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Figure 1. (top) Time series of sea level from Scripps Pier in La Jolla.o(gkpanel) Real part of Fourier
transform of time series. (third panel) Real part of Fourier transfdrglemeaned time series. (bottom)
Imaginary part of Fourier transorm of time series.

Example: Fourier Transform of a Data Record
The top panel of Figure 1 shows a year-long time series (from 200®aofevel measured at the La
Jolla Pier. The second panel shows the real part of the Fourieraramsthat's

plot(real(fft(data)));

You can't see much in this case, because frequency 0 contains thewtealm,s large compared with the
variability.

So that we don’t have to look only at the mean, the third panel is the reabfoidwe Fourier transform
of the data record.

plot(real(fft(data-mean(data))));

It is symmetric about the middle, with a couple spikes at either end that corméspughly to one cycle per
day and two cycles per day—the dominant tidal frequencies. The bottoai jsahe imaginary part of the
Fourier transform.

plot(imag(fft(data-mean(data))));
or
plot(imag(fft(data)));

It is anti-symmetric about the middle.

The Fourier transform in this raw form isn't very informative, so wetl d little more work to digest
our results. For each frequency we can compute an amplitude. If | hete€l'dthat vary at only one
frequencywy, | can represent them 85= ay, cos(wyt) + by, sin(wyt). Now suppose that | can have positive
and negative frequencies. That means that | can fave ay cos(wit) + b sin(wgt) + cx cos(—wit) +
di sin(—wyt) = (ar+cx) cos(wyt)+(bp—dy) sin(wyt). The average value @f is zero, since sine and cosine
both have zero means—that'’s not so interesting. The variance of thé isiginea mean squared amplitude:
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Figure 2: (top) Amplitude of Fourier transform as a function of freqyenith mean included. (bottom)
Amplitude of demeaned time series.

SN (ag + cx)? cos?(wit;) + (b, — dy)? sin® (wyt;), where the terms containing products of cosine and sine
disappear since sine and cosine are uncorrelated. In the same waetimaegnall /(27) f02“ cos(t) dt =
1/2, the sumi /N - | cos®(wt;) = 1/2. Thus the total variance af is ((a + c)? + (b — di)?)/2.

Even if T represents a superposition of a lot of different sinusoidal variatginse sines and cosines
are orthogonal (if they're resolved in our time domain), the presencéhef drequencies won't influence
the total variance at the frequeney.. That means we can use the same rule to find the varian@é of
corresponding to each specific frequency.

We're not done yet. We still have to look at the relationship betweeny, ¢, andd,. Clearly the
amplitudes associated with positive and negative frequengaigsaren’t really independent. In our Fourier
transform, we found that the amplitude of positive frequencies was thelegropnjugate of the amplitude
of negative frequencies. That means that if positive frequengiese represented hy. + b, then negative
frequencies-wy have amplitudes, —ib, = c;+idy, SOay, = ¢ andby, = —d. Therefore the total variance
of Tis ((2ax)? + (2bx)?)/2 = 2(a2 + b3), which is twice the squared magnitude of the amplitude that we
find by Fourier transforming.

Figure 2 shows the amplitude of the Fourier transfét(iX; ) + (X} )? as a function of frequency.

plot(abs(fft(data)).”2);

The record is strongly dominated by the mean (at the lowest frequenoyavadid seeing nothing but the
mean, we can subtract the mean, as shown in the bottom panel of Figure 2.

plot(abs(fft(data-mean(data))).”2);

but this result is still completely dominated by a couple of energetic frequencie
A more helpful strategy is to plot the amplitudes on a semilog plot, as shown ineRigur

semilogy(abs(fft(data))."2);

The resulting plot is completely symmetric. Frequencies indexed froni) focan be thought of as positive
frequencies. Frequencies fraNy2 + 1 to N are equivalent to negative frequencies. Matlab’s notation is a
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Figure 3: Amplitude of Fourier transform as a function of frequency witlamiecluded, plotted with log
scale for y-axis.

little confusing since index corresponds to frequency 0, and ind€x2 + 1 corresponds to the maximum
resolved frequency.

Parseval’s Theorem
One of the most important features of the Fourier transform is that it iesepts data in frequency
space, but it doesn't alter the overall “power” or “energy”. Thusamtinuous form:

| letora= [ xcpiar @
and in discrete form:
N 1 i\l: )
Z |$n|2 =5 | Xk |". 2)
n=1 N k=1

Thus in our 8-point example abovE, y? = 28 and>_ |Y|? = 224 = 28 x 8.

For complex numberf| = /R(Y;)? + S(Yx)2. We can compute this a%|? = Y, Y}, whereY}*
is the complex conjugate af;. In Matlab, the transpose is also the complex conjugate, 8dsfa column
vector, then we can compufg|? = Y’ * Y or you can specify thal’| = abs{).

Spectra

With Parseval’s theorem in mind, we can interpret our squared amplitudesresmsure of the total
“energy” in our time series. To plot energy as a function of frequeneyconsider only frequencies between
1andN/2, since frequency indices betweaf 241 and N simply repeat the same information. However, to
make sure that we account for all of the variability in the system, we need to igudtipFourier transform
amplitudes by 2, except at zero frequency. In Matlab we compute:

N=length(data);

s=abs(fft(data))."2;

spectra(1)=s(1);

spectra(2:N/2+1)=2 *S(2:N/2+1);
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Figure 4: Spectral energy for La Jolla sea level in 2000.

We still have to decide how to normalize our spectra. Definitions are noyalwery consistent. In
general people worry more about the slope of the spectra and the sieepsaks, and don't often interpret
the absolute value of the spectra. | advocate normalizing your spectratsBatseval’s theorem is true:
making the total sum of squares in the original time-domain data equal the tatabfsaquares in the
frequency domain data. With Matlab, that means that you'll divide the comsypiectrum byV .

s=abs(fft(data))."2;
spectra(1)=s(1)/N;
spectra(2:N/2+1)=2 * 5(2:N/2+1)/N;

semilogy(0:N/2,spectra);
xlabel('frequency (cycles per N data points)’)

Figure 4 shows the normalized spectrum for the La Jolla sea level time s¥dasan see two big
peaks, corresponding to 1 and 2 cycles per day, and a lot of noitleeatfieequencies, which we don't really
take to be a serious indication of statistically relevant variability. Clearly wd teeompute error bars for
our spectrum.



