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ABSTRACT

The shallow-water equations may be posed in the form dF/dt � {F, H, Z}, where H is the energy, Z is the
potential enstrophy, and the Nambu bracket {F, H, Z} is completely antisymmetric in its three arguments.
This makes it very easy to construct numerical models that conserve analogs of the energy and potential
enstrophy; one need only discretize the Nambu bracket in such a way that the antisymmetry property is
maintained. Using this strategy, this paper derives explicit finite-difference approximations to the shallow-
water equations that conserve mass, circulation, energy, and potential enstrophy on a regular square grid
and on an unstructured triangular mesh. The latter includes the regular hexagonal grid as a special case.

1. Introduction

Salmon (2005, hereafter S05) offered a general
method for constructing numerical fluid models that, in
the inviscid limit, conserve energy and an arbitrary ad-
ditional invariant related to the potential vorticity. In
geophysical fluid dynamics, the conservation of poten-
tial enstrophy is thought to be especially important.

The method proposed by S05 relies on the fact that
the equations of fluid mechanics fit the Hamiltonian
form

dF

dt
� �F, H�, �1.1�

where F is an arbitrary functional of the fields repre-
senting the state of the fluid, H is the Hamiltonian func-
tional, and {, } is the Poisson bracket, an antisymmetric,
bilinear operator that obeys the Jacobi identity,

�A, �B, C�� � �B, �C, A�� � �C, �A, B�� � 0. �1.2�

For example, the shallow-water equations

�u

�t
� qh� � �x �1.3a�

��

�t
� �qhu � �y �1.3b�

�h

�t
� ��hu�x � �h��y �1.3c�

fit the form (1.1) with

�F, H� � �� dx �q�FuH� � HuF�� � Fu · �Hh

� Hu · �Fh	 �1.4�

and

H�u, �, h	 �
1
2 �� dx �hu2 � h�2 � gh2 �. �1.5�

Here, (u, 
) is the velocity in the (x, y) direction, h is the
fluid depth,

q � ��x � uy � f ��h �1.6�

is the potential vorticity, f is the Coriolis parameter, and

� �
1
2

u2 �
1
2

�2 � gh. �1.7�

We temporarily take f to be a constant, and the bound-
ary conditions to be periodic; later we relax both as-
sumptions. In (1.4) Fu � �F/�u denotes the functional
derivative of F with respect to u, and Fu � �F/�u � (Fu,
F
). Since by (1.5)
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�H � �� dx �hu�u � h��� � ��h�, �1.8�

we have Hu � hu and Hh � �. Let

F � u�x0� � �� dx u�x���x � x0� �1.9�

be the x-direction velocity at fixed location x0. Then
Fu � �(x � x0), F
 � Fh � 0, and (1.1) implies

d

dt
u�x0� � �u�x0�, H� � �� dx �qH� � �xHh���x � x0�

� �qh� � �x�� |x0
�1.10�

in agreement with (1.3a). By similar steps we recover
(1.3b) and (1.3c). For a general introduction to Hamil-
tonian fluid mechanics, see Shepherd (1990), Morrison
(1998), or Salmon (1998).

Because the Poisson bracket is antisymmetric, the
dynamics (1.1) conserve the energy,

dH

dt
� �H, H� � 0. �1.11�

This makes it very easy to construct numerical models
that exactly conserve a discrete form of energy; one
need only discretize the right-hand side of (1.1) in such
a way that the antisymmetry property is maintained.1

Nambu (1973) proposed a generalization of (1.1) in
the form

dF

dt
� �F, H, Z� �1.12�

in which Z is an additional conserved quantity, besides
the energy, and the Nambu bracket {F, H, Z} is com-
pletely antisymmetric. Numerical models that retain
the antisymmetry property of the Nambu bracket au-
tomatically conserve both H and Z. Since, as in the
following example, (1.1) must result from the evalua-
tion of Z in (1.12), it follows that Z is a Casimir of the
Poisson bracket. That is, {F, Z} � 0 for any functional F.

The general Casimir of the shallow-water equations
is

ZG � �� dx hG�q�, �1.13�

where G(q) is an arbitrary function of the potential
vorticity q. In fact, shallow-water dynamics is equiva-
lent to the Nambu-bracket formulation

dF

dt
� �F, H, ZG�G, �1.14�

where

�F, H, ZG�G � �� dx ���F, H�

��u, v� ��
1

2G�qx

�

�x

�ZG

�h
�

1
2G�qy

�

�y

�ZG

�h �
�

1
6�G � qG�� �J� ��q�

G�qy

�F

�u
,

��q�

G�qy

�H

�u � � J� ��q�

G�qx

�F

�v
,

��q�

G�qx

�H

�v �� �ZG

�h
� cyc�F, H, ZG�� �1.15�

is the Nambu bracket,

J�A, B� �
��A, B�

��x, y�
, �1.16�

�2�q� � 6� dq G��q��qG��q� � G�q�	, �1.17�

and cyc(F, H, Z) denotes cyclic permutations of F, H,
and Z. That is, substituting

�ZG

�u
� �yG��q�,

�ZG

�v
� ��xG��q�,

�ZG

�h
� G�q� � qG��q� �1.18�

into (1.15) yields (1.4) after tedious calculations. The
bracket (1.15), which was discovered only after consid-
erable effort and with the heavy use of symbolic ma-
nipulation software, is the only Nambu-bracket formu-
lation of the shallow-water equations so far discovered
that is formulated solely in terms of functional deriva-
tives with respect to the basic variables u, 
, and h.
Discretizations of (1.5), (1.13), and (1.15) that maintain
the antisymmetry property of (1.15) would automati-
cally conserve the discrete analogs of H and ZG. How-
ever, the complicated form of (1.15)—particularly the

1 As in S05 we do not consider the error associated with the
discretization of the left-hand side of (1.1). That is, we regard all
time derivatives as exact. Experience shows that the truncation
error associated with the time step is much less serious than the
space-discretization error associated with approximations to the
bracket.
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appearance of q and its derivatives in denominators—
poses special difficulties for the discretization of (1.15).

We therefore base the further developments of this
paper on a simpler alternative to (1.15) that uses vor-
ticity, divergence and depth as the dependent variables.
We derive this bracket in section 2. In section 3, we use
the Nambu bracket of section 2 to derive finite-
difference analogs of the shallow-water equations that
exactly conserve analogs of the energy, potential en-
strophy, mass, and circulation on a regular square grid.
In section 4 we compare solutions of the scheme de-
rived in section 3 to previously known schemes with
fewer conservation laws. Section 5 generalizes the
Nambu-bracket scheme to nonperiodic domains, to
higher-accuracy algorithms, and to a mesh composed of
arbitrary triangles, including the regular hexagonal
mesh as a special case. The results of section 5, which
permit the construction of energy- and potential-
enstrophy-conserving shallow-water algorithms on ar-
bitrary curved surfaces with irregular boundaries, are
the primary new results of the paper. Section 6 con-
cludes.

S05 offered numerous examples to support the con-
jecture that every Hamiltonian fluid dynamics has a
Nambu-bracket formulation corresponding to each of
its Casimirs and, moreover, that the Nambu bracket
corresponding to a particular Casimir is not unique.
Thus it appears generally possible to construct numeri-
cal fluid models that automatically conserve analogs of
the energy H and an arbitrary Casimir Z. In the sim-
plest case of nonrotating, two-dimensional, incompress-
ible flow (S05, sections 1–2), this method produces a
generalization of Arakawa’s (1966) Jacobian that con-
serves the energy and an arbitrary moment  dx �n of
the vorticity �. The enstrophy corresponds to n � 2. In
two-dimensional flow, enstrophy conservation prevents
the spurious transfer of energy into high wavenumbers,
where it must eventually be removed by subgrid-scale
viscosity. Numerical models of two-dimensional flow
that in the inviscid limit conserve energy but not en-
strophy must dissipate unrealistically large amounts of
energy when eddy viscosity is added to the model, as is
always necessary in practice. The same conclusion ap-
plies to shallow-water dynamics—see, for example, Sa-
dourny (1975)—and, presumably, to the primitive
equations as well. However, none of the primitive equa-
tion models now used to compute large-scale flow in
the atmosphere and ocean conserve a form of energy
and potential enstrophy in the inviscid limit. The even-
tual development of practical, global-scale, energy- and
potential-enstrophy-conserving numerical models is a
primary goal of the present work.

S05 presented a relatively wide range of examples,
including the nonhydrostatic primitive equations. How-
ever, except in the case of two-dimensional incompress-
ible flow, S05 stopped short of a complete derivation of
the finite-difference equations, and no actual computa-
tions were shown. Thus S05 might disappoint applica-
tions-oriented readers unwilling to invest the effort re-
quired to fully work out all the formulae. In this paper,
we focus solely on the shallow-water equations, and we
derive the numerical equations in complete detail.

2. Nambu bracket for shallow-water dynamics

We begin by transforming the shallow-water Poisson
bracket from old variables u, 
, h to new variables �, �,
h, where � � 
x � uy is the vorticity and � � ux � 
y is
the divergence. Then (1.4) becomes

�F, H� � �F, H�		 � �F, H�

 � �F, H�
	h, �2.1�

where

�F, H�		 � �� dx qJ�F	, H	�, �2.2�

�F, H�

 � �� dx qJ�F
, H
�, �2.3�

and

�F, H�
	h � �� dx �q��F	 · �H
 � �H	 · �F
�

� ��F	 · �Hh � �H	 · �Fh�	. �2.4�

As in section 1, F� � �F/�� denotes the functional
derivative of F with respect to �. To verify that (2.1) is
equivalent to (1.4) we let

hu � ���y � �x, �x � �y�. �2.5�

Then [cf (1.8)]

�H � �� dx ����y � �x��u � ��x � �y��� � ��h	

� �� dx ������x � uy� � ���ux � �y� � ��h	

� �� dx ����
 � ��	 � ��h�. �2.6�

It follows that

H
 � ��, H	 � ��, Hh � �. �2.7�
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Letting F � �, �, h in (2.1), we obtain the evolution
equations


t � J�q, �� � � · �q��� �2.8a�

	t � J�q, �� � � · �q�� � ��� �2.8b�

ht � ��2�. �2.8c�

Combining (2.5) with the definitions of � and � yields

� · �h�1��� � J�h�1, �� � 
 �2.9a�

and

� · �h�1��� � J��, h�1� � 	. �2.9b�

It is straightforward to show that (2.8)–(2.9) are equiva-
lent to (1.3) and the periodic boundary conditions; this
proves the equivalence of (1.4) and (2.1).

Each of the brackets (2.2)–(2.4) is antisymmetric, and
each has the same general Casimir (1.13) as (1.4). Here
we are primarily interested in the mass

M � �� dx h, �2.10�

the circulation,

C � �� dx hq � �� dx �
 � f �, �2.11�

and the potential enstrophy,

Z �
1
2 �� dx hq2, �2.12�

corresponding, respectively, to G(q) � 1, q, 1⁄2q2. As
shown in S05, each of (2.2)–(2.4) has a Nambu-bracket
formulation corresponding to Z. That is,

�F, H�		 � �F, H, Z�		
 � �� dx J�F	, H	�Z


�2.13�

�F, H�

 � �F, H, Z�


 � �� dx J�F
, H
�Z


�2.14�

and

�F, H�
	h � �F, H, Z�
	h

� ���dx �qx��1���xF	�xH
 � �xH	�xF
��xZh � cyc�F, H, Z�	

� ��dx �qy��1���yF	�yH
 � �yH	�yF
��yZh � cyc�F, H, Z�	. �2.15�

None of (2.13)–(2.15) is unique, and their sum is not
equivalent to (1.15) (with ZG � Z) for arbitrary F, H,
Z.2 However, substituting

Z
 � q, Z	 � 0, Zh � �
1
2

q2 �2.16�

into (2.13)–(2.15) yields (2.2)–(2.4). In carrying out
these substitutions, we find that the functional deriva-
tives (2.16) cancel the apparent singularities in (2.15)—
the denominators containing qx and qy. This is of course
expected; the shallow-water equations contain no sin-
gularities.

We obtain numerical analogs of the shallow-water
equations that automatically conserve H and Z by re-

placing (2.13)–(2.15) with finite-difference approxima-
tions that maintain the antisymmetry properties of
(2.13)–(2.15). However, unless the finite-difference ap-
proximations also maintain the property that the appar-
ent singularities in (2.15) are cancelled by the func-
tional derivatives of Z, the model will contain artificial
singularities.

3. Regular square grid

We consider a periodic square grid with grid spacing
�, and all the variables defined at every grid point. We
let

Z �
1
2 �

ij

hijqij
2 �

1
2 �

ij

�
ij � fij�
2

hij
�3.1�

be the discrete analog of (2.12), where hij denotes the
value at grid point ij. Since (3.1) does not depend on �ij,
(2.2) conserves Z automatically; we do not actually
need to use (2.13). The discretization

2 Every term in (1.15) contains a functional derivative with re-
spect to h, whereas (2.13) and (2.14) do not. Thus the Nambu
brackets (1.15) and (2.13)–(2.15) are not equivalent even though
they correspond to equivalent Poisson brackets.
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�� dx qJ�F	, H	� →
1

22 �
grid boxes

1
4

�q1 � q2 � q3 � q4�

� �� �F

�	3
�

�F

�	1
�� �H

�	4
�

�H

�	2
� � � �H

�	3
�

�H

�	1
�� �F

�	4
�

�F

�	2
��

�
1

22 �
grid boxes

q1234� ��F, H�

��	1, 	2�
�

��F, H�

��	2, 	3�
�

��F, H�

��	3, 	4�
�

��F, H�

��	4, 	1�� �3.2�

maintains the antisymmetry with respect to F and H,
and hence maintains the conservation of H. In (3.2) the
summation is over all the grid boxes on the periodic
plane,

q1234 �
1
4

�q1 � q2 � q3 � q4�, �3.3�

and the integer subscripts refer to the corners of each
local grid box as shown on Fig. 1. In (2.8), (3.2) con-
tributes only the Jacobian term in (2.8b). Thus, setting
F � �0, where the zero subscript corresponds to the
arbitrary grid point at the center of Fig. 2, and de-
fining

�i � ��H��	i, �i � ��H��
i, �i � �H��hi

�3.4�

[cf (2.7)], we obtain

d	0

dt
�

1

22 �q0123��3 � �1� � q0345��5 � �3�

� q0567��7 � �5� � q0781��1 � �7�� � · · · �3.5�

as the approximation to the Jacobian term in (2.8b).
The four terms in (3.5) represent the contributions from
the four grid boxes surrounding point 0 in Fig. 2. The
Hamiltonian remains unspecified. That is, the depen-
dence of H on �i, �i, hi remains to be defined. However,
(3.5) conserves any H with derivatives defined by (3.4).

For (2.3), we must use the corresponding Nambu
bracket (2.14). To ensure that the discrete approximation
is completely antisymmetric, we first rewrite (2.14) as

�F, H, Z�


 �
1
3 �� dx �J�F
, H
�Z
 � cyc�F, H, Z�	.

�3.6�

Then we replace each of the three Jacobian terms in
(3.6) by finite-difference approximations of the form

FIG. 1. A single grid box with corners numbered as in the text. FIG. 2. An arbitrary grid point, labeled 0, and its neighbors.

FEBRUARY 2007 S A L M O N 519



�� dx J�F
, H
�Z
 → �
grid boxes

1
4 ��Z

�
1
�

�Z

�
2
�

�Z

�
3
�

�Z

�
4
�

�
1

22 �� �F

�
3
�

�F

�
1
���H

�
4
�

�H

�
2
� � ��H

�
3
�

�H

�
1
�� �F

�
4
�

�F

�
2
�� �3.7�

where, once again, the subscripts refer to Fig. 1. Col-
lecting terms, we obtain the approximation

�F, H, Z�


 �
1

122 �
grid boxes

� ��F, H, Z�

��
1, 
2, 
3�
�

��F, H, Z�

��
1, 
2, 
4�

�
��F, H, Z�

��
1, 
3, 
4�
�

��F, H, Z�

��
2, 
3, 
4�� �3.8�

to (2.14). The discrete Nambu bracket (3.8) con-
serves H and Z by its manifest antisymmetry with re-
spect to F, H, and Z. In (2.8), the Nambu bracket (3.8)
only contributes the Jacobian term in (2.8a). Setting F
� �0, and using (3.1) and (3.4), we obtain the approxi-
mation

d
0

dt
�

1

122 ���2 � �3 � �7 � �8�q1 � ��3 � �1�q2

� ��4 � �5 � �1 � �2�q3 � ��5 � �3�q4

� ��6 � �7 � �3 � �4�q5 � ��7 � �5�q6

� ��8 � �1 � �5 � �6�q7 � ��1 � �7�q8	 � · · ·
�3.9�

to the Jacobian term in (2.8a), where the subscripts
refer to Fig. 2. The approximation (3.9) is in fact Ar-
akawa’s (1966) second-order Jacobian; see also Salmon
and Talley (1989).

The remaining, non-Jacobian terms in (2.8) correspond
to the Nambu bracket (2.15). We replace (2.15) by

�F, H, Z�
	h � �
1

2 �
grid boxes

� 1

�q2 � q1� �� �F

�	2
�

�F

�	1
���H

�
2
�

�H

�
1
� � � �H

�	2
�

�H

�	1
�� �F

�
2
�

�F

�
1
��� �Z

�h2
�

�Z

�h1
�

�
1

�q4 � q1� �� �F

�	4
�

�F

�	1
���H

�
4
�

�H

�
1
� � � �H

�	4
�

�H

�	1
�� �F

�
4
�

�F

�
1
��� �Z

�h4
�

�Z

�h1
�

� cyc�F, H, Z��
� �

1

2 �
grid boxes

� 1

�q2 � q1� � ��F, H, Z�

��	2, 
2, h2�
�

��F, H, Z�

��	1, 
2, h2�
�

��F, H, Z�

��	2, 
1, h2�
�

��F, H, Z�

��	1, 
1, h2�

�
��F, H, Z�

��	2, 
2, h1�
�

��F, H, Z�

��	1, 
2, h1�
�

��F, H, Z�

��	2, 
1, h1�
�

��F, H, Z�

��	1, 
1, h1��
�

1

�q4 � q1� � ��F, H, Z�

��	4, 
4, h4�
�

��F, H, Z�

��	1, 
4, h4�
�

��F, H, Z�

��	4, 
1, h4�
�

��F, H, Z�

��	1, 
1, h4�
�

��F, H, Z�

��	4, 
4, h1�

�
��F, H, Z�

��	1, 
4, h1�
�

��F, H, Z�

��	4, 
1, h1�
�

��F, H, Z�

��	1, 
1, h1���, �3.10�

where the subscripts refer to Fig. 1. Then, setting F �
�0, �0, h0, we obtain the following replacements for the
remaining terms in (2.8):

�� · �q��� →
1

22 ���0 � �1��q0 � q1�

� ��0 � �3��q0 � q3�

� ��0 � �5��q0 � q5�

� ��0 � �7��q0 � q7�	 �3.11�

� · �q��� → �
1

22 ���0 � �1��q0 � q1�

� ��0 � �3��q0 � q3�

� ��0 � �5��q0 � q5�

� ��0 � �7��q0 � q7�	 �3.12�

��2� → �2�4�0 � �1 � �3 � �5 � �7� �3.13�

��2� → �2�4�0 � �1 � �3 � �5 � �7�, �3.14�
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where the subscripts refer to Fig. 2. In summary, the
equations

d
0

dt
� �3.9� � �3.11� �3.15a�

d	0

dt
� �3.5� � �3.12� � �3.13� �3.15b�

dh0

dt
� �3.14� �3.15c�

represent a finite-difference approximation to (2.8) that
conserves (3.1) and arbitrary energy H, with derivatives
(3.4). By inspection, (3.15) also conserves the mass
(2.10) and the circulation (2.11). Although the circula-
tion vanishes identically in the case of periodic bound-
ary conditions, the existence of a local, flux-form con-
servation law for � is significant. In the limiting case of
two-dimensional, incompressible flow with constant f,
the conservation of  dx (� � f )2 implies conservation
of  dx �2 only if  dx � is also conserved.

The approximations (3.2), (3.8), and (3.10) are prob-
ably the simplest finite-difference approximations that
maintain the antisymmetry properties of (2.13)–(2.15).
The evolution Eqs. (3.15) are correspondingly simple.

Other, more accurate, approximations are possible; it
only matters that the antisymmetry be maintained. The
approximations need not even be finite-difference ap-
proximations; they could be a mixture of finite differ-
ences, finite elements, and spectral modes. Moreover,
the methods by which we approximate each of (2.13),
(2.14), and (2.15) are completely independent. This
gives the method great flexibility. In section 5 we use
this flexibility to develop an approximation method
that applies to an unstructured triangular mesh, and
hence to any mesh composed of polygons that can be
decomposed into triangles. First, however, we complete
our derivation on the square grid.

It remains to approximate the energy H. Once again,
the manner in which we discretize H is completely in-
dependent from the discrete evolution Eqs. (3.15).
Combining (1.5) and (2.5), we have

H � ��dx � 1
2h

��� · �� � �� · �� � 2J��, ��	

�
1
2

gh2�. �3.16�

We replace

H → �2 �
grid boxes

����2 � �1�2 � ��2 � �1�2	�h1 � h2��1 � ���4 � �1�2 � ��4 � �1�2	�h1 � h4��1

� 2���3 � �1���4 � �2� � ��3 � �1���4 � �2�	�h1 � h2 � h3 � h4��1� �
1
2 �

ij

ghij
2 �3.17�

where, once again, the integer subscripts refer to Fig. 1. Then, by direct manipulations,

dH � �
ij

���ij d
ij � �ij d	ij � �ij dhij�, �3.18�

where, in the notation of Fig. 2,


0 �
2

2 � �1

h0 � h1
�

�3

h0 � h3
�

�5

h0 � h5
�

�7

h0 � h7
� � 1

h0 � h1
�

1
h0 � h3

�
1

h0 � h5
�

1
h0 � h7

��0

�
��3 � �1�

�h0 � h1 � h2 � h3�
�

��5 � �3�

�h0 � h3 � h4 � h5�
�

��7 � �5�

�h0 � h5 � h6 � h7�
�

��1 � �7�

�h0 � h7 � h8 � h1��,

�3.19a�

	0 �
2

2 � �1

h0 � h1
�

�3

h0 � h3
�

�5

h0 � h5
�

�7

h0 � h7
� � 1

h0 � h1
�

1
h0 � h3

�
1

h0 � h5
�

1
h0 � h7

��0

�
��3 � �1�

�h0 � h1 � h2 � h3�
�

��5 � �3�

�h0 � h3 � h4 � h5�
�

��7 � �5�

�h0 � h5 � h6 � h7�
�

��1 � �7�

�h0 � h7 � h8 � h1��,

�3.19b�
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and

�0 � gh0 �
1

2 ����1 � �0�2 � ��1 � �0�2	�h0 � h1��2 � ���3 � �0�2 � ��3 � �0�2	�h0 � h3��2 � ���5 � �0�2 � ��5

� �0�2	�h0 � h5��2 � ���7 � �0�2 � ��7 � �0�2	�h0 � h7��2 �
2���2 � �0���3 � �1� � ��2 � �0���3 � �1�	

�h0 � h1 � h2 � h3�2

�
2���1 � �7���0 � �8� � ��1 � �7���0 � �8�	

�h0 � h7 � h8 � h1�2 �
2���3 � �5���4 � �0� � ��3 � �5���4 � �0�	

�h0 � h3 � h4 � h5�2

�
2���0 � �6���5 � �7� � ��0 � �6���5 � �7�	

�h0 � h5 � h6 � h7�2 �. �3.20�

Equations (3.19) are analogous to (2.9); (3.20) is a fi-
nite-difference approximation to (1.7) and (2.5). The
forms of (3.19) and (3.20) are completely determined
by the choice (3.17) of approximate Hamiltonian. This
choice is arbitrary except that it must lead to invertible
elliptic, finite-difference operators in the Eqs. (3.19) for
� and �. If these elliptic operators had turned out to be
singular—that is, if their spectrum contained a zero
eigenvalue—then the finite-difference equations would
acquire a computational mode. The choice (3.17) was
guided by a desire that the operators in (3.19) reduce to
the standard (and nonsingular) five-point difference
formula for the Laplacian in the case of uniform h. It is
interesting that our formulation requires no precise
definition of u and 
 in terms of � and �. Although we
may infer a relationship between these variables from
(3.17), the velocity components do not appear in the
model equations.

The complete shallow-water model comprises (3.15),
(3.19), and (3.20). We use (3.15) to step the variables �,
�, h forward in time. Then we find � and � at the new
time by solving the coupled elliptic Eqs. (3.19) subject
to the periodic boundary conditions. Then (3.20) gives
� at the new time, and the process repeats. The dy-
namics (3.15), (3.19)–(3.20) conserves the energy (3.17),
the potential enstrophy (3.1), and by inspection of
(3.15) finite-difference approximations to the mass
(2.10) and circulation (2.11).

4. Numerical tests and comparisons

In this section we compare the shallow-water model
derived in the previous section (hereafter called NB,
for Nambu) to four alternatives. The first of these, NBE
(Nambu, conserving only energy), is identical to NB
except that the Jacobian (3.9) in (3.15a) is replaced by
the Jacobian (3.5) [with the �’s in (3.5) replaced by �’s;
see (2.8)]. This single, minor modification of NB de-
stroys its conservation of potential enstrophy. The re-

maining three comparison schemes are C-grid schemes
in which the fundamental variables are u, 
, and h.
These C-grid schemes do not require the solution of
elliptic equations like (3.19), hence they can be solved
much more efficiently than NB. The C-grid schemes
include: SE, the scheme of Sadourny [1975, Eq. (3)],
which conserves energy but not potential enstrophy; SZ
[Sadourny 1975, Eq. (4)], which conserves potential en-
strophy but not energy; and AL, the energy- and po-
tential-enstrophy-conserving scheme of Arakawa and
Lamb (1981). All five schemes conserve the mass (2.10)
and the circulation (2.11).

In the linear (small-amplitude) limit, the behavior of
each scheme is well summarized by its dispersion rela-
tionship for inertia–gravity waves. In this limit, NB (and
NBE) reduce to the Z-grid equations analyzed by Ran-
dall (1994). The corresponding dispersion relationship
is

�2 � f 2 � 4gH0�2�sin2�k�2� � sin2�l�2�	, �4.1�

where � is the frequency, (k, l) the wavenumber, and
H0 the mean depth. On the other hand, the C-grid
schemes (SE, SZ, and AL) correspond to

�2 �
1
4

f 2�1 � cos�k� � cos�l� � cos�k� cos�l�	

� 4gH0�2�sin2�k�2� � sin2�l�2�	. �4.2�

In the limit of perfect resolution (k�, l� → 0), both
(4.1) and (4.2) correctly limit on the exact dispersion
relation,

�2 � f 2 � gH0�k
2 � l2�. �4.3�

However, for poorly resolved waves with k�, l� → �,
the Coriolis term in (4.2) actually disappears. Randall
(1994), building on the work of Arakawa and Lamb
(1977), notes that (4.1), like (4.3), increases monotoni-
cally with wavenumber at all resolved wavenumbers, where-
as (4.2) grossly misrepresents (4.3) when �gH0 /f � �.
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It follows that the C-grid schemes do not correctly
simulate geostrophic adjustment in cases in which the
deformation radius is poorly resolved. Of course, all
atmospheric models and most oceanographic models
resolve the first internal deformation radius. But if we
regard the shallow-water equations as a paradigm for
an arbitrary vertical mode of the primitive equations,
for which the deformation radius of mode n scales as
n�1, then we must conclude that the C-grid schemes do
not accurately simulate geostrophic adjustment in any
but the lowest vertical modes.

The inaccurate Coriolis term in (4.2) results from the
unavoidable staggering of variables on the C-grid.
Salmon (2004) conducted an exhaustive search for en-
ergy- and potential-enstrophy-conserving schemes cor-
responding to the conventional, u-
-h, form of the shal-
low-water equations. In all the schemes found, the Co-
riolis force is computed as an average over many grid
points. The simplest of the schemes found by Salmon
(2004) are C-grid schemes, and AL is the simplest of
these. Thus it seems that all doubly conservative
schemes based upon the u-
-h form of the shallow-
water equations incorrectly simulate geostrophic ad-
justment. In this respect NB is superior to AL. This
advantage of NB at least partly offsets the disadvantage
of solving elliptic equations.

Now we consider fully nonlinear, shallow-water so-
lutions in a 2� � 2� periodic box. In all schemes, we
step forward in time using the third-order Adams–
Bashforth method (Durran 1991). In the Nambu
schemes, we solve (3.19) with an iterative multigrid
solver.

To demonstrate the importance of conserving poten-
tial enstrophy, we first consider inviscid, nonrotating
( f � 0) solutions of NB and NBE that begin from the
same random initial conditions, with a Froude number
Urms(ghavg)�1/2 of 0.1. Recall that NB and NBE differ
only in the finite-difference form of a single term in a
single equation. Hence it seems fair to attribute the
differences in the two solutions to the lack of potential
enstrophy conservation in NBE. Since viscosity is ab-
sent, both solutions gradually cease to be smooth, but
the nonconservation of potential enstrophy in NBE al-
lows significant energy to reach the highest resolved
wavenumbers. Figure 3 shows the common initial en-
strophy spectrum, and the spectrum in NB and NBE at
a later time in which the enstrophy cascade is fully de-
veloped. (This time, which corresponds to 40 000 time
steps, is the time required for fluid particles to travel 1.6
times the periodic box size at the rms velocity.) At the
time of Fig. 3, the energy in both experiments is within
0.5% of its initial value. This small error is mainly the
result of incomplete convergence in the multigrid

solver, because the potential enstrophy in NB (which is
affected only by the truncation error in the time step) is
within 0.000 11% of its initial value. In contrast, the
potential enstrophy in NBE has increased by nearly
26%. Similar experiments with the C-grid schemes
show that SE, like NBE, exhibits a spurious transfer of
energy to high wavenumber, compared to the potential-
enstrophy-conserving schemes SZ, AL, and NB.

None of the schemes conserves the potential vorticity
moments

Zn � �� dx hqn �4.4�

for n � 2. However, numerical experiments show that
the potential-enstrophy conserving schemes also do a
better job of conserving the higher moments of the po-
tential vorticity than do NBE and SE. Figure 4, which is
typical, shows time series of the ratio of Z6 to its initial
value in NB and in the three C-grid schemes, beginning
from the same random initial conditions as in the pre-
viously described experiment. At the time of Fig. 4, the
potential enstrophy in SE has increased by about 30%
over its initial value. However, Z6 has grown to more
than 5 times its initial value, and is about twice as large
as in the three potential enstrophy–conserving schemes.
This and many similar results offer strong indirect evi-
dence that potential enstrophy–conserving schemes do
a better job of conserving potential vorticity on par-
ticles than do SE and NBE.

However, the experiments also suggest that SZ, while

FIG. 3. The initial enstrophy spectrum and the enstrophy spec-
tra at a later time in two inviscid solutions of the shallow-water
equations that begin from the same random initial conditions.
One of the solutions, NB, conserves energy and potential enstro-
phy, while the other solution, NBE, conserves only the energy.
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much better than SE, is at least slightly inferior to the
doubly conservative schemes AL and NB. Figure 5
shows the potential vorticity in NB and in the three
C-grid schemes for an inviscid, nonrotating experiment
that began with sinusoidally perturbed shear layers.
With no viscosity present, all of the solutions eventually
exhibit oscillations on the scale of the grid spacing.
However, the oscillations in SZ are much larger than in
AL and NB, and are nearly as bad as in SE. In this and
other experiments, the close agreement between NB
and AL is striking, particularly considering the huge
differences in the way the two schemes are constructed.
This supports the idea that conservation laws are im-
portant determinants of overall behavior.

Next we compare rotating ( f � 0) solutions in which
a Navier–Stokes friction of the form

�ui

�t
� · · · �

�

h

�

�xj
��ui

�xj
�

�uj

�xi
�, �4.5�

is appended to the momentum equations (with corre-
sponding terms appended to the equations for vorticity
and divergence). In units for which g � havg � 1, we set
f � 1, corresponding to a deformation radius of unity.
Once again, the periodic box size is 2�. Thus the de-
formation radius is well-resolved, and the C-grid
schemes therefore suffer no disadvantage in their abil-
ity to simulate inertia–gravity waves. The common ini-
tial condition is

h�x, y� � 1 � 0.1�H�1 � r1� � H�1 � r2�	, �4.6�

where H() is a smooth approximation to the Heaviside
function, and r1, r2 are the distances between (x, y) and
the points (�1, 0), (1, 0) respectively. Thus (4.6) corre-
sponds to a dumbbell-shaped pattern of surface eleva-
tion. The initial velocity field is in geostrophic balance
with (4.6) and corresponds to Urms � 0.1. Hence the
Froude number and the Rossby number based upon the
deformation radius are both of order 0.1. The constant
viscosity coefficient � � .0002. Figure 6 shows the po-
tential vorticity fields in solutions of NB and in solu-
tions of the three C-grid schemes at the later time t �
12. All four solutions have the same resolution for all
dependent variables (whether staggered or not), corre-
sponding to 256 � 256 grid points. Figure 7 shows the
potential vorticity at the same time in four correspond-
ing solutions with a higher resolution of 512 � 512 grid
points. In this and many similar experiments, the solu-
tions of the doubly conservative schemes AL and NB
are more accurate, and resemble those of the singly
conservative schemes SE and SZ at twice the spatial
resolution. Figure 8 shows the enstrophy spectra in the
solutions corresponding to Fig. 7. The spectrum corre-
sponding to SE shows the expected excess of enstrophy
at high wavenumber, but in this case the excess in SZ is
even greater. The spectra of AL and NB contain sig-
nificantly less enstrophy at high wavenumber, and
moreover are nearly identical.

In summary, the simultaneous conservation of en-
ergy and potential enstrophy in NB and AL prevents
the spurious turbulent cascade of energy to high wave-
numbers, as expected. In this respect, SE performs very
poorly, while SZ does about as well as NB and AL.
However, careful comparisons of particular, highly
structured solutions—viscous and inviscid, rotating
and nonrotating—have shown that NB and AL are sig-
nificantly more accurate than the other schemes, and
usually yield nearly identical results. The agreement
between AL and NB is remarkable, considering the
huge differences in the way the two schemes are con-
structed, and it suggests that the conservation laws are
important determinants of overall behavior. However,
in cases in which the deformation radius is poorly re-
solved, linear waves analysis shows that NB is superior
to AL.

Nevertheless, we make no claim that NB is better
than any of the previously discovered energy- and po-
tential-enstrophy-conserving models, including those of
Arakawa and Lamb (1981), Abramopoulos (1988),
Ringler and Randall (2002), and Salmon (2004).
Rather, the significance of the present contribution lies
in the generality and flexibility of the method used to
derive (3.15). As demonstrated in the following section,

FIG. 4. Time series of Z6, defined by (4.4), the sixth moment of
potential enstrophy, divided by its initial value, in four inviscid
solutions of the shallow-water equations that begin from the same
random initial conditions. Solution SE conserves energy but not
the potential enstrophy Z2; the other three solutions conserve
potential enstrophy.
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this permits significant generalizations, including the
generalization to an arbitrary unstructured grid of poly-
gons.

5. Generalizations

Our derivation has made frequent use of the periodic
boundary conditions. However, the brackets (2.13)–
(2.15) remain valid if the periodic boundary conditions
are replaced by solid walls at which � and the normal
derivative of � vanish. By (2.5) this corresponds to
boundary conditions of no normal flow. These new
boundary conditions replace the periodic boundary
conditions on (2.9). All of this carries over to the finite-

difference approximations. The discrete evolution Eqs.
(3.15) are unchanged at interior grid points, but at
boundary points the right-hand sides of (3.15) lose the
terms arising from grid boxes that lie outside the
boundaries. Equations (3.19) and (3.20) are unchanged
except for the new boundary conditions on (3.19).
When boundaries are present, the Coriolis parameter
can depend arbitrarily on location. All the conservation
laws remain intact.

The model based on (3.15), (3.19)–(3.20) has second-
order accuracy in the grid spacing. To achieve higher
accuracy, we need only replace (3.2), (3.8), (3.10), and
(3.17) by finite-difference approximations of higher ac-
curacy. For the case of periodic boundary conditions,

FIG. 5. The potential vorticity field at the same time in four numerical solutions of the inviscid shallow-water
equations that began from the same initial conditions; the solutions AL and NB, which conserve both energy and
potential enstrophy, exhibit fewer small-scale oscillations than SE, which conserves only energy, and SZ, which
conserves only potential enstrophy.
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there is an easy way to extend (3.15) to fourth-order
accuracy. Let (3.15a) be rewritten as

d
0

dt
� �d
0

dt �

, �5.1�

where the right-hand side stands for the sum of (3.9)
and (3.11). Then (5.1) implies

d
ij

dt
� �J�q, �� � � · �q���	ij � A2, �5.2�

where the square bracket represents the exact value at
grid point ij, and the last term represents the truncation
error in (3.9) and (3.11). The coefficient A is a compli-
cated expression involving the derivatives of q, �, �, all

evaluated at ij. Now consider the finite-difference ap-
proximation

d
0

dt
� �d
0

dt �2

�5.3�

in which the right-hand side stands for the sum of (3.9)
and (3.11) with � replaced by 2� and with the variables
evaluated at twice the distance, but in the same direc-
tion, as before. For example, in (5.3) �2 means �i�2, j�2

instead of �i�1, j�1. Thus the Eq. (5.3) corresponds to
the application of (5.1) on a square grid with half the
original resolution. Clearly (5.3) implies (5.2) with �
replaced by 2�, and no change in A. It follows that the
finite-difference formula

FIG. 6. The potential vorticity field in four numerical solutions of the viscous shallow-water equations that began
from the same, geostrophically balanced initial conditions. All of the solutions correspond to a spatial resolution
of 256 � 256 grid points. However, the two solutions (AL and NB) that conserve both energy and potential
enstrophy more closely resemble the solutions of Fig. 7, which have twice the resolution.
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d
0

dt
�

4
3 �d
0

dt �

�
1
3 �d
0

dt �2

�5.4�

has fourth-order accuracy in �. Similar steps apply to
(3.15b) and (3.15c). These more accurate approxima-
tions to (2.8) conserve exactly the same quantities as
the second-order equations given explicitly in section 2,
but the complete scheme remains only second-order
accurate until we replace the energy (3.17) by a fourth-
order approximation to (3.16). Fourth-order analogs of
(3.19) and (3.20) would follow from that. However, im-
provements in the accuracy of the brackets are quite
independent from improvements in the accuracy of the
Hamiltonian, and in fact each of (2.13)–(2.15) can be
treated independently. That is, each of the Jacobian
terms in (2.8) may be handled differently from all the

remaining terms; it only matters that each of (2.13)–
(2.15) retain its property of complete antisymmetry.
The trick (5.4) depends critically on the fact that the
potential enstrophy (3.1) does not itself involve finite
differences, and therefore could not be applied to the
scheme derived by Arakawa and Lamb (1981). This
seems to be another advantage of the formulation in
terms of �, �, and h.

Next we apply the methods of sections 2 and 3 to a
mesh composed of arbitrarily drawn triangles. The re-
sults extend to an arbitrary polygonal mesh. In the case
of nonequilateral triangles, we must carefully distinguish
between the functional derivatives and ordinary deriva-
tives with respect to the values at mesh points. This dis-
tinction was unnecessary on the regular grid of section
3. For example, the triangular-mesh analog of (3.1) is

FIG. 7. The same as Fig. 6, but with a higher resolution of 512 � 512 grid points.
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Z �
1
2 �

triangles
�123

1
3

�h1q1
2 � h2q2

2 � h3q3
2�, �5.5�

where the sum is over all the triangles in the mesh, and
�123 is the area of the triangle with vertices labeled 1, 2,
3. Refer to Fig. 9. We define the functional derivative

�Z

�
i
�

1
�i

�Z

�
i
� qi �5.6�

where the subscript denotes a particular mesh point,
and �i is the area associated with this meshpoint,
namely, one-third the area of all the adjoining triangles.
Similarly, of course, �Z/�hi � �1/2q2

i and �Z/��i � 0.
The distinction between �Z/��i and �Z/��i was unim-
portant in section 3, because all the grid points had the
same associated area, namely �2.

To obtain the triangular-mesh analogs of (3.15), we
must replace the Nambu brackets (2.13)–(2.15) by fi-
nite-difference approximations on each triangle, being
careful to maintain the critical antisymmetry proper-
ties. If A(x, y), B(x, y), and C(x, y) depend linearly on
x and y, it follows that

��
triangle

dxAJ�B, C� �
1
6

�A1 � A2 � A3��B1C2 � B2C3

� B3C1 � B1C3 � B3C2 � B2C1�

�5.7�

where the subscripts denote the vertex values in Fig. 9.
Therefore [cf. (3.6)]

�F, H, Z�


 → �
triangles

1
18 ��Z

�
1
�

�Z

�
2
�

�Z

�
3
�

� �F

�
1

�H

�
2
�

�F

�
2

�H

�
3
�

�F

�
3

�H

�
1
�

�F

�
1

�H

�
3

�
�F

�
3

�H

�
2
�

�F

�
2

�H

�
1
� � cyc�F, H, Z�

�5.8�

is a logical, antisymmetric, finite-difference approxima-
tion to (2.14) and (3.6) on the triangular mesh. Equa-
tion (5.8) is very closely related to the method used by
Salmon and Talley (1989) to generalize Arakawa’s Ja-
cobian to a triangular mesh. Since Z does not depend
on �, we may approximate (2.13) more simply, as

�F, H, Z�		
 → �
triangles

1
6

�q1 � q2 � q3�

� �F

�	1

�H

�	2
�

�F

�	2

�H

�	3
�

�F

�	3

�H

�	1

�
�F

�	1

�H

�	3
�

�F

�	3

�H

�	2
�

�F

�	2

�H

�	1
�.

�5.9�

The bracket (5.8) is analogous to (3.8); (5.9) is analo-
gous to (3.2). The bracket (5.8) conserves H and Z by
antisymmetry; (5.9) conserves H by antisymmetry, and
Z because �Z/��i � 0. It only remains to discretize
(2.15).

The estimate (3.10) of (2.15) corresponds to a single
differencing operator applied along every edge of every
square grid box. We suppose that each triangle contrib-
utes a weighted sum of this same operator applied to
each of its three edges. We choose the three weights to
make our estimate of (2.15) agree with (2.4), after con-
traction with Z, in the limit of small triangles. Omitting
details, we obtain the approximation

FIG. 8. The enstrophy spectra of the solutions depicted in Fig. 7.
The spectra of the doubly conservative schemes AL and NB show
the least enstrophy at high wavenumbers, and are nearly identical.

FIG. 9. A single triangle with corners numbered as in the text.
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�F, H, Z�
	h → �
triangles

�
1
2

cot�3

1

�q2 � q1� �� �F

�	2
�

�F

�	1
���H

�
2
�

�H

�
1
� � � �H

�	2
�

�H

�	1
�� �F

�
2
�

�F

�
1
��� �Z

�h2
�

�Z

�h1
�

� cyc�1, 2, 3� � cyc�F, H, Z�, �5.10�

where once again the integers refer to the vertices of
the triangle in Fig. 9. The permutations cyc(1, 2, 3)
correspond to summation over the sides of each tri-
angle. Thus, the full set of permutations in (5.10) cor-
responds to nine terms of the form explicitly given in
(5.10). It is straightforward to check that (5.10) con-
verges to (2.15) in the limit of small triangles.

Now let 0 denote an arbitrary node on the triangular
mesh, as shown in Fig. 10. Then setting F � �0, �0, h0 in
dF/dt � {F, H, Z}, where {F, H, Z} is the sum of (5.8),
(5.9), and (5.10), we obtain the analogs of (3.15) on the
triangular mesh:

d
0

dt
�

1
6�0

�
n

qn��n�1 � �n�1�

�
1

4�0
�

n
�cotan�1 � cotbn�1��q0 � qn���0 � �n�

�5.11a�

d	0

dt
�

1
6�0

�
n

qn��n�1 � �n�1�

�
1

4�0
�

n
�cotan�1 � cotbn�1��q0 � qn���0 � �n�

�
1

2�0
�

n
�cotan�1 � cotbn�1���0 � �n� �5.11b�

dh0

dt
�

1
2�0

�
n

�cotan�1 � cotbn�1���0 � �n�. �5.11c�

In (5.11), the sum over n corresponds to the sum over
the triangles surrounding point 0, and �i � ��H/��i,
etc., as in section 3. The precise expression for �i, �i, hi

in terms of the �i, �i, hi depends on the precise choice of
H, which determines the triangular-mesh analogs of
(3.19) and (3.20). However, the dynamics (5.11) con-
serves the energy H and potential enstrophy (5.5) for
any choice of H.

A regular hexagonal mesh corresponds to equilateral
triangles with side s, all ai � bi � �/3, and �0 � �3s2/2.
Refer to Fig. 11. In the case of a regular hexagonal
mesh (5.11) reduce to

d
0

dt
�

1

3�3s2
�q1��2 � �6� � q2��3 � �1� � q3��4 � �2�

� q4��5 � �3� � q5��6 � �4� � q6��1 � �5�	

�
1

3s2 ��q0 � q1���0 � �1� � �q0 � q2���0 � �2�

� �q0 � q3���0 � �3� � �q0 � q4���0 � �4�

� �q0 � q5���0 � �5� � �q0 � q6���0 � �6�	

�5.12a�

d	0

dt
�

1

3�3s2
�q1��2 � �6� � q2��3 � �1� � q3��4 � �2�

� q4��5 � �3� � q5��6 � �4� � q6��1 � �5�	

�
1

3s2��q0 � q1���0 � �1� � �q0 � q2���0 � �2�

� �q0 � q3���0 � �3� � �q0 � q4���0 � �4�

� �q0 � q5���0 � �5� � �q0 � q6���0 � �6�	

�
2

3s2 �6�0 � �1 � �2 � �3 � �4 � �5 � �6�

�5.12b�

dh0

dt
�

2

3s2 �6�0 � �1 � �2 � �3 � �4 � �5 � �6�.

�5.12c�

The icosahedral method for grid generation on a sphere
results in a geodesic mesh comprising 12 pentagons and
an arbitrarily large number of nearly regular hexagons.
See, for example, Randall et al. (2002). If the hexagons

FIG. 10. An arbitrary nodal point, labeled 0, and some of its
neighbors on an unstructured triangular mesh. The full set of
neighbors forms an irregular polygon.
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are sufficiently regular, then one may use (5.12) instead
of (5.11) with only a small geometrical distortion. The
conserved potential enstrophy would be an approxima-
tion to (5.5) with �123 replaced by a global constant.
However, the general Eq. (5.11) is needed for mesh
points near the pentagons. Ringler and Randall (2002)
have previously derived an energy- and potential-
enstrophy-conserving shallow-water model based upon
hexagons and pentagons. The model (5.12) is not
equivalent to their model, and does not contain com-
putational modes.

S05 showed how the algorithm of section 2 could be
generalized to conserve energy and any single moment
(4.4) of potential enstrophy. This result can be further
generalized to arbitrary G(q) in (1.13). However, nu-
merical experiments not described here have shown
that models designed to conserve Casimirs other than
potential enstrophy generally behave very poorly in
comparison with potential enstrophy–conserving mod-
els. Since, moreover, models designed to conserve
G(q) � q2 do not typically also conserve the circulation
Z1, there seems little reason to consider anything be-
sides potential-enstrophy-conserving models at this
time.

6. Discussion

From the standpoint of differential equations, con-
servation laws arise from manipulations that typically
include the product rule for derivatives. Unfortunately,
the product rule does not generally carry over to dis-
crete systems; try as we might, we will never get digital
computers to respect it. However, in the strategy
adopted in S05 and here, conservation laws are con-
verted to antisymmetry properties that transfer easily
to the discrete case; digital computers understand anti-
symmetry very well!

The general strategy of using antisymmetry proper-
ties to construct conservative numerical algorithms has
been championed by McLachlan (2003). On the other
hand, Nevir and Blender (1993) were apparently the
first to realize that fluid mechanics could be posed as a
Nambu bracket. The present work can be viewed as a
confluence of these two ideas, or as a generalization of
the method of Salmon and Talley (1989) to systems
besides two-dimensional, incompressible flow. Al-
though the present paper contributes only concrete ex-
amples to the general theory sketched in S05, it is
hoped that it might inspire others, particularly those
with computing skills and resources greater than the
author, to adopt the antisymmetry approach to model
development.

By the well-known analogy between the shallow-
water equations and the hydrostatic primitive equations
in isentropic coordinates (e.g., Salmon 1998, pp. 105–
107), our results extend immediately to the three-
dimensional, hydrostatic primitive equations. The evo-
lution equations are essentially unchanged; the Hamil-
tonian acquires coupling terms between isentropic
layers in the expression for potential energy. However,
models of the earth’s atmosphere and oceans should
probably be based upon the nonhydrostatic primitive
equations. In fact, Browning and Kreiss (1986), Salmon
(1999), and Kuang et al. (2005) suggest that it is a good
strategy to exaggerate nonhydrostatic effects by insert-
ing a parameter much greater than unity in front of the
acceleration term in the vertical momentum equation.
This increases the horizontal scale of convection in both
atmosphere and ocean, and the thickness of coastal
boundary layers in the ocean, to the point where they
can be more easily resolved by the model. S05 presents
a Nambu bracket for the nonhydrostatic primitive
equations, but that bracket is much more complicated
than the shallow-water bracket. Finding its optimal dis-
cretization will likely require considerable effort.
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