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The shape of the main thermocline, revisited

by Rick Salmon1

ABSTRACT
Using the Monte Carlo method of statistical physics, we compute the equilibrium statistical mechan-

ics of the shallow water equations, considered as a reduced-gravity model of the ocean’s upper layer
in a square ocean that spans the equator. The ensemble-averaged flow comprises a westward drift at
low latitudes, associated with the poleward deepening of the main thermocline, and a more intense
compensating eastward flow near the latitudes at which the layer depth vanishes. Inviscid numerical
simulations with a model that exactly conserves mass, energy, and potential enstrophy support the
theoretical prediction.

1. Introduction
Imagine the ocean to be in a state of rest, with a stable density stratification depending

only on the vertical coordinate z. Suppose that a random stirring force—a giant paddle—
sets the fluid into vigorous adiabatic motion in every direction. After a time, the random
stirring force abruptly stops, but the fluid motion continues—we suppose—undamped by
friction. What will be the state of this hypothetical ocean after a very long time? Equilibrium
statistical mechanics offers a precise quantitative answer to this question under a single,
additional, but very strong assumption—that the fluid motion be confined to a finite number
of degrees of freedom. All of the foregoing conditions are satisfied by a numerical ocean
model, subject to random initial conditions, in which all the heating, driving, and damping
forces have been switched off. Thus the hypothetical question posed above could be stated
more succinctly as follows: What is the eventual state attained by a numerical ocean model,
under random initial conditions, with all the forcing and viscosity turned off?

A much earlier paper (Salmon 1982a, hereafter S82) tried to calculate the statistical-
mechanical equilibrium state associated with a particularly simple ocean model, namely, the
‘reduced gravity’—also sometimes called ‘one-and-one-half-layer’—model, and to show
that model simulations support the theoretical prediction. In the reduced-gravity model, the
governing equations are the shallow-water equations (4.1) with h the depth of an upper mov-
ing layer of homogeneous fluid; beneath this layer, the ocean is assumed to be at rest. The
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general conclusion of S82 was that the final average flow closely resembles the correspond-
ing flow in the one-layer quasigeostrophic case: quasi-uniform westward flow throughout
the interior of the moving layer with a compensating eastward flow along its poleward
flanks. The westward interior flow corresponds to a poleward increase in the thermocline
depth h between a narrow equatorial region of nearly uniform h and the even narrower
regions of eastward flow in which h abruptly vanishes. These ‘outcrop’ regions correspond
to the inertial boundary layers in the corresponding quasigeostrophic calculation. Thus,
principal observed features of upper-ocean circulation are predicted to arise automatically
by the tendency for initially random, rotating flow to induce rectified currents.

The equilibrium statistical mechanics of quasigeostrophic models was first considered
by Salmon et al. (1976). In a closed beta-plane box, one-layer quasigeostrophic equilib-
rium flow is quasi-steady, and is essentially identical to the steady inviscid flow studied by
Fofonoff (1954), which we hereafter call Fofonoff flow. The tendency for unforced, inviscid,
quasigeostrophic models to attain Fofonoff flow has been confirmed in numerical exper-
iments by Griffa and Salmon (1989), Wang and Vallis (1994), Dukowicz and Greatbatch
(1999) and a number of others.

Many of these papers also investigate the degree to which the models attain Fofonoff-
like states in the presence of forcing and viscosity. For example, Griffa and Salmon (1989)
investigated the dependence of the statistical equilibrium state on the direction of the wind
forcing in model solutions with viscosity and bottom drag. In the case of easterly wind
forcing—for which the wind does positive work on Fofonoff flow—they found that the
equilibrium mean flow is strong, quasi-steady, and closely resembles Fofonoff flow. In the
case of westerly wind forcing—in which the wind opposes Fofonoff flow—the equilibrium
mean flow is very weak, and most of the kinetic energy resides in time-dependent, turbulent
motions. Thus, in the general forced/dissipated case, Fofonoff flow represents a kind of
stable attractor; the system approaches the attractor as closely as the forcing and dissipation
will allow. In this paper we are solely concerned with the calculation of ideal, inviscid
equilibrium states like Fofonoff flow. However, we come back to the issue of forcing and
dissipation in Section 5.

The ideal, inviscid quasigeostrophic equilibrium state is easy to calculate because the pri-
mary conserved quantities—the energy and potential enstrophy—are quadratic functionals
of dynamic variables for which the motion in phase space is nondivergent. (We define all
these terms precisely in the following section.) That is, the quasigeostrophic energy (2.3)
and potential enstrophy (2.6) depend quadratically on the streamfunction ψ(x, y, t). For the
same reason, it is very easy to construct quasigeostrophic numerical models that conserve
energy and potential enstrophy. In contrast, the shallow-water energy (4.4) is a cubic func-
tional of the variables u, v and h, and the potential enstrophy (4.7) involves a quotient. This
makes it impossible to calculate the shallow-water equilibrium states exactly, and it makes it
difficult to construct numerical models of the shallow-water equations that exactly conserve
energy and potential enstrophy. In fact, S82 did neither, instead piling one assumption on
top of another until the equilibrium calculation yielded the expected result. The numerical
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experiments of S82 were likewise unconvincing. Simulated times were short, resolution
was poor, and neither conservation law was respected; the emphasis in S82 was on handling
the outcrop at which the layer depth vanishes.

In this paper we revisit the problem considered by S82 using better computer technology
and superior methods of calculation. We compute the shallow-water equilibrium state using
the Monte Carlo method of statistical physics, and we compare our calculation to the
results of numerical simulations with a recently developed shallow-water model that exactly
conserves its energy and potential enstrophy.

The plan of the paper is as follows. Section 2 reviews the equilibrium statistical mechanics
of the quasigeostrophic model. Section 3 introduces the Monte Carlo method and illustrates
its use by application to the quasigeostrophic system. We present two quasigeostrophic
calculations. The first calculation corresponds to the standard, analytic case in which energy
and potential enstrophy are the only recognized invariants; the second calculation also
recognizes the fourth power of the potential vorticity. The similarity between the mean
flows computed in these two cases supports the view that energy and potential enstrophy
are of primary importance.

Section 4 addresses the shallow water system. We use the Monte Carlo method to compute
the ensemble-average flow corresponding to the three shallow-water invariants of mass,
energy and potential enstrophy. In the case of the full shallow-water system, and in a case
intermediate between quasigeostrophy and full shallow-water, we find that the mean flow
resembles that hypothesized in S82. Finally, we compute the inviscid, time-average flow in a
numerical model that exactly conserves its mass, energy and potential enstrophy. Although
the model cannot accommodate vanishing layer depth, the results resemble our Monte
Carlo calculations. Section 5 concludes with an assessment of the method and suggestions
for future work.

Some results of the statistical mechanical theory may also be understood, qualitatively
but more simply, by using ideas from ‘wave-mean interaction theory.’ In this theory, recently
summarized in the beautiful book by Bühler (2009), the concept of pseudomomentum plays
a central role. From the standpoint of wave-mean theory, Fofonoff flow arises because
breaking Rossby waves deposit their westward pseudomomentum into the mean flow. We
briefly mention the connection between pseudomomentum theory and equilibrium statistical
mechanics in Section 2.

However, from an even simpler viewpoint, the westward Fofonoff flow arises from the
tendency for potential-vorticity conservation on fluid particles—combined with weak dissi-
pation or irreversible mixing of potential vorticity—to accumulate negative relative vorticity
in the northern part of the ocean and positive relative vorticity in the southern part. This ten-
dency and its ability to explain the emergence of Fofonoff-like mean gyres was recognized
in a pioneering paper by Veronis (1970), who considered quasigeostrophic flow governed
by (2.1-2.2) with weak Rayleigh friction and random wind forcing terms appended. Vero-
nis (1970) gave what might be the first physical explanation for the emergence of Fofonoff
flow:
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The local vorticities …are ‘sorted out’ by the β-effect …so that negative vorticity
accumulates to the north and positive vorticity to the south. …The result is that a time
average of the streamfunction shows a nonzero mean circulation consisting of a gyre
of negative (positive) vorticity in the northern (southern) half basin.

It is a pleasure to dedicate this paper to George Veronis, whose ideas, mentorship and
friendship have been so important to its author.

2. Review of previous work
This section offers a bare-bones review of some basic principles of equilibrium statistical

mechanics and their application to single-layer quasigestrophic turbulence in a beta-plane
ocean. For much more extensive introductions to these subjects, see Salmon (1982b, 1998)
and Holloway (1986). The governing quasigeostrophic equation is

∂q

∂t
+ J (ψ, q) = 0 (2.1)

where

q = ∇2ψ + f (2.2)

is the potential vorticity; ψ(x, y, t) is the streamfunction at location (x, y) and time t ;
f = βy is the Coriolis parameter with β a constant; ∇A ≡ (Ax, Ay); and J (A, B) ≡
AxBy − BxAy . Subscripts denote differentiation. The boundary condition is ψ = 0. The
horizontal velocity in the (east, north) direction is u = (u, v) = (−ψy, ψx). Hence (2.1)
expresses the conservation of potential vorticity on fluid particles. The dynamics (2.1–2.2)
conserves the energy2

E =
∫∫

dx(∇ψ · ∇ψ) (2.3)

and every quantity of the form
∫∫

dx F(q) (2.4)

where F( ) is an arbitrary function. Particular importance attaches to the circulation

C =
∫∫

dx q (2.5)

and the potential enstrophy

Z =
∫∫

dx q2. (2.6)

2. The development is cleanest if we here omit the convential factor of 1/2 in the definition of energy.
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Equilibrium statistical mechanics applies to systems of coupled ordinary differential
equations in the form

dyi

dt
= fi(y1, y2, y3, . . . , yn), i = 1, . . . , n (2.7)

where n, the number of degrees of freedom, is finite. Every state of the system with evolution
equation (2.7) corresponds to a point y ≡ (y1, y2, y3, . . . , yn) in phase space. If

n∑

i=1

∂fi

∂yi
= 0, (2.8)

then the motion in phase space is nondivergent. If motion governed by (2.7) satisfying (2.8)
conserves the m quantities

E1(y), E2(y), . . . , Em(y), (2.9)

then equilibrium statistical mechanics predicts that the probability distribution in phase
space approaches the canonical distribution3

P(y) = α0 exp(−α1E1 − α2E3 − · · · − αmEm) (2.10)

where the m + 1 constants αi are determined by the normalization requirement
∫∫

· · ·
∫

dyP(y) = 1 (2.11)

and by the m requirements

〈Ei〉 ≡
∫∫

· · ·
∫

dyEi(y)P (y) = E0
i (2.12)

that the average value of each Ei equals its prescribed value E0
i . From the viewpoint of

information theory, one obtains (2.10) by maximizing the entropy

S = −
∫∫

· · ·
∫

dyP ln P (2.13)

subject to the constraints (2.11) and (2.12). The αi are the Lagrange multipliers correspond-
ing to these constraints. One can also regard α1, α2, · · · , αm as ‘inverse temperatures.’

The quasigeostrophic system (2.1–2.2) fits the form (2.7) if the streamfunction ψ(x, y, t)

is truncated to a finite number of degrees of freedom, as is always necessary in constructing a

3. If the microcanonical distribution is desired instead, then additional constraints limiting the variance of the
Ei may be attached to the maximization of entropy; see, e.g., Salmon (1998, pp. 251–256).
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numerical model. In the conceptually cleanest method, we imagineψ(x, y, t) to be expanded
as the sum

ψ(x, y, t) =
n∑

i=1

yi(t)φi (x, y) (2.14)

of orthonormal modes obeying ∇2φi = −k2
i φi and the boundary condition φi = 0. Then

(2.7) corresponds to a spectral model of (2.1). The largest eigenvalue kmax corresponds to
the smallest spatial scale kmax

−1 resolved by the model. However, one could instead regard
yi(t) as the value of ψ at the i-th grid point in a finite-difference model of (2.1). Salmon
and Talley (1989) show how to construct finite-difference models of (2.1–2.2) that conserve
finite-difference analogs of (2.3,2.5–2.6). In either the spectral or finite-difference case, the
discrete evolution equations (2.7) obey the requirement (2.8). Hence statistical mechanics
predicts the equilibrium probability distribution

P = α0 exp(−αEE − αCC − αZZ) (2.15)

where E, C and Z are the conserved spectral or finite-difference analogs of (2.3,2.5–2.6).
The four α’s are determined by the normalization requirement (2.11) and by the requirements
that 〈E〉, 〈C〉 and 〈Z〉 equal their prescribed initial values. By a standard theorem of statistical
mechanics, these requirements uniquely determine the α-values.

The equilibrium state (2.15) corresponding to (2.1–2.2) was thoroughly analyzed by
Carnevale and Frederiksen (1987). They considered the asymptotic limit of perfect model
resolution, kmax → ∞, with 〈E〉, 〈C〉 and 〈Z〉 held fixed. In this limit, the mean stream-
function 〈ψ〉 obeys

∇2〈ψ〉 + βy = αE

αZ
〈ψ〉 + αC

αZ
(2.16)

and the energy in the fluctuating flow represented by ψ′ = ψ − 〈ψ〉 is concentrated at the
smallest resolved scale kmax

−1.4 Carnevale and Frederiksen noted that, for all realizable
values of the α’s—that is, for all α’s corresponding to values of (2.3, 2.5–2.6) that could
actually be attained—the mean flow defined by (2.16) is a stable flow in the sense of Arnol’d
(1965, 1969). Unless the energy is unrealistically large, αE ) kmin

2αZ > 0 as kmax → ∞,
and the solution of (2.16) consists of a westward interior flow with speed UI ≡ βαZ/αE

closed by boundary layers of width
√

UI/β = √
αZ/αE .

All of these results are analytic. Although computer simulations of (2.1–2.2) have been
used to test the predictions of equilibrium statistical mechanics, the theory itself is a pencil-
and-paper theory. However, this is true only because the conserved quantities (2.3, 2.5–2.6)
are either linear or quadratic. Then (2.15) is multivariate Gaussian, and integrals like those
needed to establish (2.16) can be performed.

4. In contrast, Fofonoff (1954) hypothesized (2.16), noting that its solution is a steady solution of (2.1).
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But suppose we ask the statistical mechanical theory to incorporate the quartic invariant

Q =
∫∫

dx q4. (2.17)

Then the equilibrium probability distribution acquires an additional term in its exponent,
and the average streamfunction is given by

〈ψ〉 =
∫∫

· · ·
∫

dy ψ α0 exp(−αEE − αCC − αZZ − αQQ). (2.18)

Now, however, there is nothing analogous to the theory of quadratic forms that would allow
us to factor (2.18) into a product of simpler integrals. The expression (2.18) is well-defined,
but for a model with (say) 1002 grid points, it corresponds to an irreducible integral over a
1002-dimensional space. The question of how the additional, nonquadratic invariant (2.17)
modifies the prediction (2.16) is an interesting one, and in the next section we show how to
answer it using a method designed for calculating very high-dimensional integrals. However,
the more essential point is this: In the case of shallow-water dynamics, even the energy and
the potential enstrophy are nonquadratic functions of the phase coordinates. Thus, in the
shallow-water case, the methods of the following section seem indispensable.

3. The Monte Carlo method
Metropolis et al. (1953) invented an algorithm for calculating integrals like (2.18). Their

algorithm and its many subsequent variants are often called the Monte Carlo method. For
a thorough explanation of the Monte Carlo method, see for example, Kalos and Whitlock
(2008, pp. 64–72). Here we present a brief description of the method as it applies to the
calculation of (2.18).

To begin the Metropolis algorithm, we choose values for the Lagrange multipliers αE ,
αC , αZ , and αQ. Then we choose an arbitrary state y of the quasigeostrophic system as the
first member of an ensemble. We calculate its probability of occurrence, P(y), according
to the canonical distribution. Then we randomly choose a nearby state y′ and calculate its
probability P(y′). If the new state y′ is more probable than the old state y, then we accept
the new state as the next member of the ensemble, and we continue the process by random
nomination of another nearby state. If the new state y′ is less probable than the old state y,
then we accept it with probability P ≡ P(y′)/P (y). That is, we request a random number
R between 0 and 1. If R < P we accept y′ as the next member of our ensemble. If R > P
we admit the old state y as an ensemble member for a second time and proceed by making
another nomination for y′. It can be shown that this process of accumulating ensemble
members eventually results in an ensemble of states in which each state occurs with the
same probability as in the canonical distribution. However, convergence is typically very
slow. To compute the average of any quantity G(y) that depends on the system state y, we
simply add up all the values of G in our accumulated ensemble and divide by the number
of ensemble members.
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We consider a square ocean of side L = 4000 km covered by 100 grid points in each
direction. At the boundary grid points ψ = 0. At the interior grid points ψ may assume
any value, hence the dimension of our phase space is n = 982. In each iteration of the
Monte Carlo method we perturb the value of ψ at a single interior grid point. Let ψij be
the value of ψ at grid point (i, j). We nominate the new value ψ′

ij by choosing a number,
with uniform probability, from the range (ψij −∆ψ, ψij +∆ψ), where ∆ψ is a prescribed
constant. Then we compute the probability associated with the perturbed state, and either
accept it or reject it according to the rules stated in the previous paragraph. We obtain the
average streamfunction field 〈ψrs〉 by averaging over all the members of our ensemble.
Each ensemble member consists of the entire field of gridded ψ-values. The most time-
consuming part of the calculation is the computation of the discrete approximations to
the energy (2.3) and potential-vorticity moments (2.5, 2.6, 2.17) for each nominated state.
Efficiency is achieved by using the fact that perturbations in each ψij affect only a few
terms in the expressions for the energy and other invariants; only these terms need to be
re-computed to find the change in energy from the previous state.

The parameter ∆ψ, which determines the average size of the perturbations, must neither
be too large nor too small. If ∆ψ is too large, then too many of the nominated states will
be rejected, and convergence will be slow. If ∆ψ is too small, then the acceptance rate will
be large, but convergence will be slow because the new states differ little from from the
old ones. The fastest convergence is achieved by periodically adjusting ∆ψ so that about
50% of the nominations result in transitions to a new state. Because the initial guess is
inevitably a poor one, one typically finds that relatively large values of ∆ψ are required
early in the calculation. However, ∆ψ must be reduced as the sequence of states approaches
equilibrium.

Let the equator y = 0 lie at midbasin. If the average circulation 〈C〉 vanishes, then the
equilibrium flow will be symmetric about the equator. We impose this by setting αC = 0.
We wish to compare the average streamfunction corresponding to

P = α0 exp(−αEE − αZZ) (3.1)

to the average streamfunction corresponding to

P = α0 exp(−αEE − αZZ − αQQ) (3.2)

which incorporates the quartic moment (2.17). In the Fofonoff case (3.1), the average stream-
function is already known—it is given by the solution of (2.16) with αC = 0—but our
calculation provides a useful check on the Monte Carlo algorithm. In the quartic case (3.2),
the average streamfunction is unknown, and the Monte Carlo method seems to be the only
way to find it.

To calculate the average streamfunction corresponding to (3.1), we choose fixed values
for αE and αZ and an arbitrary beginning state for our system; we begin in the state of rest.
According to theory, there is a unique, one-to-one correspondence between the values of αE
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and αZ and the values of 〈E〉 and 〈Z〉. That is, αE = αE(〈E〉, 〈Z〉) and αZ = αZ(〈E〉, 〈Z〉).
However, it is simpler to specify αE and αZ than to specify 〈E〉 and 〈Z〉.5 Trial-and-error
adjustments of the α’s are sufficient to yield realistic values of the conserved quantities,
because the results do not depend sensitively on either set of parameters.

We apply the Metropolis algorithm in stages. Each stage begins with the final ensemble
member of the previous stage and makes 50,000 passes through the n = 982 grid points
at which ψ may vary. Each pass consists of a single ψ-perturbation at each interior grid
point. Thus each stage accumulates 50, 000 × 982 ensemble members. Once again, each
ensemble member is a complete set of gridded ψ-values. We compute the average ψ-
field corresponding to each stage. The first and many subsequent stages are of no interest,
because they merely reflect our arbitrary starting point. We keep computing new stages until
the averages obtained from successive stages differ by very small amounts.

Figure 1a shows the average streamfunction corresponding to (3.1) with ‘energy tempera-
ture’ TE ≡ αE

−1 = 0.6422 km2/day2 and ‘potential enstrophy temperature’ TZ ≡ αZ
−1 =

1.573×10−5 day−2, as computed by the Monte Carlo method.6 These α-choices correspond
to Fofonoff flow with a westward interior velocity UI = βαZ/αE = 80.1 km/day and a
boundary layer thickness δI ≡ √

UI/β = 202 km of 5∆, where ∆ is the distance between
grid points. The Metropolis algorithm was applied until significant trends had disappeared
and until the averages computed by successive stages differed by less than 1%. This required
about 30 minutes of computer time on a 2 GHz processor. In the stage corresponding to
Figure 1a, the average interior velocity is 79.2 km/day, which is very close to the expected
value of 80.1. In fact, Figure 1a closely resembles the familiar boundary-layer solution of
(2.16) (e.g. Salmon, 1998, p. 273), which applies when δI , L. Of course, this UI is much
larger than observed interior ocean current velocities. However, the need to resolve inertial
boundary layers on our coarse 100 × 100 grid demands a relatively large UI . The use of
finer resolution greatly increases the computer time required for the Metropolis algorithm
to converge.

In trying to determine the influence of the quartic invariant (2.17) on the equilibrium sta-
tistical mechanics, we must recognize that the answer depends not only on the prescribed
value of (2.17), but also on the information that will be computed from the resulting equi-
librium distribution (3.2). The Fofonoff solution of Figure 1a has a value of the quartic
equal to 〈Q〉Foff = 13.9 day−4. If, for the same values of energy and potential enstrophy,
the prescribed value of the average quartic should just happen to equal 〈Q〉Foff , then the
Lagrange multiplier αQ = 0, and any statistic computed from (3.2) would be the same as
that computed from (3.1). For nonzero αQ the statistics computed from (3.2) will generally
differ from those computed from (3.1), but the difference will depend on the particular

5. We need not specify α0, because the Monte Carlo algorithm requires only the ratio of probabilities.
6. From now on, when we speak of energy, we mean the energy per unit area, that is, the total energy (2.3)

divided by the area L2, and similarly for the potential enstrophy and the quartic. Numerical values reflect this
convention.
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Figure 1. The average streamfunction for quasigeostrophic flow in a beta-plane ocean, as computed
by the Monte Carlo method, for (a) the probability density (3.1), which recognizes only the energy
and potential enstrophy; and (b) the probability density (3.2), which also recognizes the quartic
(2.17).
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statistic being compared. For example, the difference in 〈Q〉 itself is likely to be significant
unless of course 〈Q〉 ≈ 〈Q〉Foff . It seems likely that higher order statistics, such as 〈q8〉,
would be more sensitive to the prescribed value of the quartic than to the prescribed values
of the average energy and potential enstrophy. However, it is also likely that lower order
statistics such as 〈ψ〉 are not very sensitive to the prescribed value of 〈Q〉 or αQ. In fact, if
this were not the case, then the whole program of statistical mechanics as applied to systems
like (2.1–2.2) would be seriously in doubt.

In this section we are only interested in the average streamfunction 〈ψ〉, and we investigate
the influence of the quartic by increasing αQ from zero, keeping the same values of αE and
αZ as in the Fofonoff case described above.7 We find no significant changes to the average
flow until αQ exceeds the value αQcrit ≡ n/〈Q〉Foff , where, again, n is the number of
degrees of freedom. Figure 1b shows the streamfunction corresponding to a value of αQ

equal to five times this amount. In the solution of Figure 1b, the average interior flow is
114.5 km/day; 〈E〉/〈E〉Foff = 1.63; 〈Z〉/〈Z〉Foff = 0.86; and 〈Q〉/〈Q〉Foff = 0.67.
These changes are significant, but the general pattern of the flow is the same as in Figure 1a.
This supports the prevailing idea (e.g. Carnevale and Frederiksen, p. 175) that the higher
moments of potential vorticity are of secondary importance in determining the equilibrium
mean flow.

Before leaving the quasigeostrophic case, we briefly mention a connection between the
statistical mechanical explanation for Fofonoff flow and wave-mean theories based upon
the concept of pseudomomentum. Suppose that the energy (2.3) were the only conserved
quantity. Then equilibrium statistical mechanics predicts equipartition of energy among
Fourier modes. Since the number of modes with wavenumbers of size k increases like k,
most of the energy appears near the highest wavenumber kmax in the truncated system. The
enstrophy approaches its maximum value of k2

max times the energy. But suppose that the
potential enstrophy (2.6) is also conserved. Apart from irrelevant additive and multiplicative
constants, this implies conservation of

Z =
∫∫

dx
(

1
2
ζ2 + βyζ

)
. (3.3)

If β = 0 the conservation of enstrophy
∫∫

dx ζ2 prevents energy from reaching high
wavenumbers; the enstrophy constraint traps most of the energy in large spatial scales.
The entropy of the system is lower than if energy alone were conserved. However, if β .= 0,
then energy can move to high wavenumbers, increasing the entropy of the system. The
resulting increase in enstrophy can be balanced by a negative correlation between y and ζ.
The first term in the integrand of (3.3) corresponds to the pseudomomentum;8 the second
term corresponds to the mean momentum, after integrations by parts. A typical argument

7. An alternative procedure would hold 〈E〉 and 〈Z〉 fixed while varying 〈Q〉, but it would be extremely difficult
to determine the corresponding α’s.

8. In discussing pseudomomentum, it is conventional to divide (3.3) by β.
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applies the local, flux-form, conservation law corresponding to (3.3) to an ocean subdo-
main bounded by a latitude line (e.g. Salmon, 1998, pp. 264–279). Here we focus on the
integral (3.3) over the whole domain, which is more closely related to the statistical mechan-
ical approach. The implied negative correlation between vorticity and latitude represents
the same sorting mechanism identified by Veronis (1970), and it offers a simple, quali-
tative explanation for Fofonoff flow. Since quasigeostrophic theory does not distinguish
between bottom topography and Coriolis parameter, these same ideas predict anticyclonic
flow around islands and seamounts.

Discussions of pseudomomentum often refer to the importance of dissipation or irre-
versible mixing of potential vorticity, and thus would seem to contradict the basis of equi-
librium statistical mechanics. In fact, the two are closely related. Suppose that the invis-
cid truncated system reaches an equilibrium in which the increase in pseudomomentum
P ≡ 1/2

∫∫
dx ζ2/β balances the decrease in U ≡

∫∫
dx yζ. Since ζ + βy is conserved

on fluid particles, the increase in pseudomomentum is associated with the development of
thin filaments of vorticity ζ. Now imagine that viscous dissipation is suddenly turned on
for a short time. It is very plausible that the effect of the dissipation will be to decrease the
pseudomomentum P while hardly affecting the mean flow U at all. However, this viscous
decrease in P simply clears the way for nonlinear interactions to build P back up, thereby
further decreasing U , resulting in an even stronger Fofonoff flow. We could achieve much
the same result, with no dissipation at all, by simply increasing the truncation wavenum-
ber kmax , that is, by opening up new, high-wavenumber modes, whose excitation would
correspond to an increase in P and a compensating decrease in U .

4. Statistical mechanics of shallow water
The shallow water equations may be written in the form

∂u

∂t
= qvh − ∂Φ

∂x
(4.1a)

∂v
∂t

= −quh − ∂Φ

∂y
(4.1b)

∂h

∂t
+ ∂

∂x
(uh) + ∂

∂y
(vh) = 0 (4.1c)

where (u, v) is the horizontal velocity in the (x, y) direction at time t , h is the fluid depth,

q = (ζ + f )/h (4.2)

is the potential vorticity with relative vorticity ζ = vx − uy and Coriolis parameter f , and

Φ = 1
2
(u2 + v2) + gh. (4.3)
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At solid boundaries, both the normal component of velocity and its time derivative must
vanish. We regard (4.1–4.3) as a reduced gravity model of the ocean’s upper layer; below
this upper layer, the ocean is assumed to be at rest. Hence we take g = 0.002×9.8 m sec−2.

The dynamics (4.1–4.3) conserves the energy

E =
∫∫

dx
(

1
2
h u · u + 1

2
gh2

)
(4.4)

and every quantity of the form
∫∫

dx hqn. Particular importance attaches to the mass

M =
∫∫

dx h, (4.5)

the circulation

C =
∫∫

dx hq, (4.6)

and the potential enstrophy

Z =
∫∫

dx hq2. (4.7)

Neither (4.4) nor (4.7) is quadratic in the dependent variables. Despite this fact, Salmon
(2009, hereafter S09) developed a finite-difference model of the shallow-water equations
that—apart from truncation error in the time step—exactly conserves finite-difference ana-
logues of (4.4–4.7) in a bounded domain.

As shown in S09, it is easy to construct shallow-water models that conserve (4.5–4.7)
if the fundamental dynamical variables u and v are replaced by the vorticity ζ and the
divergence µ = ux + vy . In the new independent variables ζ, µ, h, the evolution equations
take the form

∂ζ

∂t
= J (q, χ) − ∇ · (q∇γ) (4.8a)

∂µ

∂t
= J (q, γ) + ∇ · (q∇χ − ∇Φ) (4.8b)

∂h

∂t
= −∇2γ. (4.8c)

The streamfunction χ and the velocity potential γ are defined by

hu =
(

−∂χ

∂y
+ ∂γ

∂x
,

∂χ

∂x
+ ∂γ

∂y

)
(4.9)

and are determined from ζ, µ, h by the elliptic equations

∇ · (h−1∇χ) + J (h−1, γ) = ζ (4.10a)

∇ · (h−1∇γ) + J (χ, h−1) = µ. (4.10b)
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We also require

Φ = 1
2h2 (∇χ · ∇χ + ∇γ · ∇γ + 2J (χ, γ)) + gh. (4.11)

The no-normal-flow boundary conditions may be taken as χ = 0 and ∂γ/∂n = 0, where n is
the outward normal. S09 derives finite-difference analogues of (4.8) that conserve analogues
of (4.5–4.7) for any values of the ‘diagnostic variables’ χ, γ, and Φ. This is possible because
(4.5–4.7) take a particularly simple form in terms of the ‘prognostic varibiables’ ζ, µ, and
h. However, the conservation of energy

E =
∫∫

dx
(

1
2h

(∇χ · ∇χ + ∇γ · ∇γ + 2J (χ, γ)) + 1
2
gh2

)
(4.12)

depends upon the finite-difference forms of (4.10) and (4.11). More precisely, the finite-
difference form of (4.12) determines the finite-difference forms of (4.10) and (4.11). Because
the formulation (4.8–4.11) requires the solution of the coupled elliptic equations (4.10) at
every time step, the S09 model is much less efficient than numerical models based upon
the standard formulation (4.1–4.3). This inefficiency is the price to be paid for maintaining
so many conservation laws, especially in the presence of boundaries.9 For a complete
description of the finite-difference model, refer to S09.

In this section we use Monte Carlo to calculate the equilibrium statistical mechanics of the
shallow water equations, and we compare our predictions to unforced, inviscid solutions of
the S09 model. The domain is similar to that in Section 3—a square ocean with the equator
at mid-basin. However, in order to resolve the deformation radii, we take the domain size
to be L = 2000 km—half the size of the domain in Section 3. As in the quasigeostrophic
case, we impose statistical symmetry about the equator; we assume that the average value
of the circulation (4.6) vanishes. The remaining invariants are the mass (4.5), the energy
(4.12), and the potential enstrophy (4.7). The Monte Carlo calculation applies the Metropolis
algorithm to the probability distribution

P = α0 exp(−αMM − αEE − αZZ). (4.13)

This requires only the finite-difference expressions for M , E and Z. Thus, for Monte Carlo
calculations, virtually any choice of fundamental variables would suffice. Although the
conventional variables u, v, h would seem to be a natural choice, there are three reasons
to prefer χ, γ and h as phase-space coordinates that define the state of the shallow water
system.

First, as already explained, the shallow-water model derived in S09 is based upon χ, γ

and h. By using these same variables for the Monte Carlo calculation we facilitate inter-
comparison.

9. Griffa et al. (1996) investigated the inviscid dynamics of a much simpler shallow water model that conserved
only the potential enstrophy.
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Second, as noted in S82, the phase-space motion is nondivergent if the variables are
taken to be hu, hv and h. That is, uniformly gridded values of these variables obey the
requirement (2.8). Since by (4.9) the transformation between hu, hv, h and χ, γ, h is a
linear one, the latter variables also obey (2.8). Said another way, volumes in hu-hv-h space
are proportional to volumes in χ-γ-h space, and are conserved in both spaces. This means
that, in applying the Metropolis algorithm, one nominates new system states by selecting
from distributions that are uniformly distributed in a local χ-γ-h neighborhood, in a manner
analogous to the nomination of ψ-states in Section 3.

Third, the choice χ-γ-h represents a natural partition of phase space into three parts.
For our Monte Carlo calculations we use 1002 grid points. Thus, taking the boundary
conditions on χ and γ into account, we have 982 values of χ, 982 values of γ, and 1002

values of h. The full phase space has 982 × 982 × 1002 dimensions. However, by imposing
the conditions h = H (constant) and γ = 0, we can apply the Metropolis algorithm to
the 982-dimensional subspace spanned by the χ-values alone. In this case, the mass (4.5)
is a trivial invariant, and—apart from irrelevant additive and multiplicative constants—the
energy (4.4) and potential enstrophy reduce to the corresponding quasigeostrophic forms
with ψ = χ/H . Thus, for the χ-space truncation, the Monte Carlo calculation reduces to
the much-studied quasigeostrophic case reviewed in Sections 2 and 3.

At the next level of complexity, one can consider the equilibrium statistical mechanics of
the χ-h system, obtained by maintaining the restriction γ = 0, but allowing χ to take any
value at nonboundary grid points, and h to take any non-negative value at all grid points.
The advantage of the χ-h system over the χ system—the quasigeostrophic system—is that
the thermocline depth h can vary by an arbitrary amount. In particular, h can vanish. In the
χ-h system, the mass takes the form (4.5), the energy takes the form

E =
∫∫

dx
(∇χ · ∇χ

2h
+ 1

2
gh2

)
(4.14)

and the potential enstrophy takes the form

Z =
∫∫

dx h−1(∇ · (h−1∇χ) + f )2. (4.15)

Since neither (4.14) nor (4.15) is quadratic, the Monte Carlo method is indispensable.
As compared to the χ system, the χ-h system corresponds to ‘lifting a barrier’ in the sense

of thermodynamics. One can lift a second ‘barrier’—the ‘barrier’ that prevents excitation of
γ—and consider the equilibrium statistical mechanics of the χ-γ-h system, corresponding
to the full shallow-water dynamics. However, it is not obvious that the full χ-γ-h system has
more to teach us than the χ-h system. To understand this point, first realize that the ‘barriers’
mentioned above are not fundamentally different than the ‘barrier’ that confines the energy,
potential enstrophy and other invariants to a finite number of spatial degrees of freedom, i.e.,
the ‘barrier’ between our spatially truncated systems and the many degrees of freedom that
reside in wavenumbers greater than the cutoff wavenumber kmax . Suppose that this cutoff
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barrier too were lifted. In a real fluid there are still a finite number of degrees of freedom,
but these now correspond to the locations and velocities of the molecules comprising the
fluid. The equilibrium statistical mechanics of this molecular system is a rather uninteresting
one; it is heat death, with no motion whatsoever on macroscopic scales. As is generally
true in thermodynamics, interesting results are obtained only by considering systems in
which barriers prevent global equilibria of this kind. Past studies of spatially truncated,
quasigeostrophic systems with their twin barriers confining excitations to χ-space on the
one hand, and to macroscopic scales of motion on the other, have proved to be valuable:
The inviscid, spatially-truncated, quasigeostrophic equilibrium states indicate the general
direction towards which nonlinear interactions tend to drive the more realistic, viscous,
untruncated system. The precise connection between these two systems—truncated and
inviscid versus untruncated and viscous—is unavoidably ambiguous, but it clearly depends
on the placement of ‘barriers’ that define the truncation. We come back to these points in
Section 5. In the remainder of this section we apply the Monte Carlo method to the χ-h
system and to the χ-γ-h system.

To apply the Metropolis algorithm we specify values for αM , αE and αZ . As in Section
3, we redefine M , E and Z as the mass, energy and potential enstrophy per unit area of the
whole domain. Consider, as a reference state, the state in which the fluid layer is motionless
and covers the domain with a uniform depth h = H ≡ 250 m. In this state of rest, the
invariants take the values

M0 = H, E0 = 1
2
gH 2, Z0 = 1

3
β2y2

max/H (4.16)

where ymax = 1000 km. We define the α’s with respect to these values. We take

αM = n

θMM0
, αE = n

θEE0
, αZ = n

θZZ0
(4.17)

where n = 1002 is the number of grid points, and θM , θE , θZ are the ‘nondimensional tem-
peratures’ corresponding to mass, energy and potential enstrophy, respectively. We choose
order-one values for θM , θE , and θZ . Then, starting at the state of rest, we apply the Metropo-
lis algorithms in stages that consist of many passes through the 1002 grid points. In each
pass, first χ, then h, and then (sometimes) γ is perturbed at each grid point. The perturbations
cover a range ±∆χ, ±∆h, ±∆γ, which are initially set at ∆χ = ∆γ = 1 Sverdrup (Sv),
∆h = 100 m, and then periodically adjusted to keep the acceptance rate near 50%. Since
h can take only positive values, the Metropolis algorithm must be slightly modified from
the form described in Section 3. The Appendix, which describes the needed modification,
is an almost self-contained derivation of the Metropolis algorithm.

Table 1 summarizes the Monte Carlo calculations. The calculations differ only in the
choice of ‘potential-enstrophy temperature’ θZ and the particular system considered: Exper-
iments E1, E2, E3 and E4 correspond to the χ-h system; in these experiments γ ≡ 0.
Experiments E5, E6, E7 and E8 correspond to the full χ-γ-h system. All 8 Monte Carlo
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Table 1. Summary of Monte Carlo solutions.

Experiment E1 E2 E3 E4 E5 E6 E7 E8
Perturbs χ, h χ, h χ, h χ, h χ, h, γ χ, h, γ χ, h, γ χ, h, γ

θZ 1 1/2 1/4 1/8 1 1/2 1/4 1/8
havg (meters) 301 287 268 242 346 335 315 300√

〈u2〉 (km/day) 102 131 138 135 218 235 251 278√
〈u〉2 (km/day) 94 122 129 127 82 110 127 175

〈χ〉max (Sv) 130 170 163 144 122 170 175 133
ζrms/fmax 0.61 0.56 0.54 0.54 0.62 0.55 0.53 0.54
µrms/fmax 0.77 1.12 1.65 2.18 10.8 11.1 12.0 14.8

experiments have ‘mass temperature’ θM = 1 and ‘energy temperature’ θE = π. These
values were arbitrarily selected 10 to give an average thermocline depth in the oceanographic
range. The statistics reported in Table 1 correspond to the final stage of each calculation—the
stage nearest equilibrium—containing 5.8 billion ensemble members. For each calculation,
Table 1 gives the ensemble- and area-average depth havg , the rms velocity

√
〈u2〉, the mean-

flow velocity
√

〈u〉2, the mass transport 〈χ〉max in either gyre, the rms vorticity ζrms , and the
rms divergence µrms . The latter two are normalized by the value of the Coriolis parameter
at the northern boundary. Repeated calculations suggest that the numbers presented in Table
1 are accurate to within a few per cent.

If θZ = ∞ (αZ = 0), then there is no constraint on potential vorticity and no equilibrium
mean flow. The equilibrium statistical mechanics is that of nonrotating, compressible, two-
dimensional turbulence. As θZ decreases past unity, both the χ-h system and the χ-γ-h
system develop strong and very similar mean flows. As measured by the ratio Urel ≡√

〈u〉2/
√

〈u2〉, the strength of the mean flow increases from 0.92 to 0.94 as θZ decreases
from 1 to 1/8 in the χ-h system. In the corresponding χ-γ-h calculations, Urel increases
from 0.38 to 0.62.

The principal difference between the χ − h calculations (E1-4) and the χ − h − γ

calculations (E5-8) is that most of the kinetic energy in the latter resides in small-scale
divergent motions that make little contribution to the mean flow. That is, as the ‘γ-barrier’ is
lifted, the newly available region of phase space rapidly gains energy, and the rms divergence
increases by an order of magnitude. In contrast, the rms vorticity hardly changes. The large
difference between the rms vorticity and divergence in calculations E5-8 may be traced
to the fact that vorticity—but not divergence—appears in the potential vorticity, and thus
is constrained by potential enstrophy conservation. The change in the mean flow between
E1-4 and E5-8—as measured by the velocity ratio Urel or by the gyre transport 〈χ〉max—is
relatively slight. Of course, instead of comparing calculations with the same values of θM

10. In the very special case αE = αZ = 0 of no constraints on energy or potential enstrophy, the value
θM = 1 corresponds to a spatially uniform average depth 〈h〉 equal to the reference depth H . Similarly, when
αM = αZ = 0, and when the kinetic energy term is omitted from the energy, the value θE = π also corresponds
〈h〉 = H . However, in the general case these choices have no special significance.
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Figure 2. The ensemble- and longitude-averaged thermocline depth h in Monte Carlo calculations E1-
E4, in which χ and h vary freely but the velocity potential γ is constrained to vanish. In each panel,
the horizontal line represents the ocean surface, and the curved line represents the main thermocline.
The equator lies at the center. The average depth for each calculation is given in Table 1.

and θE , one might prefer to compare calculations with the same values of mass and energy,
but this would require an enormous number of independent Monte Carlo calculations to
accurately determine the dependence of θM , θE , and θZ on M , E and Z.

Figure 2 shows the ensemble-averaged thermocline depth 〈h〉 in the χ − h calculations
(E1-4) after x-averaging over the middle half of the ocean basin, to exclude eastern and
western boundary layers. In each panel of Figure 2, the horizontal line denotes the ocean
surface, and the curve represents the average location of the boundary between isopycnal
layers. Figure 3 shows the corresponding information for the χ − h − γ calculations (E5-
8). In every case, as θZ decreases, the thermocline depth at the equator decreases; the
maximum thermocline depth at mid-latitude increases; and the poleward extremities of the
layer approach outcrop. In these features, the calculations strongly resemble the ocean’s
main thermocline. In fact, the general shape of the curves in Figures 2 and 3 strongly
resembles the shapes of upper-ocean isopycnals in typical meridional sections throughout
the world ocean.

Figures 4–7 show the mean streamfunction 〈χ(x, y)〉 and mean layer depth 〈h(x, y)〉 for
all 8 Monte Carlo calculations. At the smallest values of θZ , the flow separates from the
northern and southern boundaries in E3 and E4. In this region, the average layer depth is
only a few meters.11 However, the eastern and western boundary currents extend all the

11. These regions of very small layer depth correspond to actual outcrops of the abyssal layer. Average values
of zero cannot occur in the Monte Carlo method because the Metropois algorithm nominates only non-negative h.
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Figure 3. As in Figure 2, but for Monte Carlo calculations E5-8, in which χ, h, and γ all vary freely.

way to the corners of the domain. This behavior is clearly associated with the extension of
the fluid layer into the corners, which is especially notable in E3, E4 (Fig. 6) and E8 (Fig.
7). The noisy behavior of 〈h(x, y)〉 in the equatorial region of E8 (Figs. 5 and 7) seems to
be caused by incomplete convergence of the Metropolis algorithm in this region. In fact,
despite the size of the ensemble, which required several days computing time on a 2.6 GHz
processor, 〈h(x, y)〉 is everywhere quite noisy, especially along the ‘outcrop’ lines at which
the layer depth nearly vanishes.

This noisiness is understandable when one considers the difficulties facing Monte Carlo
calculations in which h nearly vanishes. As h → 0 the potential vorticity q blows up unless
ζ experiences a compensating change in the numerator of (4.2). In the Metropolis algorithm,
this subtle compensating change must occur by chance. This at least partly explains why
the shallow-water Monte Carlo calculations require so much more computing time, and
are still so much noiser, than the quasigeostrophic calculations of Section 3. This agony
could be avoided by using the potential vorticity itself as one of the fundamental dynamical
variables to be perturbed, and by nominating only finite values of the potential vorticity.
Unfortunately, changing the potential vorticity at a single gridpoint induces a change in
the velocity field throughout the domain. Determining the new velocity would require the
solution of an elliptic problem at every step of the Monte Carlo calculation. This strategy
was briefly tried and found to be impractical. However, modifications of the strategy, in
which iterations in the solution of the elliptic equation are somehow interleaved with the
Metropolis iterations, may eventually prove successful. We come back to these issues in
the following section.
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Figure 4. The transport streamfunction χ in Monte Carlo calculations E1-4. The maximum transport
values are given in Table 1. The corresponding velocity field, which is symmetric about the equator,
resembles Fofonoff flow. Darker contours correspond to larger values.

Finally, we examine direct numerical simulations of the shallow water equations using
the S09 model. This model comprises a set of coupled ordinary differential equations,
analogous to (4.8–11), in which all the space derivatives—but not the time derivatives—
are replaced by finite differences. These coupled ordinary differential equations exactly
conserve finite-difference analogs of (4.5–7) and (4.12). To solve the S09 equations, we use
and adaptive fourth-order Runge-Kutta method for the time step, and we use a multi-grid
method to solve the analogs of the elliptic equations (4.10). Both of these methods introduce
errors that can be made as small as desired. In the experiment to be discussed, the largest
errors were caused by incomplete convergence of the multi-grid solver. However, the mass,
potential enstrophy and energy were nevertheless conserved to within a few per cent over a
time interval comprising 800,000 time steps, corresponding to a period of 3200 simulated
days and 19 hours of computer time. Even smaller errors can be achieved by increasing the
number of iterations in the multi-grid solver, but the cost in computing time is considerable.
For a complete description of the S09 model, refer to S09.
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Figure 5. The same as Figure 4, but for Monte Carlo calculations E5-8.

Figures 8 and 9 show the time-average streamfunction χ(x, y) and layer depth h in a
shallow-water simulation with 642 grid points and random initial conditions. These averages
correspond to the last 3200 days of a simulation that lasted 4000 days. This simulation
is much less energetic that the Monte Carlo cases considered above; its rms velocity of
20 km day−1 and its average maximum transport of 42 Sv are less than half the values given
in Table 1. However, because difficulties arise when h approaches zero at any point within
the flow, the direct numerical simulation of Figures 8 and 9 was the most energetic inviscid
calculation that could be achieved. We digress to explain the difficulties.

Although the S09 model conserves energy exactly, the model can still blow up, because,
if h becomes even slightly negative, then the kinetic energy in (4.4) becomes negative
and the kinetic and potential energy may simultaneously diverge, even as the total energy
remains constant. It was hoped to counteract this catastrophe by introducing an additional
‘surface energy’ term into (4.4) and (4.12) that becomes very large when the layer depth
falls below a very small positive value. This strategy was used successfully in viscous
simulations by Salmon (2002) and Primeau and Newman (2007). In the present inviscid
context, the surface-energy strategy offers the essential advantage that it does not affect
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Figure 6. The average thermocline depth 〈h(x, y)〉 in Monte Carlo calculations E1-4. Maximum
values are, respectively, 353 m, 362 m, 489 m, and 460 m. Darker contours correspond to larger
values.

the conservation properties of the S09 model. Inviscid simulations with the surface-energy
term did indeed avoid negative h but at a prohibitively high cost: The system became so
stiff, and the adaptive time step so short, that the evolution essentially ground to a halt. In
the simulation corresponding to Figures 8 and 9, which again had no surface energy, the
instantaneous layer depth was at times perilously close to zero, but the average layer depth
in Figure 9 varies only between 452 m and 526 m.

Despite this disappointment, the time-average flow of Figures 8 and 9 supports the general
prediction of statistical mechanics and the Monte Carlo calculations that the zeroth-order
flow in the ocean’s surface layer—a westward drift at low latitudes associated with poleward
deepening of the thermocline, and a compensating eastward flow near the latitudes at which
the warm layer depth vanishes—requires no particular explanation at all. It is simply the
average of all possible states with the given average values of mass, energy, and potential
enstrophy.
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Figure 7. The same as Figure 6, but for Monte Carlo calculations E5-8. The maximum values of
average layer depth are, respectively, 403 m, 412 m, 428 m, and 510 m.

5. Discussion
In at least one sense these results are surprising. In the quasigeostrophic case, the con-

nection between the streamfunction and the layer depth is built into the model and, most
particularly, into the conservation laws (2.3) and (2.6). That is, the quasigeostrophic
energy and potential enstrophy know about geostrophic balance. Thus, although the quasi-
geostrophic phase space has only one-third the dimensions of the full shallow-water phase
space, its conservation laws incorporate more physics. The statistical mechanics of the
shallow-water system depend only on the forms of the mass (4.5), the potential enstrophy
(4.7) and the energy (4.12). The fields χ, h and γ may assume any configuration consistent
with the values of these invariants. In particular, there is no imposed connection between the
streamfunction χ and the fluid depth h; the shallow-water Monte Carlo calculation knows
nothing at all about geostrophy. At the beginning of this study, it was suspected that this
defect might be fatal, and that there might be no connection between the statistical mechan-
ics of the shallow water system and either the statistical mechanics of the quasigeostrophic
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Figure 8. The transport streamfunction χ(x, y) averaged over the final 3200 days of a direct numerical
simulation of the shallow water equations with random initial conditions. The simulation conserved
mass, energy, and potential enstrophy to within a few per cent. The transport of either gyre is 42
Sverdrups. Darker contours correspond to larger values.

system or shallow water inviscid dynamics. The author has still not quite recovered from
his surprise that all three yield similar mean flows.

It is still probably worthwhile to investigate the statistical mechanics of a model with
fewer independent variables than the shallow water equations, but whose conservation
laws incorporate more of the physics. This is the territory of balanced models like the L1

model proposed by Salmon (1985).12 All balanced models of the shallow water equations
incorporate two balance conditions to remove the two fast inertia-gravity modes from the
physics; the remaining physics contains only the one slow Rossby mode, and is most con-
veniently presented as a single evolution equation for potential vorticity. The balance con-
ditions require the solution of elliptic equations at every time step. The balance conditions
in quasigeostrophy and in L1 are geostrophic balance, but geostrophic balance is not appro-
priate for flow in the vicinity of the equator. Therefore, the first step in a Monte Carlo
calculation based upon a balanced model would be to find physically defensible balance
conditions for flow that spans the equator. The assumption γ = 0 that the mass trans-
port have no divergence, used for the χ − h system in Section 4, is one plausible balance
condition, but a second condition relating χ and h is also required. If this second balance

12. Strictly speaking, the quasigeostrophic system is a balanced model, but its key assumption—that the layer
depth be nearly uniform—makes it useless for most oceanographic purposes.
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Figure 9. The time-average of the layer depth h(x, y) in the same simulation of the shallow water
equations as depicted in Figure 8. The average depth varies from 452 m to 526 m. Arrows denote
the velocity, which has an rms value of 20 km/day and a maximum value of 77 km/day.

condition involves an elliptic equation (as seems likely) then the Monte Carlo method might
well become impractical. These matters deserve much further study.

What precisely do our calculations mean? As in every case, the ideal equilibrium states
represent target states towards which nonlinear interactions, acting by themselves, would
tend to drive the flow. To the extent that flows with realistic forcing and dissipation resemble
these ideal states, equilibrium statistical mechanics offers a kind of generic explanation.
For example, the resemblance between Figures 2 and 3 and the observed shape of the main
thermocline plausibly means that the observed thermocline shape requires no very particular
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explanation; it is simply the average shape that results from the system’s tendency to explore
all the states consistent with its mass, energy and potential enstrophy. Numerical experiments
with, say, a very particular forcing might also yield this observed thermocline shape, thus
possibly creating the misconception that the thermocline shape depends critically on that
very particular forcing. However, the generic explanation offered by equilibrium statistical
mechanics suggests otherwise; the system always seeks the equilibrium state.

Of course, many features predicted by equilibrium statistical mechanics are never attained
by even weakly dissipative systems. For example, the wavenumber spectra predicted by
equilibrium statistical mechanics typically exhibit an ‘ultra-violet catastrophe’ and bear no
resemblance to observed wavenumber spectra. The latter require theories—such as Kol-
mogorov theory—in which the forcing and dissipation assume a leading-order importance.
Unfortunately, the search for a complete theory of turbulence—a nonequilibrium statistical
mechanics—that would encompass all statistics in all cases of forcing and dissipation has
yet proved largely unsuccessful.

In any case, previous applications of equilibrium statistical mechanics to quasigeostrophic
models have yielded tantalizing results. These include the emergence of anticyclonic
flow around islands and seamounts, and the almost complete ‘barotropization’ of two-
layer quasigeostrophic flow on scales larger than the internal deformation radius. One
especially interesting—and possibly unappreciated—result is the theory’s prediction that
quasigeostrophic turbulence transfers its energy toward the equator and into high vertical
mode. More precisely, the equilibrium state is one in which the kinetic energy in each ver-
tical mode peaks at the equator. The width of each peak equals the equatorial deformation
radius for that mode. All the peaks have equal height, corresponding to energy equipartition
among vertical modes at the equator. Thus equilibrium statistical mechanics offers a generic
explanation for the existence of the deep equatorial jets. For details, see Salmon (1982b, pp.
55–63). The same features can be understood more simply as resulting from the tendency
for energy to flow toward the lowest ‘total wavenumber’ of the system (Salmon 1982b,
p. 47; Salmon, 1998, p. 284).

The present paper is among the first to apply equilibrium statistical mechanics to the
shallow water equations. It seems possible that future applications to more complicated,
multi-layer, shallow water systems could yield new results as interesting as those previously
obtained for quasigeostrophic systems.
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APPENDIX
Metropolis algorithm applied to the fluid depth

In applying the Metropolis algorithm, we separately nominate new values of χ, γ and
h at each grid point. Apart from boundary conditions, the variables χ and γ can assume
any values. Hence we nominate new values, with uniform probability, from fixed ranges
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centered on the current values of χ and γ, as described for ψ in Section 3. However, the
fluid depth h can assume only positive values. This requires the following modification to
the algorithm.

Suppose that we are considering a transition in which the value of h at a particular grid
point is changed from h1 to h2. Let P1 and P2 be the canonical probability densities in the
system states corresponding to h1 and h2, respectively. Let P(1 → 2) be the probability of
transition from state 1 to 2, and let P(2 → 1) be the probability of transition from state 2
to 1. By the principle of detailed balance,

P1 P(1 → 2) = P2 P(2 → 1) (A.1)

at equilibrium. However,

P(1 → 2) = N(1 → 2) A(1 → 2) (A.2)

where, given that we are in state 1, N(1 → 2) is the probability of nominating state 2, and
A(1 → 2) is the probability of accepting state 2 as the next ensemble member. Similarly,

P(2 → 1) = N(2 → 1) A(2 → 1). (A.3)

Substituting (A.2) and (A.3) into (A.1), we obtain

A(1 → 2)

A(2 → 1)
= P2 N(2 → 1)

P1 N(1 → 2)
≡ P. (A.4)

We satisfy (A.4) by adopting the rules

A(1 → 2) = 1 if P > 1 (A.5a)

A(1 → 2) = P if P < 1. (A.5b)

If, as in the case of χ and γ, nominations are made from an interval of fixed width centered on
the current value, then N(2 → 1) = N(1 → 2), and (A.5) reduces to the verbal explanation
of the Metropolis algorithm given in Section 3, with P = P2/P1. However, since h cannot
be negative, we nominate h2, uniformly, from the range [max(0, h1 − ∆h), h1 + ∆h] and
vice versa. Since the probability of nominating a particular state is inversely proportional
to the range from which it is selected, we have

N(1 → 2)

N(2 → 1)
= h2 + ∆h − max(0, h2 − ∆h)

h1 + ∆h − max(0, h1 − ∆h)
= ∆h + min(h2, ∆h)

∆h + min(h1, ∆h)
. (A.6)

If both h1 and h2 are greater than ∆h then (A.6) is unity. In general, we apply the rules
(A.5) with

P = P2 (∆h + min(h1, ∆h))

P1 (∆h + min(h2, ∆h))
. (A.7)

The foregoing is an almost self-contained derivation of the Metropolis algorithm. For further
details, see Kalos and Whitlock (2008, pp. 64–72).
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