of the wind-driven 
vorticity equation with bottom friction for which the zero Rossby number solution is 
Stommel’s circulation. He found a sequence of steady solutions that lead, in the limit of 
large Rossby number, to a steady solution resembling that of Fofonoff (1954). In contrast, 
Bryan (1963) found that, with lateral diffusion, Munk’s zero-Rossby-number solution loses 
stability to unsteady solutions as the Rossby number is increased. Hendershott (1987) 
reviews the literature on single-layer circulation models through the mid-1980’s. Recently, 

Ierley and Sheremet (1995) and Cessi and Ierley (1995) have discovered multiple steady 
solutions of the wind-driven vorticity equation in a flat-bottom ocean for a fixed set of 
control parameters and have analyzed these with bifurcation theory. Meacham and Berloff 
(1997) have explored the transition to multiple unsteady solutions of the wind-driven 
vorticity equation in a flat-bottom ocean. This work is part of a promising effort to 
understand the types of solutions that may occur in more realistic models of the general 
circulation. 

In contrast, there have been relatively few studies of homogeneous flow in basins with 
sloping boundaries. Holland (1967) solved the steady, wind-driven vorticity equation with 
inertia and lateral diffusion in a basin for which a continental shelf separates a shallow 
coastal region from the deep ocean and noted the importance of isopleths of constantf/H in 
determining the model circulations. Welander (1968) exploited the analogy between a 
thermal advection-diffusion equation and the linear, steady vorticity equation with a 
bottom Ekman layer and showed how the boundary current structure is affected by the sign 
of the meridional derivative of f/H. Recently, Nishigaki (1995) modeled a steady, inviscid, 
inertial boundary current over a continental slope as the boundary between an inshore 
stagnant region and an offshore gyre across which the pressure is continuous. These 
studies, however, have been limited to steady circulations in basins in which the shelf is 
bounded by a vertical coastal sidewall. 

Of course, homogeneous-fluid models exaggerate the importance of ocean bottom 
topography. In the real ocean, the strongest mean currents and their accompanying 
horizontal pressure gradients occur in the main thermocline, and hence induce a much 
smaller bottom torque than if uniformly distributed with depth. However, this thermocline 
region intersects the ocean bottom along western continental slopes, and the resulting large 
bottom torque directs the flow along isobaths at some distance from the shoreline. Thus our 
model, which is homogeneous, but includes the western continental slope as the only 
topography present, may represent a sensible compromise between simplicity and realism. 
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In any case, we feel that it is a much better paradigm than the more traditional models with 
a flat ocean bottom, in which vorticity advection competes not with bottom torque, but with 
the torque arising from the rather artificial eddy friction. In flat-bottom models, this 
frictional torque assumes an exaggerated importance, because the more realistic bottom 
torque is absent. 

2. Dynamics and numerical method 
We consider homogeneous (i.e. uniform-density) fluid governed by the (hydrostatic) 

primitive equations, 

Du Ts - 7b 
~+fkXu=-V+-Ru+- 

H ’ 

o=-?! 
a2 (2.2) 

v.u+$=o. 
Here, u is the horizontal part of the velocity (u, w),f = py is the Coriolis parameter, k is the 
vertical unit vector, V = (a,, a,) is the horizontal gradient operator, $I is the pressure 
(divided by the uniform density), and 7, and ?b are the stresses at the top and bottom of the 
fluid; 7, is supplied by the wind. The stress terms have been approximated in a manner 
consistent with the assumption of z-independent horizontal velocity, u(x, y, t). The bound- 
ary conditions on (2.1-2) are no-normal flow through the bottom, 

and rigid lid, 

w= -u.VH at z = -H(x, Y), (2.4) 

w=O at z = 0. (2.5) 

As in previous papers (Salmon, 1994, and references therein), we prefer to think of the 
R-term in (2.1) as a Rayleigh friction term. It differs by a fraction l/H from the friction term 
that would arise from an (uuresolved) bottom Elcman layer. 

We nondimensionalize (2.1-5) in the usual way, scaling (x, y) by the ocean basin width 
L = 4000 km, z by HO = 4 km (a representative ocean depth), u by U, w by UHOIL, t by 
LIU, 4 by j&L (where f. is a representative value off ), and 7 by foHoU. We choose U such 
that HOUL = 30 Sverdrups, so that a realistic Sverdrup transport corresponds to a 
nondimensional transport of order unity; this yields U = 0.2 km day-i. The nondimen- 
sional horizontal momentum equation (2.1) then takes the form, 

Du 7 -7 
RoK+ykXu=-V+-•u+= 

H 
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where 

(2.7) 

is the Rossby number, E = R/f& and y is the (nondimensional) Coriolis parameter. Using 
the numbers given above, Ro = 0.08 X 10e4. Of course, the smallness of Ro conveys a 
misleading impression of the importance of the inertia terms in (2.6), because the inertia is 
most important in boundary currents with horizontal scales much less than the basin 
scale L. 

By the continuity equation (2.3) and boundary conditions (2.45), 

Hu = <-& kcI,)> cw 

where IJJ is the stream function for the vertically-integrated horizontal transport. Then 
straightforward manipulations yield the vorticity equation, 

= --El; + W-&Y), 

where 

is the relative vorticity, J(a, b) = a,b, - aybx is the horizontal Jacobian, and 

W(x,y)=k.Vx (2.11) 

We solve (2.9) for iJ~(x, y, t), subject to the boundary condition 6 = 0 of no transport 
through the coastline. For given (order-one) wind forcing W(x, y), the two controlling 
parameters are Ro and E. 

In the limit of a flat ocean bottom (H = l), (2.9) reduces to the quasi-geostrophic 
equation for a single fluid layer of uniform depth. If H is nonuniform, then (2.9) differs 
from the corresponding quasi-geostrophic equation, but quasi-geostrophic theory applies 
only to geometries in which the fluid depth varies by a small fraction and thus does not 
cover the case of primary interest here, in which H vanishes at the coastline. 

To solve (2.9), we replace d+/ldt by a centered time-difference, and regard the resulting 
equation as an elliptic equation for + at the new time. The only boundary condition is 
d+/dt = 0. We treat the (linear) J(+, y/H)-term semi-implicitly, and use Leonard’s (1984) 
third-order upwind scheme for the (nonlinear) vorticity-advection term in (2.9). The 
resulting equation is solved by relaxation at each time-step. 

The third-order upwinding scheme deserves a few comments. In one dimension (for 
example), Leonard’s scheme replaces the advective operator z&,/ax by the finite-difference 
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approximation 

&+I - 5i-1 L+l - 35i + 35i-3 - 5i-2 
u 

2A - 6A 1 (u > 0) 

[55,2 

(2.12a) 

where u is positive, and 

(i+* - Ci-1 5i+2 - 35i+3 + 35i - L-1 
U 

2A - 6A 1 (u -=c 0) (2.12b) 

where u is negative. Here ci is 5 at the i-th gridpoint and A is the grid-spacing. It is 
straightforward to show that 

(2.12) = ~(2)~ + F($)i + W4). (2.13) 

Thus the truncation error in (2.13) corresponds to a hyperdiffusion term with a diffusion 
coefficient proportional to the local fluid speed and to the third power of the grid-spacing. 
This hyperdiffusion term is responsible for the stability of upwind differencing. (First- 
order upwinding has a truncation error corresponding to normal diffusion with a diffusion 
coefficient of size uA, but experience has shown that the diffusion corresponding to 
first-order upwinding is excessive; see Leonard, 1984.) 

In our numerical solution of (2.9), we use a two-dimensional generalization of (2.12) to 
evaluate the term u . 05 in (2.9). The truncation error corresponds to a hyperdiffusion term 
-KV~( on the right-hand side of (2.9), with K proportional to /uI A3. Numerical modelers 
using other advection schemes have often found it necessary to insert such hyperdiffusion 
terms (sometimes called “high-order eddy viscosities”) explicitly, to prevent advective 
straining from producing unresolvable small scales in 4. In the case of an explicit eddy 
viscosity, K is arbitrary but is usually chosen to have the minimum value needed to produce 
smooth solutions. In the case of third-order upwinding, the flow determines its own 
(implicit) hyperdiffusion coefficient, but our experience has shown that, even in highly 
turbulent flow, the hyperdiffusion arising from truncation error is usually sufficient to keep 
the solution smooth, and that no additional explicit eddy viscosity is needed. None of the 
solutions described in this paper contains an explicit eddy viscosity. 

If an explicit eddy viscosity is used, additional boundary conditions (besides no-normal- 
flow) must be specified in order to evaluate V4c near the boundary. It has been demon- 
strated, however, that solutions of the barotropic vorticity equation are sensitive to the 
choice of boundary conditions associated with the eddy viscosity (e.g. Cummins, 1992). 
An advantage of third-order upwinding is that no such additional (and, inevitably, 
prejudicial) boundary conditions need be specified; since the velocity is tangent to the 
boundary, the implicit hyperdiffusion acts only along the boundary, and thus high-order 
derivatives normal to the boundary are not required. Recently, third-order upwinding has 
been shown to provide better results than Laplacian and biharmonic diffusion for 
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numerically evaluating the advection of a passive tracer in a Stommel gyre in a flat-bottom 
basin (Hecht et aZ., 1995). 

3. Numerical solutions 

We solve (2.9) in a rectangular ocean on 0 < x < 1,O < y < 2 with the southern ( y = 0) 
boundary corresponding to the equator. The boundary condition is + = 0 at the western, 
northern, and eastern coastlines, and at the equator (where it corresponds to cross- 
equatorial symmetry of the flow). We consider two cases of topography. In the first case, 
the ocean bottom is flat (H = l), and all coastal boundaries are vertical walls. In the second 
case, the ocean depth H(x) vanishes smoothly at the western boundary, with the idealized 
shelf and slope depicted in Figure la, b; the northern and eastern boundaries remain 
vertical. 

To set the stage for our discussion of the effect of topography on inertial western 
boundary currents, we first briefly consider the solutions of (2.9) in the (linear) limit of no 
inertia. When Ro = 0, the solutions of (2.9) approach the steady state determined by 

J[;,+Ev.(Lv*)- w (3.1) 

and the boundary condition $ = 0. Following Welander (1968), we regard (3.1) as an 
advection-diffusion equation for Q with “stream function” y/H and “source” - W(x, y). 

According to (3.1), $ is advected pseudo-westward from the eastern boundary along 
“streamlines” of constant y/H. In the flat-bottom case, these “streamlines” are latitude 
lines, and the corresponding “flow” crosses the western boundary at x = 0, requiring an 
e-thickness boundary layer to satisfy the boundary condition ~JJ = 0 there. In the case of the 
western continental slope of Figure la, b, the “streamlines” are the lines of constant y/H 

shown in Figure lc. In this case, $ is advected toward the western equatorial point at which 
the “streamlines” converge. In the limit E - 0, friction is important only near this point. 

To reiterate, in both the flat-bottom ocean and the ocean with the western shelf, friction 
is important where the y/H contours intersect the western boundary. The differences in the 
y/H contours lead to very different boundary current structures: in the flat-bottom basin, the 
boundary current is a frictional boundary layer at the western vertical side-wall whereas in 
the basin with the western shelf, the boundary current follows the y/H contours and the 
effects of the Rayleigh friction are localized in the southwest comer of the basin. It also is 
worthwhile to remark that in an ocean with closed y/H contours (as when a continental 
slope is present at all boundaries), the solutions of (3.1) differ from those considered here. 
In that case, @ is advected around the closed y/H contours and friction acts to diffuse $ 
across these closed contours. These types of solutions have been studied elsewhere (e.g. 
Rhines and Young, 1983) and are not the focus of the present study. 

Figure 2a, b shows the stream function and vorticity in a flat-bottom solution of (3.1). 
Figure 2c, d shows the corresponding fields in the ocean with the topography of Figure la, 
b. In both cases, E = 0.01. The wind-forcing is nonzero only in the half-basin centered on 
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Figure 1. (a, b) The ocean depth H(x, y), which varies from zero at the western coast to 1 in the 
interior. (c) The corresponding contours of y/H. The continental shelf extends over 1% of the 
computational basin (see footnote 3). 

the midlatitude, where it is given by 

W(x, y)= -sin (2rr(y - ‘/2)) (l/2 < y < w, (3.2) 

corresponding to subtropical and subpolar gyres antisymmetric about y = 1. On y > % and 
y < V2, W vanishes (to remove the effects of the northern and southern boundaries on the 
inertial solutions considered later). Thus W corresponds to an x-independent “source” of 9 
on % < y < 1, and a “sink” on 1 < y < 3/. 

The flat-bottom solution of Figure 2a, b is essentially that of Stommel (1948), with E 
near the minimum value needed to resolve the a-thickness boundary layer on the 100 X 
200 computational grid. The continental-slope solution of Figure 2c, d has no boundary 
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Figure 2. A steady, linear circulation. The transport stream function, ~JJ, (upper panels) and vorticity 
multiplied by the ocean depth, H<, (lower panels) that satisfy (2.9-10) with (Ro, E) = (0.0, O.Ol), 
the wind forcing given by (3.2) and (a, b) a flat-bottom basin with H(x, y) = 1, and (c, d) a basin 
with a western shelf, the H(x, y) of Figure la, b. The vortex sheets are symmetric and lie in the 
frictional boundary layer in the flat-bottom solution (b). In the continental-slope solution (d), 
however, the vortex sheets that correspond to the current shear at the edges of the Gulf Stream 
are asymmetric and nearly parallel. In all contour plots, the solid/dashed/dot-dash contours 
correspond to positive/negative/zero values and the contour intervals for IJJ and Hc are 0.1 and 100, 
respectively unless indicated. We present contours of Hc rather that 5 because of the large values of 
vorticity that occur in the southwest comer of the basin in the continental-slope solutions. 
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layer and cannot easily be described analytically, but it is easy to understand on the basis of 
the analogy between (3.1) and an advection-diffusion equation. Note how the topography 
breaks the symmetry of the flow about y = 1. 

In both linear solutions, the vorticity is confined to relatively narrow sheets near the 

western boundary, but the vortex sheets have a completely different orientation in the two 
cases, and this has important consequences in what follows. In the flat-bottom solution of 
Figure 2a, b, the vortex sheets lie within the frictional boundary layer (Fig. 2b) and are well 
separated from one another. However, in the continental-slope solution of Figure 2c, d, the 
vortex sheets (whose width is determined by the topography and is independent of the 
friction) form nearly parallel lines in the southern half-basin. In contrast to Figure 2b, the 
two vortex sheets in Figure 2d have unequal strengths: the most easterly (negative) vortex 
sheet (corresponding to the current shear at the seaward edge of the Gulf Stream) is 
stronger than the (positive) vortex sheet to the west, because of “flow” along y/H-lines into 
the western sheet has experienced both signs of “source,” - W. 

Now we examine some solutions of (2.9) with nonzero Ro.~ For sufficiently small Ro, 
the solutions are steady. Figure 3a, b shows the (steady) stream function and vorticity in the 
flat-bottom ocean with Ro = 2.0 X lop4 and E = 0.01. Figure 3c, d shows the (steady) 
solution in the ocean with continental slope, at the same Ro and E. This value of Ro is near 
the maximum at which both solutions remain steady. The friction is the same as in the 
linear solutions of Figure 2. Figure 3a, b which resembles results reported elsewhere in the 
literature on flat-bottom circulation, shows that the principal effect of inertia on the 
flat-bottom solutions is the advection of the vortex sheets by the converging western 
boundary currents. The flow carries the vortex sheets offshore at midbasin, and at this low 
value of Ro, the flow is essentially symmetric about y = 1. The continental-slope solution 
of Figure 3c, d is more complex, and can perhaps best be understood by regarding the two 
nearly parallel vortex sheets as parallel rows of oppositely signed point vortices, and 
considering the motion of each row induced by the other. The stronger, more easterly sheet 
corresponds to a row of negative vortices, and the vortex sheet to its west corresponds to a 
somewhat weaker row of positive vortices. Each row induces a northward motion in the 
other, explaining the slight northward displacement of the western boundary currents from 
their locations in Figure 2c, d. At the northern tip of the vortex sheets (where the Gulf 
Stream leaves the coast), the stronger sheet wraps the weaker northern sheet around its tip. 

At higher values of Ro, the continental-slope solutions become unsteady. The onset of 

unsteadiness seems to correspond to the formation of closed contours of the potential 
vorticity, 

QE 
R4 + Y 

H ’ (3.3) 

3. In nearly every case, we choose Ro to be somewhat larger than the value given in Section 2, but our larger 
values are reasonable if one regards our computational basin as the western tenth of an ocean basin with realistic 
width. In that case, our shelf widths are also not unreasonably wide. 
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Figure 3. A steady, nonlinear circulation. The same as Figure 2, but with (Ro, E) = (2.0 X 10e4, 
0.01). In the flat-bottom solution (b), the vortex sheets are advected by the converging western 
boundary currents. In the continental-slope solution (d), the stronger negative vortex sheet has 
wrapped the weaker positive sheet around its tip. 
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Figure 4. The potential vorticity Q, (3.3), for (a) the steady continental-slope solution of Figure 3c, d 
and (b) the corresponding continental-slope solution with (Ro, E) = (4.0 X 10m4, 0.01) near the 
onset of unsteadiness when closed contours of potential vorticity appear. 

Figure 4a shows the potential vorticity contours in the steady solution of Figure 3c, d 
(Ro = 2.0 X 10e4) and Figure 4b shows those near the onset of unsteadiness 
(Ro = 4.0 X 10m4) at which the “overturning” anticipated by Figure 4a is realized and 
closed contours of Q appear. 

For the unsteady solutions, the (entirely kinetic) energy, 

ss dxdy ; VrJ. V+, 

is a useful diagnostic. Figure 5a shows time series of the energy (3.4) in continental-slope 
solutions with E = 0.01 and Ro from 2.0 X 10m4 to 12.0 X lop4 in increments of 2.0 X 
10m4. A spectral analysis of these time series shows a dominant peak at a frequency of 
3.2 1 2 0.12 near the onset of unsteadiness at Ro = 4.0 X 10P4. For larger Ro, the dominant 
spectral peak occurs at a lower frequency and the harmonic content of the spectra 
increases. The product of the peak frequency and the Rossby number, however, is 
approximately constant for the solutions shown in Figure 5a. 

The unsteadiness in the continental-slope solutions corresponds to eddy formation, 
where the positive vorticity from the weaker vortex sheet wraps around the closed 
Q-contour and pinches off, forming a cyclonic eddy. This eddy formation occurs periodi- 
cally and Figure 6 shows some snapshots of this process at five times during one energy 
cycle in a solution with Ro = 8.0 X 10e4. At even higher Ro, negative vorticity also 
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Figure 5. Time series of the energy E, (3.4), for the solutions of (2.9-10) with E = 0.01, the wind 
forcing (3.2), and (a) H(x, y) of Figure la, b and (b) H(x, y) = 1. The values of Ro are indicated. 
The unsteadiness of the continental-slope solutions corresponds to eddy formation while the 
analogous flat-bottom solutions are steady or quasi-steady, and do not exhibit eddy formation. The 
energy time series have been offset vertically by an arbitrary amount for clarity. 

pinches off, forming anticyclonic eddies in the subpolar gyre. Related numerical results can 
be found in Becker (1995). The eddy generation presented here is more regular than that in 
Becker (1995) because the topography and forcing are here symmetric about y = 1, and the 
extent of the wind forcing has been reduced. (In Becker (1995), shelves are located along 
western and northern coastlines and the wind forcing is over the upper 2/3 of the basin.) 

We next describe the corresponding results in a flat-bottom ocean. As discussed in the 
introduction, Ierley and Sheremet (1995) and Cessi and Ierley (1995) have shown that 
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Figure 6. Eddy formation in the basin with the continental shelf. Snapshots of $ (upper panels) and 
H< (lower panels) that satisfy (2.9-10) for (Ro, E) = (8.0 X 10e4, O.Ol), the wind forcing (3.2) and 
H(x, y) of Figure 1 a, b. Time increases from left to right with the left-most snapshot at a time just 
after an energy maximum and the right-most snapshot at a time just before the next maximum. 

flat-bottom dynamics with lateral diffusion have multiple steady solutions for a given set of 
controlling parameters. In particular, asymmetric, steady circulations may be realized even 
for symmetric dynamics and antisymmetric forcing (i.e. flat-bottom dynamics with an 
antisymmetric two-gyre wind). Which circulation is realized depends upon the initial 
conditions and the stability of the steady circulations. Here, our purpose for considering the 
flat-bottom solution is to compare with the continental-slope solution rather than to attempt 
to determine stable attractors of the dynamics (the present dynamics differ from Cessi and 
Ierley (1995), as we do not consider explicit lateral diffusion and they did not use Rayleigh 
friction). In this spirit, we conducted a corresponding series of flat bottom experiments for 
fixed Rayleigh friction, E = 0.01, and increasing Rossby number usually beginning from 
the initial conditions of rest. 

As mentioned above, for small enough Rossby number, the circulation is steady 
(Ro = 2.0 X 10m4, Figure 3a, b). Figure 5b shows the effect of increasing the Rossby 
number on the energy time series in the flat-bottom solutions starting from rest. Comparing 
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Figure 7. Multiple asymmetric equilibria in a flat-bottom ocean. I$ (upper panels) and 5 (lower 
panels) that satisfy (2.9-10) for (Ro, E) = (6.0 X 10m4, O.Ol), the wind forcing of (3.2), and 
H(x, y) = 1. The solution in (a, b) was obtained starting from rest while the solution in (c, d) was 
obtained starting from a nonzero initial condition. 
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Figure 8. Time series of the energy E, (3.4), for the solutions of (2.9-10) with (Ro, E) = (2.0 X 10e4, 
O.OOS), the wind forcing (3.2), and (a) H(x, y) of Figure la, b and (b) H(x, y) = 1. The hash marks 
in (b) delimit the start and end times of the snapshots of flat-bottom eddy formation in Figure 11. 

with Figure 5a, we see that the energy of the circulation is lower in the basin with the shelf 
than in the flat-bottom basin because the topography breaks the symmetry of the 
circulation, and the antisymmetric forcing is more efficient driving the zonal (flat-bottom) 
flows. Rhines and Schopp (1991) have observed that symmetry breaking due to tilting the 
wind in a flat-bottom ocean leads to a similar decrease in the energy of the circulation in a 
three-layer, quasi-geostrophic model. 

In addition, Figure 5b shows that with the exception of Ro = 4.0 X 10m4, the flat-bottom 
solutions starting from rest become steady. The solution for Ro = 4.0 X low4 has the vortex 
sheets carried offshore to about 80% of the basin width and the weak time dependence 
corresponds to oscillations about an asymmetric (stronger subpolar than subtropical) state, 
but no eddies form. By varying the initial conditions, another unsteady solution for Ro = 
4.0 X lop4 was obtained that fluctuates about the antisymmetric state, but again no eddies 
form. For Ro = 6.0 X 10e4, a steady, asymmetric solution was obtained for the initial 
conditions of rest (Fig. 7a, b). By varying the initial conditions, another asymmetric 
solution that follows from the symmetry of the flat-bottom dynamics was obtained (Fig. 
7c, d). This pair of stable steady solutions appears to be related to those discovered by 
Cessi and Ierley (1995). For Ro = 8.0 X 10m4, the eastern boundary appears to affect the 
circulation. While a pair of steady, asymmetric solutions similar to those of Figure 7 was 
obtained for Ro = 8.0 X 10m4, it also was possible to find a solution for which eddies 
formed near the eastern boundary, presumably because the jet has reached the eastern 
boundary. 

In all of the foregoing solutions, the Rayleigh-friction parameter had the value E = 0.01. 
Now we examine some solutions with the lower value of E = 0.005. This value is below 
that required to resolve an e-thickness boundary layer on our 100 X 200 grid in the linear 
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Figure 9. Eddy formation in the basin with the continental shelf. The same as Figure 6, but with 
(Ro, E) = (2.0 X 10e4, 0.005). The diameter of the eddy is smaller here than in the higher 
Rossby-number, Rayleigh-friction solution of Figure 6. The contour intervals for $ and Hc are 0.1 
and 200, respectively. 

(Ro = 0) solutions with a flat bottom. Thus our linear, flat-bottom solutions with E = 0.005 
evidently rely on the implicit biharmonic diffusion arising from third-order upwinding. 

In the ocean basin with the western continental shelf and E = 0.005, we obtain steady 
solutions for Ro = 0.08 X 10m4, 0.4 X 10m4, and 0.8 X 10e4, while eddy formation is 
observed for Ro = 1.0 X 10W4, 2.0 X 10m4, and 4.0 X 10m4. The latter Rossby number 
marked the onset of unsteadiness in the higher-frictional case (E = 0.01). A spectral 
analysis of the energy time series (not shown) shows a dominant spectral peak at a 
frequency of 11.26 +- 0.47 for Ro = 1 .O X 10e4 near the onset of unsteadiness. As for the 
E = 0.01 runs in Figure 5a, the dominant spectral peak occurs at a lower frequency for 
larger Ro, and the product of the peak frequency and the Rossby number is approximately 
constant. 

The energy time series for (Ro, E) = (2.0 X 10m4, 0.005) is presented in Figure 8a and 
resembles that for (Ro, E) = (8.0 X 10m4, 0.01) in Figure 5a. In Figure 9, we present 
snapshots of the (Ro, E) = (2.0 X 10m4, 0.005) solution at times in the energy cycle that 
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Figure 10. Snapshots of \Ir (upper panels) and Hc (lower panels) that satisfy (2.9-10) for (Ro, E) = 
(4.0 X 10m4, O.OOS), the wind forcing (3.2) and H(x, y) of Figure la, b. Time increases from left to 
right with the left-most snapshot at a time when the third-order upwinding is damping small-scale 
eddies and the subsequent snapshots are during a period of larger scale eddy formation. Comparing 
Figures 9 and 10 shows how the eddy diameter increases with Rossby number at a fixed value of 
the Rayleigh friction. The contour intervals for 31 and Hc are 0.1 and 200, respectively. 

approximately correspond to those snapshots in Figure 6. Comparing Figures 6 and 9, we 
conclude that the eddy diameter increases with increasing Rossby number and Rayleigh 
friction. At (Ro, E) = (4.0 X 10w4, 0.005), the energy time series is noisier than any 
obtained for E = 0.01, and snapshots of this circulation appear in Figure 10. The left-most 
panel of Figure 10 shows small-scale instabilities at the southern tip of the vortex sheets. 
Subsequently, the implicit eddy viscosity has damped them out. Comparing Figures 9 and 
10 reveals that the eddy diameters increase with Ro at fixed E. 

We also computed a few solutions for the flat-bottom ocean at the new, lower value of 
E = 0.005. At Ro = 0.08 X 10m4, the solution is steady, and by Ro = 0.8 X 10m4, the 
solution has become weakly unsteady but with no eddy shedding. In contrast to the E = 
0.01 solutions, however, eddies begin to form at higher Ro before the jet reaches the eastern 
boundary. Figure 8b shows the energy time series for a flat bottom solution with (Ro, E) = 
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Figure 11. Eddy formation in a flat-bottom basin. Snapshots of IJJ (upper panels) and H< (lower 
panels) that satisfy (2.9-10) for (Ro, E) = (2.0 X 10m4, 0.005), the wind forcing (3.2) and 
H(x, y) = 1. Time increases from left to right with the snapshots taken at approximately equally 
spaced intervals between t = 4.29 and 4.54 (see hash marks in Fig. 8b). In contrast to the 
continental-slope solutions of Figures 9 and 10, eddies form far offshore at the eastern edge of the 
jet. The contour intervals for IJJ and H< are 0.1 and 200, respectively. 

(2.0 X 10e4, 0.005) which is less regular than the corresponding continental-slope solution 
(Fig. 8a). In Figure 11, we present snapshots of this flat-bottom solution between the times 
delimited by the hash marks in Figure 8b. It shows that, as has been observed by others in a 
flat-bottom ocean, the eddies form at the eastern end of the jet (e.g., Rhines and Schopp, 
1991). 

All the foregoing solutions were computed on a 100 X 200 grid. To test the sensitivity of 
our results to the grid-resolution, we also computed some continental-slope solutions on a 
50 X 100 grid. With the lower resolution, we obtain a sequence of unsteady solutions 
analogous to that of Figure 5a, but at slightly larger Ro. We speculate that the differences 
between the 50 X 100 resolution and the 100 X 200 resolution are due to the dependence of 
the third-order upwinding on the grid resolution. 
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